
Phys. Status Solidi B 247, No. 10, 2537–2549 (2010) / DOI 10.1002/pssb.201046181 p s sb

st
a
tu

s

so
li

d
i

www.pss-b.com

h
y
si

ca
eature Article

asic solid state physics
Electronic structure and magnetism of
monatomic one-dimensional metal
nanostructures on metal surfaces

F

b

p

P. A. Ignatiev1, N. N. Negulyaev2, L. Niebergall1, H. Hashemi2, W. Hergert2, and V. S. Stepanyuk*,1
1 Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
2 Fachbereich Physik, Martin-Luther-Universität, Halle-Wittenberg, Friedemann-Bach-Platz 6, 06099 Halle, Germany

Received 15 April 2010, revised 9 June 2010, accepted 6 June 2010

Published online 9 August 2010

Keywords density functional theory, magnetic interactions, Monte Carlo simulations, nanostructures, self-assembly, surface states

* Corresponding author: e-mail stepanyu@mpi-halle.mpg.de, Phone: þ49 345 5582645, Fax: þ49 345 5511223
We report on theoretical studies of one-dimensional (1D)

monatomic metal nanostructures coupled to metal substrates,

which support surface states. The aim of the work is to

demonstrate general features of electronic structure, magnetic

properties, and interactions in such systems. We start from

simple finite monatomic chains. It is shown that electronic

confinement in 1D metallic chains can be observed at energies

of projected band gaps of a metallic substrate. At other energies

the confinement is significantly suppressed by scattering of

chain states into the metallic substrate. Although this scattering
decreases the exchange interaction between magnetic atoms

incorporated into the chain, we show that it is still possible to get

a significant enhancement of the exchange interaction in short

chains. The next problem addressed in the paper is related to the

interaction of the surface state with ad-chains and 1D

resonators. Special attention is paid to a possible impact of

confinement in 1D resonators on atomic diffusion and self-

organization inside them. Finally, we illustrate the theoretical

approach for the treatment of magnetization dynamics in 1D

nanostructures.
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction The focus of the surface science
drifts nowadays towards atomic-scale systems, e.g., wires
[1–11], stripes [2, 12–18], clusters [1, 19–25], and nanodots
[26–32]. Such downscaling requires realistic and efficient
ways of description of systems, whose properties are
determined by quantum effects and, therefore, are strongly
dependent on the environment, dimension, structure, and
atomic species involved [33]. Every particular class of
systems should be carefully studied experimentally and
theoretically in order to reveal some general phenomena.
This paper is devoted to one-dimensional (1D) monatomic
metal nanostructures on metal substrates. Despite the seeming
simplicity of such structures, they are a perfect illustration of
fundamental properties of low-dimensional quantum systems.
In this paper we deal with various close-packed and sparse 1D
atomic structures, which could be located on flat or stepped
surfaces. Generally speaking, in all cases we are interested in
electronic properties and magnetic phenomena. The next
interesting aspect of our study is related to creation of low-
dimensional nanostructures on surfaces [33]. They could be
self-assembled in a ‘‘bottom-up’’ manner [1–30, 33–40], or
built in a ‘‘top-down’’ approach by means of the scanning
tunneling microscopy (STM) [41–49]. The latter technique
allows to map surface topography at the atomic scale [50–53]
or even with a true atomic resolution [54] and to record
simultaneously spectral characteristics of the sample studied
[55–57]. Scanning tunneling spectroscopy (STS) measure-
ments can be easily compared to appropriate theoretical
ab initio descriptions [55, 58, 59].

The paper is organized as follows. Our studies are based
on the density functional theory (DFT), therefore, Section 2
describes the ab initio method involved. Section 3 is devoted
to electronic and magnetic properties of monatomic chains on
metal surfaces. In Section 4 we introduce quantum resonators
and describe how 1D electronic confinement in resonators
governs the atomic diffusion. In Section 5 we concentrate on
the magnetization dynamics of 1D nanostructures. We present
a model based on the Heisenberg Hamiltonian and then apply
it to investigate ferromagnetism of close-packed and sparse
1D atomic structures.
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2 KKR Green’s function method Electronic proper-
ties of systems presented in this paper were calculated by
means of the Korringa–Kohn–Rostoker (KKR) Green’s
function method, so it is worthwhile to introduce it. The KKR
is an ideal tool for ab initio description of impurities
embedded into a crystal or placed on a surface. The KKR
Green’s function method is the implementation of the DFT.
It exploits the multiple scattering formalism to solve Kohn–
Sham equations formulated in the DFT framework.
Mathematically, the KKR method rests on two facts [60]:
(i) the local density of states (LDOS) r(r,e) is connected to
the Green’s function G(r,r0,e) of a system as:
� 20
rðr; eÞ ¼ � 1

p
ImGðr; r; eÞ; (1)
and (ii) the Green’s function G(e) of a perturbed system

can be expressed from the Green’s function G
�
ðeÞ of the

reference system by means of the Dyson equation:
GðeÞ ¼ G
�
ðeÞ þ G

�
ðeÞTðeÞG

�
ðeÞ; (2)
where T(e) is the so-called transition matrix (or T-matrix)
relating the states jCi of a perturbed system to the states
jC0i of the unperturbed one. The T-matrix is defined as
V jCi¼TðeÞjC0i, where V is a perturbing potential. Such a
construction makes it possible to express any perturbed
system in terms of the reference one [61, 62]. More
precisely, a bulk crystal is treated as a periodical three-
dimensional (3D) perturbation of the free space. The Dyson
equation in this case is formulated in the reciprocal space. A
surface, accordingly, can be considered either as a 2D
perturbation of an infinite bulk crystal, or as a 2D slab,
which perturbs the free space. Finally, a finite cluster is a
real space perturbation of an infinite surface and, therefore,
can also be studied by means of the KKR. The shape and
the size of a region perturbed by the cluster at the surface
are not restricted to some method-related parameters,
like supercell size in plane-wave codes, hence systems
spread over several nanometers can be studied by the KKR
[63–65]. Finally, the KKR method, as we show below,
allows straightforward calculations of the magnitude of
interactions mediated by conduction electrons.

It is worth to notice, that atomic chains on surfaces have
also been studied by theoretical methods other than KKR,
like, self-consistent tight-binding method [66–68], real
space linear muffin tin orbital method in atomic sphere
approximation [69], plane-wave based codes [70, 71], and
wave-packet propagation method [72, 73].

3 Monatomic chains on metal surfaces Monatomic
chains are the simplest 1D metal nanostructures on a metal
substrate. They can be created by means of STM manipula-
tions [44, 45, 47–49]. The undoubted merit of this
technology is the ability to create chains from several
species in an atom-by-atom fashion thus controlling both
their layout and composition [44, 45, 47–49]. In this section
we review the most important experimental and theoretical
10 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
results on monatomic metal chains on metal surfaces. We
focus our attention on the electronic structure of chains and
consider magnetic interactions inside and between them.

3.1 Confinement in chains An isolated metallic
chain can be described at the first approximation by the
particle-in-a-box model. The electronic spectrum of such a
confined system is characterized by a set of discrete energy
levels, whose energies en depend on the length L of the chain
as en ¼ �h2=2mðpn=LÞ2

, where m is the electron mass. The
corresponding electronic density of state n is characterized
by:
rnðxÞ ¼
2

L
sin2 npx

L

� �
; (3)
and exhibits n peaks. Electronic states in gaps between these
levels are not allowed. If a metal chain is placed on a metal
surface, then the interaction of chain states with substrate
conduction electrons has to be taken into account. At a
first glance, such an interaction could result in vanishing
gaps in the chain’s electronic structure and in the loss of
the confinement as states prohibited in chain gaps could be
allowed in the substrate. This statement does not imply
that the confinement in metal chains on metal surfaces
is fundamentally impossible. It only suggests, that in order
to retain the chain-confined states, it is necessary to
significantly limit their interaction with substrate electrons.
Such ‘‘decoupling’’ of chain and substrate states can occur, for
example, if the chain-confined states fall into the projected gap
of the substrate electronic structure. This point has recently
been demonstrated by means of the STM/STS studies.

First STM/STS experiments on confined states of
artificial monatomic chains were performed by Fölsch et
al. [47]. Close-packed Cu chains were assembled on Cu(111)
by means of atomic manipulations. Investigations of chains
electronic structure by means of STS revealed series of
unoccupied states manifesting themselves as peaks in
scanning tunneling spectra [47]. Number of peaks, their
energies and spatial localization were found to depend on the
chain length [47]. The state with the lowest energy is
localized spatially in a single node at the center of a chain.
Then eigenstates with two distinct nodes were observed at a
higher energy; then – with three nodes, etc. Such a
development of the electronic structure is typical for the
particle-in-a-box model (3) [47].

3.2 Bound states Electronic confinement in metal
ad-chains manifests itself at energies of the projected bulk
band gap of the substrate where the coupling between
the chain-confined and substrate states is small. Now we are
going to address the so-called bound states, which appear
due to perturbation of the substrate electronic structure by
an ad-chain. To treat this problem correctly, we should
introduce the so-called surface state of Cu(111).

Electrons inside a crystal obey the Bloch theorem and
can occupy only the allowed set of energies separated with
www.pss-b.com
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Figure 1 (online color at: www.pss-b.com) The energy resolved
spectral density map calculated at the interface layer of the Cu(111)
surface along M� G� K direction of the 2D Brillouin zone. Blue
and violet areas correspond to the projected bulk bands. Black
regions are gaps of the projected band structure. The surface state
band is presented as a bright parabola with a band bottom at
�0.536 eV.
band gaps. Break of the crystal symmetry at a surface
changes the spectrum and causes additional bands to appear
in the gaps of the bulk band structure. States described by
such bands are confined at the surface in between the vacuum
potential barrier on the one, and the crystal band gap on the
other side [74, 75]. The dispersion law of such surface states
depends on the type and the position of the gap. The surface
state arising in the inverted L-gap of the bulk Cu is 2D-free-
electron-like and is described by a parabolic dispersion
relation [76]: EðkkÞ ¼ E0 þ �h2=2m � k2

k, where kk is the in-
plane wave vector and E0 is the surface state band bottom.
Figure 1 demonstrates the spectral density map of electronic
states of the interface layer of the Cu(111) surface calculated
alongM� G� K direction of the Cu(111) 2D Brillouin zone
by means of the KKR method. Black areas of the spectral
density map correspond to the projected bulk band gaps. One
gap is situated at theG-point, another is visible at theK-point.
Blue and violet areas are projected bulk states of bulk Cu.
www.pss-b.com
Bright parabolic band at G with the bottom at the energy of
approximately �0.536 eV is the Cu(111) surface state. The
Fermi wavelength of the surface state lssF ¼ 26.6 Å
(kF¼ 0.235 Å�1) is much larger than that of bulk states
(lbF ¼ 4.62 Å). Note, that the broadening technique applied to
facilitate the convergence results in blurring of gap edges and
in the broadening of the surface state band in Fig. 1.

It is clear that the interaction of a 2D surface state with
ad-structures could be very much different from the case of
3D Cu bulk states. This difference can be derived using
the extended Newns–Anderson model describing an adsor-
bate interacting with bulk Bloch states and with the surface
state [77, 78]. It can be demonstrated, that any feature in
the density of substrate states induces a state localized at
the adatom. Bulk states are featureless; the density of the
surface state has an onset at the energy of the surface state
band bottom. The interaction of the surface state with an
adsorbate produces a bound state resonance below the
surface state band bottom [78]. The bound state resonance
obtained by means of the KKR method for a Cu adatom on
the Cu(111) surface [79] is demonstrated in Fig. 2a. It is most
pronounced above the adatom, then, moving away from the
atom, its density rapidly decreases, and at 10.2 Å from the
adatom the LDOS turns into the LDOS of clean Cu(111).
Several experimental studies have revealed such kind of
bound states above adatoms on Cu(111) and Ag(111) [78, 80].
We refer the reader to these works for details.

Ad-chains also produce bound states. A chains, as
opposed to an adatom, cannot be considered to be a point
perturbation coupled to the Cu(111) surface state. Elongated
shape of chains and the mutual coupling of their atoms results
in the formation of rather complex bound states resembling
standing waves arising in confined geometries. Figure 2b
presents LDOS calculated above various parts of the Cu
chain consisting of seven atoms aligned along h101i
direction on the Cu(111) surface [79]. Although a broad
bound state resonance is clearly visible in all three cases, its
energy significantly depends on the position along the chain.
Bound states localized at chain edges (Fig. 2b, position 1)
resemble adatom bound states shown in Fig. 2a. But as one
Figure 2 (online color at: www.pss-b.com)
(a) The LDOS over the Cu adatom on Cu(111)
at different lateral distances. Gray line corre-
sponds to the energy of the surface state band
bottom.Boundstateappearsbelowthisenergy.
Bound state is most pronounced above the
adatom and decays with distance. (b) The
change in the LDOS along the Cu chain.
Bound state in the central part of the chain is
localized at lower energies than that at the
chain edges [79].

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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moves towards the chain center (Fig. 2b positions 2, 3),
bound state resonances abruptly move to lower energies.
Edge atoms are coupled to a single neighbor, while atoms
inside the chain are coupled to a pair of neighbors. Different
coupling strengths could explain variations in energy of
bound states at edges and in the center.

3.3 Magnetic interactions All the systems we have
considered so far have been nonmagnetic. Now we are going
to extend our reasoning to chains with incorporated magnetic
atoms. Such structures can be fabricated by means of either
the self-assembly [39, 40], or atomic manipulations [49]. In
the first, ‘‘bottom-up’’ approach, the Pt(997) vicinal surface
has been used as a template for the growth of mixed 1D
chains [39, 40]. In the second case, magnetic Co atoms were
evaporated on the Cu(111) surface, and then, by means of
STM manipulation, mixed chains were assembled from Co
and Cu atoms. The latter were produced by tip indentation
[49]. Fabricated chains were then studied by means of the
STS. It was demonstrated that it is possible to resolve the
position of Co atoms in the chain. It was revealed that Co
doping allows to tune unoccupied confined states of the
chain. Here, we are going to discuss the exchange interaction
between magnetic atoms incorporated into the chain and the
exchange interaction between magnetic chains.

The exchange interaction between magnetic atoms
coupled to a metal substrate is mediated by substrate
conduction electrons. Let us suppose that we have a pair of
magnetic impurities. Electrons scattered off both magnetic
impurities interfere with each other. Since scattering at
magnetic impurities is spin-dependent, the interference
patterns for parallel (P) and antiparallel (AP) alignment of
magnetic moments of impurities are also different. The
resulting total energies of P and AP systems are not
degenerate and one of these configurations is energetically
more favorable by the energy DE ¼ EP � EAP:
� 20
DE ¼
ZEF

�1

deðe� EFÞDrðeÞ; (4)
a) b)

Figure 3 (online color at: www.pss-b.com) (a) The exchange
interaction between two single Cr atoms on the Cu(111) surface
where EF is the Fermi energy and Dr(e)¼DrP(e)�DrAP(e) is
the total interference-related DOS difference between P
and AP configurations. The total change of the DOS Dr(e)
can be expressed using explicit terms Drs1;s2

for density
of conduction electrons of particular spin characters (si ¼
f"; #g) scattered at impurities 1 and 2. In P configuration the
change of DOS reads DrðeÞP ¼ DrðeÞ"" þ DrðeÞ##, where
the first and the second terms describe the scattering
of majority and minority electrons, respectively. In AP
configuration the majority and minority scattering properties
of the second impurity are swapped and DrðeÞAP ¼
DrðeÞ"# þ DrðeÞ#". The total change of DOS can be
expressed as:
(dotted blue line, open circles) and the exchange interaction between
those atoms linked with a nonmagnetic Cu chain (solid black line,
open triangles). (b) The same dependencies for a Co pair [83].
DrðeÞ ¼ Dr"" þ Dr## � Dr"# � Dr#": (5)
10 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Each term of this sum can be formulated in terms of
scattering matrices Ts1s2

:

Drs1s2
¼ � 1

p
ImTr ln½Ts1s2

ðEFÞ�: (6)
This equation, also known as Lloyd’s formula [60], is in
the spirit of the KKR Green’s function method (see Eq. (2))
and can be directly implemented in it. The sign of the
exchange energy DE depends on scattering properties of
magnetic impurities incorporated in Ts1s2

. The Fermi
wavelength of conduction electrons, their density and
dimensionality are of great importance. Indeed, the inter-
action between two single bulk impurities mediated by bulk
Bloch states decays as /1/r5 [81], while the surface state
mediated interactions obey the inverse quadratic law /1/r2

[82]. Below we demonstrate how atomic chains can be used
to tailor the exchange interaction.

3.3.1 Mixed chains At first we present the exchange
interaction (see Eq. (4)) between a pair of Cr atoms on the
clean Cu(111) surface. It is plotted in Fig. 3a with a dashed
blue line [83]. The nearest neighbor Cr dimer exhibits strong
antiferromagnetic coupling promoted by a direct overlap Cr
d-shells filled with four electrons. At larger separation of
5.1 Å the direct overlap is much smaller and the interaction is
mediated by substrate electrons. As a result, the magnitude of
the exchange interaction is strongly reduced and its sign is
changed. At further separations the exchange interaction,
oscillating, decays to 0. The decay rate of the oscillations
envelope /r�2 at large separations is determined by the
surface state.

Let us trace now the effect of a Cu chain linking Cr
atoms. The exchange interaction of a pair of Cr adatoms at a
separation of 5.1 Å with a single Cu adatom inserted as a link
between them is slightly reduced in comparison to the
reference case of single unlinked Cr adatoms. But already
two Cu atoms linking a Cr pair reverse the sign of the
www.pss-b.com
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exchange interaction and strongly enhance its magnitude.
The system with three Cu atoms in the chain has the
antiferromagnetic exchange interaction equal to 5 meV,
which is about ten times larger than the corresponding
magnitude of the ferromagnetic exchange interaction in the
reference system. Further elongation of the chain length
results in a rapid decay of the exchange interaction, which
becomes smaller than the exchange interaction between
single adatoms on the clean surface.

As the second example we present in Fig. 3b a
comparison of the exchange interactions of two separated
and two linked Co adatoms. Exact values differ from the
case of the Cr pair but the general trend is the same.
Enhancement of the exchange interaction in short chains and
its rapid decay in long ones are general effects for various
magnetic impurities. Rapid decay can be explained by the
scattering of conduction electrons from the chain into the
bulk. Such a scattering effectively decreases the density of
interference patterns between two impurities and they get
decoupled. At the same time, the density of conduction
electrons at Cu atoms is much higher than that of the surface
state, so interference effects are expected to be more
pronounced and therefore exchange energies can reasonably
be higher at separations, where the fraction of the electrons
being scattered into the bulk is small [83].

Despite the small values of the reported exchange
interactions, they can be probed experimentally by means of
the STS. The first available method is based on the analysis of
the Fano resonance, originating from the Kondo screening
of magnetic impurities by conduction electrons and the
formation of a singlet correlated state. This idea was initially
tested on Co dimers on Au(111) [84] and then extended and
improved by Wahl et al. [85] for Co atoms on Cu(001). In the
second method suggested by Meier et al. [59] the exchange
coupling is extracted from the magnetization curves acquired
at single adatoms by means of the spin-polarized STS.

3.3.2 Interaction between chains A similar
reasoning is valid for the interaction of two purely magnetic
chains of length N coupled to the Cu(111) substrate (see
Fig. 4, inset). The exchange interaction per chain atomEexc/N
Figure 4 (online color at: www.pss-b.com) Exchange interaction
Eexc/N between two parallel Fe chains divided by the total numberN
of atoms in a chain in the limit of long chains N� 1. Circles and
dashed line demonstrate the exchange interaction between two ad-
chains, squares and solid lines – between two embedded chains [86].

www.pss-b.com
scales linearly with N, and for N� 1 rapidly converges to a
limit demonstrated in Fig. 4 with dashed line [86]. Following
the hint developed for adatoms, the exchange interaction
between magnetic chains can be significantly enhanced by
filling the space between magnetic adatoms by the host
material. As a result, chains become embedded into the
substrate. The corresponding exchange interaction is
presented in Fig. 4 with black solid line. At intermediate
distances of �1 nm, it is one order of magnitude stronger
than in the case of ad-chains. This enhanced exchange
interaction promoted by surface conduction electrons has
recently been proposed [86] as the origin of the ferromag-
netic ordering in assemblies of Fe magnetic nanodots
observed experimentally by means of magneto optical Kerr
effect [26–28].

4 Quantum resonators One-dimensional atomic
structures can be used for tailoring and controlling atomic
diffusion on surfaces supporting surface-state electrons. It is
well known, that scattering of such electrons off surface
impurities could give rise to a valuable interaction between
them. Such kind of interaction has been predicted by Lau and
Kohn [81], but only recently the surface-state mediated
interaction has been detected experimentally [25, 87–93]. It
was revealed that surface-state mediated interactions
allow one to grow ordered arrays of adatoms [35–38, 90,
91, 94–97]. In this section we focus on the effect of the 1D
quantum confinement of surface states on atomic diffusion
and self-organization.

4.1 Surface state-mediated interaction A sub-
strate-mediated interaction between a pair of impurities on a
surface can be formulated in the form of Eq. (4) if Dr(e)
means the difference of the total DOS between a pair of
coupled (1þ 2) and decoupled (1,2) impurities:
DrðeÞ ¼ Dr1þ2 � Dr1 � Dr2: (7)
At large impurity separations r (r0 2 nm), the inter-
action is mediated by surface state electrons and for two
adatoms of the same species reads exactly [82]:
ESSðrÞ ¼ A0

2 sin d0

p

� �2
sinð2kFr þ 2d0Þ

ðkFrÞ2
; (8)
where kF is the surface state Fermi wavevector, d0 is the
phase shift, and A0 is the scattering amplitude [42].

At intermediate separations 1 nm9r9 2 nm, the con-
tribution from bulk states becomes important. The interaction
potential between two Fe adatoms on the Cu(111) surface
calculated by means of the KKR Green’s function method
[98] is demonstrated in Fig. 5. It has an oscillatory behavior.
The energy minimum at 2.5 Å corresponding to the close
packed Fe dimer is followed by an energy barrier noted in
Fig. 5 by letter A. The second interaction minimum B is
situated at �12 Å and it is bounded on the right by the second
repulsive barrier C. If an adatom is trapped in the minimum B,
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 5 (online color at: www.pss-b.com) Plot of the substrate-
mediated long-range interaction between two Fe adatoms on the
Cu(111) substrate as a function of distance R [98].
it has to overcome either barrier A or barrier C to escape. It
could be possible to stabilize the adatom at the position of
minimum B by adjusting its kinetic energy, e.g., by changing
the temperature. Indeed, the rate na!b of an adatom-hopping
between nearest hollow sites a and b of the Cu(111) surface
can be written using the Arrhenius law:
� 20
na!b ¼ n0 exp �DEa!b

kBT

� �
; (9)
Figure 6 (online color at: www.pss-b.com) The interaction energy
between a Fe adatom and Cu steps on Cu(111): (a) for the lower
terraceand(b) for theupper terrace.Theinteractionenergyat2.2 Å in
(a) is scaled by 0.005. (c) The 2D potential-energy map for the Fe
adatom to approach another Fe adatom trapped in the potential well
near the edge of the upper terrace. (d) The kMC simulations of the
self-organization of Fe adatoms on a vicinal Cu(111) into atomic
strings. Calculations are performed according to the experimental
conditions. (e) The STM image of Fe atomic strings on the vicinal
Cu(111) surface. The size is 40� 40 nm2, Fe coverage is 0.008 ML,
the temperature of the system is 12 K. Imaging conditions:
V¼�0.8 V and I¼ 1 nA [98].
where T is the substrate temperature, kB is the Boltzmann
constant, and v0 is the hopping attempt frequency, a value of
the order of 1012 Hz. The hopping barrier DEa!b is
comprised from two contributions DEa!b ¼ ED þ ESS.
The first, ED, is the barrier of adatom diffusion on a clean
surface. The second, ESS, reflects the impact of the surface
state-mediated interaction on the hopping barrier and can
be written as ESS ¼ ðESS

b � ESS
a Þ=2, where ESS

a and ESS
b are

energies of the surface-state mediated interaction with other
surface imperfections calculated for the adatom situated at
hollow sites a and b, respectively. Such approximation has
been verified in a number of recent studies [91, 93, 95–104].
The small variation ESS of the hopping barrier ED becomes
crucial at low temperatures (1–10 K) and can effectively
govern the atomic diffusion. In particular, the surface state-
mediated interaction results in formation of well-ordered 2D
hexagonal atomic superlattices [35–38, 97]. Below we
demonstrate how the 1D quantum confinement affects the
atomic diffusion.

4.2 Effect of quantum confinement on atomic
diffusion Adatoms interact via surface states with all kinds
of surface imperfections, like, vacancy holes, clusters, steps,
and 1D chains. All such defects perturb the surface states and
this perturbation affects the atomic diffusion. For example,
density of surface states scattered off a long Cu atomic chain
on Cu(111) represents decaying standing waves parallel to
the chain. STM observations have recently revealed that a Cu
adatom placed near such a chain prefers to migrate along
the channel of increased density of surface states [104]. We
demonstrate below that this phenomenon is related to the
10 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
surface-state mediated interaction and leads to a self-
organization of a novel class of 1D nanostructures stabilized
by this interaction.

4.2.1 Fe nanostrings on a stepped Cu
surface Interaction energies between a Fe adatom and
ascending and descending Cu steps on Cu(111) are presented
in Fig. 6a and b [98]. One can see that the interaction energy
in both cases is oscillatory with a period of about 1.5 nm (half
of the Fermi wavelength of the surface state on Cu(111)).
The adatom moving towards a step is repelled by the
repulsive potential. For the lower and upper terraces, the first
repulsive barrier occurs at distances of about 0.4–0.5 nm
from the step. The strength of this repulsive potential on the
upper terrace (173 meV) is significantly larger than that for
the lower terrace (26 meV). The physics underlying the
difference in behavior of adatoms at the upper and the lower
terraces is related to a redistribution of the electron-charge
density at step edges as was suggested long ago by
Smoluchowski [105].

Let us first examine the thermal diffusion of an
individual Fe adatom on a terrace of a stepped Cu(111)
www.pss-b.com
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surface at a temperature of about 10 K. The first minimum of
the interaction energy is found to be at �0.7 nm on the lower
terrace and at�0.8 nm for the upper terrace. The depth of the
first attractive minimum on the upper terrace (�8 meV) is
twice larger compared to that on the lower terrace (�4 meV).
A simple estimation by means of Eq. (9) yields, that at
T¼ 10–13 K the occupation probability of surface sites in the
potential well near the edge of the upper terrace is about 100
times larger than that on the lower terrace. Hence, it seems
likely that the preferential adatom position at such
temperatures is on the upper terrace at about 0.7 nm from
the descending step edge.

Let us now assume that there are several Fe adatoms
diffusing on a terrace of stepped Cu(111). Adatoms captured
near the descending step edge should interact with each
other. In Fig. 6c we depict the potential-energy map for the
Fe adatom approaching another Fe adatom trapped in
the potential well near the descending step edge [98]. The
repulsive area surrounding this adatom is well seen. It is
easier for the Fe adatom to approach the step edge within a
distance of about 1.2 nm from the first Fe adatom. Fe adatoms
interacting with the descending step edge and with each
other, thus, could form a sparse atomic string with
interatomic distances around 1.2 nm. This assumption was
confirmed both theoretically and experimentally by means of
kinetic Monte Carlo (kMC) [106] simulations and the STM.
Figure 6d demonstrates the result of our kMC simulation. Fe
atoms situated 0.7 nm away from the step edge with the
average interatomic separation equal to 1.2 nm form quasi
1D atomic strings at step edges. An STM image of Fe
adatoms evaporated on the Cu(111) stepped surface at 12 K
is demonstrated in Fig. 6e [98]. Sparse 1D chains are clearly
visible.

4.2.2 Self-organization in 1D confined
geometries Now we turn to the atomic diffusion inside
1D quantum resonators. Such structures can be of a natural
Figure 7 (onlinecolor at:www.pss-b.com) (a)AsingleCuadatomins
on Cu(111). The distance between the chains is 55 Å. T¼ 12 K, I¼ 0
measured dI/dV signal at V¼þ0.05 eV (black dots) and the calculated
walls [red line in(a)]. (c)The2Dmapof the interactionpotentialbetwee
chains with interchain separation of 55 Å). The black dashed line marks
the randomly walking Cu atom inside the resonator at 12 K. Three diff
probability) are marked with the enumerated arrows [104].

www.pss-b.com
origin. For example, a resonator can be comprised from two
monatomic steps [107]; resonators can be assembled in an
atom by atom fashion by means of the STM [104], or they can
be self-organized [10, 108, 109]. Surface state electrons get
confined to resonators and form standing waves, which could
be described in a crude approximation by Eq. (3). Figure 7a
demonstrates a Cu resonator fabricated on the Cu(111)
surface by STM manipulations [104]. The distance between
the resonator chains is 55 Å. Standing LDOS waves with
three maxima are clearly visible inside the resonator. To
calculate the interaction energy of an adatom with resonator
walls, one has to be sure that the LDOS is reproduced
correctly by the theoretical method used. Figure 7b provides
comparison of the LDOS obtained by means of the KKR
Green’s function method with the result of STS measure-
ments [104]. The agreement between theory and experiment
is very good.

Figure 7c presents the 2D potential energy map of a Cu
adatom placed in different hollow sites inside the resonator
[104]. The zero energy in Fig. 7c corresponds to the energy of
the adatom on the clean flat Cu(111) surface, so the energy
map represents the interaction potential of the adatom with
the resonator walls. The interaction exhibits oscillatory
behavior in the direction perpendicular to the chains. If the
adatom is situated at the first nearest neighbor separation
from a chain, the interaction is strongly attractive due to the
direct bonding and is equal to �1.25 eV. Then, there is a
repulsive barrier of 33 meV at 4–9 Å from the chain, which
prevents at low temperatures the nucleation of the adatom
with the chains. The area of attractive interaction of �6 meV
is situated at 9–15 Å. It is separated from the next attractive
area of�1 meV at the center of resonator by a small repulsive
barrier of 2 meV at 16–23 Å.

In order to quantify the effect of the interaction potential
shown in Fig. 7c on the atomic diffusion, the kMC study was
performed [104]. In each kMC trial the Cu adatom was
initially placed in the random hollow site inside the
ideaquantum resonatorbuilt from twoparallel monatomicCuchains
.07 nA, V¼þ0.1 eV. Image size 100� 100 Å2. (b) Experimentally
LDOS at the Fermi level (red curve) perpendicular to the resonator

naCuadatomandthequantumresonator (twoparallelmonatomicCu
the central line of the resonator. (d) The probability density of finding
usion channels (the areas, where an adatom can be found with a high

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 8 (online color at: www.pss-b.com) (a) KKR Green’s
function calculations of the interaction energy between Fe and Co
adatoms and a quantum resonator built from two parallel Ag atomic
chains. (b) Adatom–adatom interaction potential along the symme-
try axis of the resonator revealing preferential spacings of�26 Å for
Co and �23 Å for Fe, respectively. (c) 2D map of the interaction
potential calculated for the quantum resonator and one Co adatom
positioned in the middle of the resonator. (d) STM topography of Co
adatoms self-organized in 1D sparse nanostructure in between
biomolecular trenches. Image acquired at 12 K after annealing to
18 K (I¼ 0.06 nA, U¼�1.770 V). Scalebar corresponds to 50 Å
[108].
resonator, and its movement was simulated at T¼ 12 K.
Finally, the probability density of finding the adatom at
hollow site (x, y) was calculated as rðx; yÞ ¼ tx;y=

P
i;j ti;j,

where ti,j is the total time, which the adatom spends in hollow
site (i,j) [106]. Both fcc and hcp sites were considered during
simulations, and the summation was performed over all
possible hollow sites. The calculated probability density is
presented in Fig. 7d. If we exclude adatoms nucleated with
chains, there are three areas with a high probability to find the
adatom. These channels of adatom diffusion correspond to
the areas of the negative interaction energy. If the adatom
is placed into such a channel, then at T¼ 12 K it diffuses
predominantly parallel to the resonator walls. If the
adatom is introduced between the channels, it first diffuses
towards one of the channels and then migrates inside it
parallel to the resonator walls. As can be seen from Fig. 7c
and d channels are closed, i.e., areas of attractive potential
exist only inside the resonator and do not spread out of it.
As a result, adatoms get trapped within the resonator due
to the 1D confinement.

When a number of adatoms is placed simultaneously
inside the resonator, one can expect that the interaction
between them could result in the formation of sparse string-
like structures similar to those shown in Fig. 6d and e. Such
structures have been recently observed inside methionine
molecular nanogratings self-assembled on the Ag(111)
surface [10, 108, 109]. The methionine amino-acid deposited
onto Ag(111) at �320 K self-assembles into regular 1D
nanogratings aligned along the h110i direction of the
substrate. The interchain separation can be tuned within
20–200 Å at molecular coverages between 0.1 and 0.6 ML
[109]. Each chain consists of two molecular rows dimerized
by means of hydrogen bonds [109]. Each row is also
stabilized by means of hydrogen bonds [109]. The amino-
acid grating perturbs the Ag(111) surface state acting on it as
a potential barrier. The surface state gets confined to the
patches of the clean Ag(111) surface between molecular
chains and each trench, thus, can be considered as a very long
quantum resonator.

Figure 8a demonstrates the surface-state mediated
interaction between the adatom and the walls of the resonator
calculated by means of the KKR Green’s function method.
Scattering of surface state electrons at nanogratings was
simulated by scattering at Ag chains. The average effective
width of the potential well between scatterers was 50 Å.
Interactions presented in Fig. 8a for Co and Fe adatoms are
almost identical and both have the only attractive minimum
in the center of resonator [108].

The long-range substrate-mediated interaction between
a pair of adatoms within the examined resonator is plotted in
Fig. 8b. It has an attractive minimum at separations of �26
and �23 Å for Co and Fe adatoms, respectively. Finally,
Fig. 8c demonstrates the 2D energy landscape showing
both adatom–resonator and adatom–adatom interactions.
According to this result, it is most favorable energetically for
a Co adatom to stay at the center of the resonator at a distance
of �25 Å from another adatom. Figure 8d demonstrates an
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
STM study of the atomic self-alignment of Co inside
biomolecular gratings. Adatoms really form elongated
sparse assemblies. Statistical study of the movement of Co
adatoms at 18 K confirmed their nonrandom positioning
inside the trench. The probability density of finding an
adatom is maximal in the center of the trench at �25 Å from
its neighbors [108]. These values are in remarkable
agreement with the theory.

5 Magnetic properties of 1D chains In Section 3.3
we presented our results on the exchange interaction between
a pair of magnetic impurities. Looking at Fig. 3 one
can conclude that magnetic moments of two Co adatoms
on clean Cu(111) at separations of 8 Å are aligned parallel
to each other or, in other words, adatoms are coupled
ferromagnetically. This statement is not necessarily true
because this ferromagnetic order can be destroyed by
thermal fluctuations. Phase transition from the magnetically
ordered state with infinite lifetime to the magnetically
disordered paramagnetic state occurs at the so-called critical
temperature Tc. The loss (or blocking) of magnetization at a
temperature TB > Tc is a gradual process characterized by a
www.pss-b.com
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Figure 9 (online color at: www.pss-b.com) Sketch of the studied
system. Red balls correspond to the infinite Fe chain embedded into
thestepedgeof theCu(111)surface.Thischainservesasanucleation
template for growing the second transition metal (TM) chain
sketched by blue balls on the upper terrace [112].
relaxation time t. Dependence of the blocking temperature
TB on time implies a strict condition on the method of
investigation: the real time has to be taken into account. As a
result, classical Monte Carlo (MC) approach is typically used
in theoretical studies to obtain Tc. KMC method, which
describes the evolution of the system in real time, must be
applied for calculations of TB. There is another advantage of
the kMC method: it allows to perform theoretical simulations
of realistic hysteresis loops at the given sweeping rate dB/dt
of an externally applied magnetic field [110]. We describe
the physical model of spin dynamics which is then solved by
means of classical MC for computation of critical tempera-
tures of close-packed magnetic chains and by means of kMC
for studies of blocking temperatures of sparse magnetic
chains.

5.1 The model of spin dynamics Let us consider a
single finite chain of magnetic adatoms. Each atom i of the
chain is characterized by the normalized spin value
si; jsij ¼ 1 and magnetic moment mi. The effective spin of
the atom can, thus, be expressed as (1/2)misi. If Jij is the
interaction between atoms i and j (J< 0 for ferromagnetic
exchange) and K is the magnetic anisotropy energy (MAE),
then the spin dynamics of the system in the external magnetic
field B aligned parallel to the direction z is described by the
classical Heisenberg Hamiltonian [110]:
www
H ¼
X
i;jh i

Jijsi � sj � K
X
i

ðsi � zÞ2 � mB �
X
i

si; (10)
Figure 10 (online color at: www.pss-b.com) Noncollinear
arrangement of spin moments used in calculations of exchange
constants: (a and b) the spin moments at the Fe atoms (red) are
oriented in a such direction that nearest-neighbor interactions
between the Fe chain (red spins, bottom rows) and between Fe
and the TM chain (blue spins, up rows) cancel each other in the
Heisenberg Hamiltonian; JTM–TM can be calculated. (c and d)
Configurations which allow to calculate the interaction JTM–Fe

between the TM and Fe chains [112].
where hi,ji means summation over all neighbor spin pairs i
and j and values of Jij are taken for normalized spins. This
model has recently been introduced and tested against
experimental data by Vindigni et al. [111]. Spin dynamics of
the system can be represented as a sequence of flips of
magnetic moments si from the initial metastable state with
energy E

ðiÞ
0 to the final metastable state with energy E

ðiÞ
1 . In

the conventional classical MC method a system can be
switched from the initial to the final state with the
probability determined by energies E

ðiÞ
0 and E

ðiÞ
1 . Every flip

event is only a part of the MC solution algorithm and drives
the system into the equilibrium, but it cannot be treated as a
time increment and has no physical meaning. The kMC
method, on the contrary, allows to calculate the average
time increment at each step [106].

5.2 Magnetic behavior in close-packed
wires At first we consider magnetic interactions inside
close-packed chains and wires [112]. To use a clear
notation, chains are monatomic close-packed atomic
structures, while wires are systems consisting of two
parallel nearest neighbor chains. Mo et al. [8], and Guo et al.
[9], revealed that Fe adatoms evaporated on the Cu(111)
stepped surface self-organize themselves in chains
embedded into the terrace as it is shown in Fig. 9. Such
chains can serve as a template for growing, atop them,
.pss-b.com
transition metal (TM) chains yielding mixed Fe-TM wires
sketched in Fig. 9.

Ab initio investigations of the freestanding TM chains
performed using Vienna Ab initio Simulation Package
(VASP) [113–116] reveal that the nearest neighbor exchange
interactions are the most important. Already the next-nearest
neighbor interactions are an order of magnitude smaller.
Therefore, we restrict the Heisenberg model to nearest
neighbor interactions only. Exchange constants Jij can be
extracted from DFT calculations by comparison of total
energies of several artificial noncollinear magnetic struc-
tures. The matter of this approach is to switch on or off
particular interactions between atoms i and j by deliberate
choice of noncollinear states when si � sj ¼ 0. Noncollinear
configurations used for calculation of the exchange
parameters for freestanding and embedded wires are
sketched in Fig. 10. The obtained exchange parameters for
all the systems are given in Table 1. Some general
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 1 Exchange constants for freestanding TM chains, free-
standing TM-Fe wires, and embedded TM-Fe wires.

J (meV) V Cr Mn Fe Co

freestanding chain
JTM–TM �84 155 12 �106 �138
freestanding wire
JTM–TM 13 116 30 �80 �65
JTM–Fe 80 26 �87 �150 �115
JFe–Fe �48 �78 �82 �80 �54
embedded wire
JTM–TM �22 70 26 �80 �67
JTM–Fe 60 �18 �74 �80 �68
JFe–Fe �65 �49 �58 �75 �56

The definition of the constants in the Heisenberg model incorporates the

magnetic spin moments. J< 0 corresponds to ferromagnetic coupling.

Table 2 Critical temperatures for the freestanding and embedded
TM-Fe wires calculated by means of classical MC simulations for
MAE K of 1.0 meV [117].

Tc (K) V Cr Mn Fe Co

freestanding chain 100 20 132 68 75
embedded wire 88 41 63 122 94
conclusions can be drawn from these data. The exchange
constants reflect the result that Fe–Fe and Co–Fe wires have
ferromagnetic ground states. Antiferromagnetic couplings
are present at the beginning of the 3D row. For the
freestanding wires JFe–Fe is roughly constant throughout
the series. Cr shows a strong antiferromagnetic intrachain
coupling, whereas in V–Fe a strong antiferromagnetic
interchain coupling is present. Relaxation effects are
reflected in the exchange constants of the embedded systems.
The stronger hybridization due to the inward relaxation of
the TM chains leads to a decrease of the interchain exchange
constants.

It is well known, that quantum fluctuations should drive
Tc in pure 1D systems to 0. Our model, however, is
effectively not 1D due to presence of the magnetic
anisotropy and in such systems, as it has been demonstrated
by Gambardella et al. [4], Tc is nonzero. Our classical MC
simulations by means of Metropolis algorithm assuming
for an atom K¼ 1 meV indicate that critical temperatures of
the systems are well below the room temperature [117]
(Table 2). The critical temperature reaches its maximum for
the Fe–Fe wire (Tc¼ 122 K) [117].

5.3 Magnetic behavior of 1D sparse chains Now
we would like to apply the kMC method developed in
Ref. [110, 118] for spin dynamics, to examine blocking
temperature of the 1D sparse nanostructures. Typically,
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
such structures consist of individual atoms separated by 1–
3 nm (see Figs. 6 and 8). The critical temperature in such
weakly coupled systems is close to 0 K, but one can study
the magnetization dynamics in real time by means of
kMC to figure out the blocking temperature of the system.
Surface state electrons governing self-organization of
sparse chains also mediate the exchange interaction
between the adatoms. Reasonable values of the exchange
interaction J in our system can be estimated from the KKR
ab initio studies and read jJj 2 ½0 . . . 1�meV, which is two
orders smaller than in compact chains and wires (Section
5.2). In order to get the results relevant to the choice of K,
the MAE was considered in the interval [0.1. . .1.2] meV.
This is a reasonable interval of values of K [119]. Magnetic
moment m¼ 3.2mB corresponds to the magnetic moment
of a Fe adatom on Cu(111) and is taken from our ab initio
calculations.

Typical magnetization response of a 1D sparse atomic
chain consisting of N¼ 100 atoms to the external oscillating
magnetic field is demonstrated in Fig. 11 [120]. The
character of magnetization significantly depends on
temperature. At T¼ 1 K adatoms coupled with J¼
�0.3 meV exhibit a pronounced hysteresis with a coercive
magnetic field (field at zero magnetization) Bc¼ 0.26 T
(Fig. 11a). If J¼ 0 eV (Fig. 11a) or the temperature is
increased to 2 K (Fig. 11b), the hysteresis disappears. It
indicates that the blocking temperature of sparse 1D
structures stabilized by the substrate-mediated interaction
is about 1 K.

Figure 11c summarizes the study on the dependence
of Bc on J and K at a temperature T¼ 0.5 K [120]. From
this figure one can see the onset of ferromagnetism in the
whole range of values J and K considered in our study.
Increasing J at a fixed K leads to an increase of Bc.
Similarly, at a fixed J, larger values of Bc are reached at
larger K.
Figure 11 (online color at: www.pss-b.com)
Magnetization response of the 1D sparse chain
ofN¼ 100 atoms at (a)T¼ 1.0 K, (b)T¼ 2.0 K
to the externally applied oscillating magnetic
field. K¼ 1.0 meV, dB/dt� 130 T/s [110].
Filled black circles correspond to
J¼�0.3 meV, open gray to J¼ 0.0 meV. (c)
Coercive field Bc as a function of the MAE K
and exchange coupling constant J. The data are
calculated for the chain length N¼ 100,
T¼ 0.5 K, and dB/dt� 130 T/s [120].

www.pss-b.com
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6 Conclusions Presented results demonstrate various
aspects of quantum phenomena in 1D metal atomic
structures on metal substrates. It has been shown that despite
the coupling to the substrate confined quantum-well-like
states can still arise in the local projected band gaps of
the substrate. The interaction of 1D chains with substrate-
related surface states results in a formation of complex bound
states. Surface states confined to 1D nanostructures, like
chains, steps, or resonators, can be utilized for creation of
sparse 1D nanostructures. This statement has been illustrated
with several examples. Finally, we focused on the magne-
tization dynamics in sparse and compact 1D atomic
structures and our studies revealed critical and blocking
temperatures in the examined classes of systems.
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[85] P. Wahl, P. Simon, L. Diekhöner, V. S. Stepanyuk, P. Bruno,

M. A. Schneider, and K. Kern, Phys. Rev. Lett. 98, 056601
(2007).

[86] P. A. Ignatiev, N. N. Negulyaev, A. S. Smirnov, L. Nie-
bergall, A. M. Saletsky, and V. S. Stepanyuk, Phys. Rev. B
80, 165408 (2009).

[87] V. S. Stepanyuk, A. N. Baranov, D. V. Tsivlin, W. Hergert,
P. Bruno, N. Knorr, M. A. Schneider, and K. Kern, Phys.
Rev. B 68, 205410 (2003).

[88] J. Repp, F. Moresco, G. Meyer, K.-H. Rieder, P. Hyldgaard,
and M. Persson, Phys. Rev. Lett. 85, 2981 (2000).

[89] N. Knorr, H. Brune, M. Epple, A. Hirstein, M. A. Schneider,
and K. Kern, Phys. Rev. B 65, 115420 (2002).

[90] X. P. Zhang, B. F. Miao, L. Sun, C. L. Gao, An Hu, H. F.
Ding, and J. Kirschner, Phys. Rev. B 81, 125438 (2010).
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