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1 INTRODUCTION

In 1983, Berry made the surprising discovery that a quantum
system adiabatically transported round a closed circuit C
in the space of external parameters acquires, besides the
familiar dynamical phase, a nonintegrable phase depending
only on the geometry of the circuit C (Berry, 1984). This
Berry phase, which had been overlooked for more than
half a century, provides us a very deep insight into the
geometric structure of quantum mechanics and gives rise to
various observable effects. The concept of the Berry phase
has now become a-central unifying concept in quantum
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mechanics, with applications in fields ranging from chemistry
to condensed-matter physics (Shapere and Wilczek, 1989
Bohm er al., 2003). ‘

The aim of this article is to give an elementary introduction
to the Berry phase, and to discuss its various implications
in the field of magnetism, where it plays an increasingly
important role. The reader is referred to specialized textbooks
(Shapere and Wilczek, 1989, Bohm et al., 2003) for a
more comprehensive presentation of the field of geometrical
phases. Particular emphasis will be given to the discussion
of the anomalous Hall effect, the theory of which has been
considerably renewed recently, on the basis of the concept
of Berry phase.

2 PARALLEL TRANSPORT
IN GEOMETRY

The importance of the Berry phase stems from the fact
that it reveals the intimate geometrical structure underlying
quantum mechanics. It is therefore appropriate to start with
an introduction to the fundamental concept of parallel
transport in a purely geomeltrical context; here, we follow
the discussion given by Berry (1990).

This is best illustrated by means of a simple example.
Consider a surface T (e.g., a plane, a sphere, a cone, €ic.)
and a vector constrained to lie everywhere in the plane
tangent to the surface. Next, we wish to transport the vector
on the surface, without rotating it around the axis normal
to the surface, as illustrated in Figure 1. We are interested,”
in particolar, in the case, in which the arrow is transported
round a closed circuit C=(1 -2 — 3 — 1). We may
encounter two different situations: (i) if the surface is flat,
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(@) (b)

Figure 1. Sketch of parallel transport on (a) a plane, {b) a sphere,
and (c) a cone,

as in Figore 1(a), then the arrow always remains parallel
to its original orientation, and is, therefore, unchanged after
completion of the circuit C; (ii) if, however, the surface T is
curved as in Figure 1(b) and (¢), the arrow, being constrained
to lie in the local tangent plane, cannot remain parallel to its

original orientation, and after completion of the circuit C, has

clearly undergone a rotation by an angle #(C), a phenomenon
referred to as anholonomy.

Let us now formalize this procedure. The arrow is repre-
sented by a tangent unit vector e!, transported along a circuit
C={r(t)|t =0 — T} on the surface. Defining n(r) as the
unit vector normal to the surface at point r, we define a sec-
ond tangent unit vector e* = n x e!, which is also parallel
- transported on the surface along C. The three unit vectors
(n, e!, e?) form an orthonormal reference frame. As el and
¢ are transported, they have to rotate with an angular veloc-
ity @ (to be determined) if the surface is not flat, that is, the
equation of motion of e! and e is

¢ =wxe (r=172) n
where the overdot indicates the time derivative. One can
easily see that in order to fulfill the requirements that ¢! and
¢’ remain tangent unit vectors (ie., ¢ -n=0, (r=1,2))
and never rotate around m (i.e., w-.-n=710), the angular
velocity has to be given by

®=nxn @)
The law of parallel transport is therefore,
¢ =mxn) xe =—(e -nn 3)

This law can be expressed in a form more suitable for
Eeneralization to the case of quantum mechanics, by defining
the complex unit vector,

el + ie?

2

¢

{4)
with

¢ ¢=1 )

The law of parallel transport now reads,
¢ -$=0 ®)

In order to express the rotation of the unit vectors (e, e?)
as they move around C, we need to choose a fixed local
orthonormal frame (n(r), t'(r), *(r)) on the surface. The
normal unit vector n(r) is, of course, uniquely determined
by the surface, but we have an infinity of possible choices
for t1(r) (we simply impose that it is a smooth function of r),
which corresponds to a gauge freedom; once we have made a
choice for t'(r}, then t2(r) is of course uniquely determined.
‘We next define the complex unit vector,

_ tH(r) + it*(r)

u(r) 7

D

with, of course,
w(r)-ur =1 (8)

The relation between the parallel transported frame and
the fixed one is expressed as

(1) = exp{—if ()] u (r(t)) - (%}
where #(t) is the angle by which (t!, %) must be rotated to
coincide with (ef, e*). We obtain the equation satisfied by
#(t) by inserting the preceding definition in the equation of
parallel transport (6), and obtain-

0=¢* ¢ = —ifu* -ut+u* a (10

Since u* - u = 1 and u* - v is imaginary, we get

§ = Im(n* - i) (11)

50 that
8(0) _ Imjgu* du 12)
= —_(étz - dt! (13)

If we choose a coordinate system (X1, X2) on our sur-
face T and define the vector field A(r) (usuvally called a
connection) on L as

. auj (X)} (14)

Ay(X) =Im [u;(X) 2
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where we have used Einstein’s convention of summation
over repeated indices, we get

9(C) = ng(X) X (15)
C

which constitutes the 7-form expression of the anholonomy
angle 6(C). The connection A(X) depends on our pamcular
gauge choice for t'(X): if we make a new choice ' (X)
which is brought in coincidence with t' (X) by a rotation of
angle (X)), that is, if we make the gauge transformation’

u(X) - u'(X) = exp (—ip(X)) uX) (16)

we obtain a new connection

u (X (X
A(X) = [ | oy 2 )} = A;(X) — ’é‘;) an
However, since
% Vulr)-dr = fdu,(r) =0 (18)
c e

we can see that the expression (15) for the anholonomy angle
8(C) is indeed gauge invariant, as it should be.

A more intuitive understanding of the anholonomy angle
may be obtained if we use Stokes’ theorem to express it
as a surface integral. In doing so, however, we should pay
attention to the possible existence of heles in the surface .
If this is the case, I is said to be nonsimply connected. An
example is sketched in Figure 2, where the surface X has
two holes limited by the contours C; and Cy (hatched areas
in Figure 2). Applying Stokes’ theorem, we then obtain

6(C) :ff B(X)dX dX, + Y NAOOEC) (19
§ i

where the surface & is the subset of the surface 3 that is
limited by the circuit (dotted area in Figure 2), C, N;(C) is
the winding number of circuit C around the hole i (ie., the

c

Figure 2. Sketch of a nonsimply connected surface I, with two
holes (hatched areas), limited by the contours C; and Cp.

———

difference between the number of turns in counterclockwige
and clockwise directions),

8(C;) = fé AX) - dX (203

is the anholonomy angle of circuit C; and

du*  Ju du*  Jdu

Equation (19) constitutes the 2-form expression of the
anholonomy angle #(C}. One can see immediately that,
unlike the comnection A(X), the quantity B(X} is gauge
invariant. The geometrical meaning of B(X) stems from its
relation to the Gaussian curvature K of T at point X, that is,

B(X)dXdX, = Kd§ = (22)

ds
R1(X) R2(X)
where R1(X) and R,(X) are the principal curvature radii at
point X. In the case of the sphere, this is easily checked by
explicit caleulation, taking the usual spherical angles (¢, ¢)
as variables (X, X2). Since the Gaussian curvature is related
to the solid angle Q spanned by the normal unit vector n by

diQ

B =
dX, dX»

(23)

we finally get

a2
8(0) —gm-(cwccf) - f fs XX,
= f d*Q = US) 24)
S

where €(5) is the solid angle described by the normal vector
n on the surface S. That the above results hold not only
for a sphere but also for any surface can be understood
easily from the following argument: Equation (3) shows that
the trajectory of the parallel transported tangent vectors is
entirely determined by the trajectory of the normal unit vector
n along C. We can therefore map the trajectory C on the
surface ¥ to a trajectory C’ on the sphere of unit radius 52, by
mapping each point of E onto the point of S2 with the same
normal vector n, This implies that we can restrict ourselves
to studying the case of parallel transport on §2 and obfain
conclusions valid for parallel transport on any surface .
Let us examine these results for the examples sketched 1
Figure 1. For the case of the piane, the anholonomy of course
trivially vanishes. For the sphere, the anholonomy angle 15
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;given by the solid angle Q(S) and is therefore a geometric
propel'ty of the circuit C; this can easily be checked through
Jf‘thc following experirnent: take your pen in you left hand, and

& raisc your arm above you head, the pen pointing in front of
you, then rotate your arm until it is horizontal in front of you,
E . ithout twisting your hand; then rotate it by 90° to your left;
i“ finally rotate your arm back to the vertical (pay attention
. to never twist your hand in whole process); the pen is now

[ pointing to your left, that is, it has rotated by 47 /8 = 7 /2.
¥ For the case of the cone, the Gaussian curvature vanishes
B cverywhere (a cone can be fabricated by rolling a sheet of
'f; paper) so that the anholonomy angle is in fact a topological
property of the circuit C, given by the winding namber of
B the circuit C around the cone (multiplied by the solid angle
3 :» of the cone).

5 3 PARALLEL TRANSPORT

I IN CLASSICAL MECHANICS:
FOUCAULT’S PENDULUM AND
THE GYROSCOPE

Lot us now consider the famous experiment of Foucault’s
pendulum that demonstrated the earth’s rotation. If the pen-
dulum trajectory is originally planar (swinging oscillation),
the vertical component of the angular momentum vanishes.
i Since forces exerted on the pendulum (gravity and wire ten-
’;‘ sion) produce a vanishing vertical torque, the vertical com-
. ponent of the angular momentum has to be conserved. The
g absence of any vertical torque imposes that the swing plane
has to follow a law of parallel transport as the direction
of gravity slowly changes because of the earth’s rotation.
Therefore, within 1day it rotates by an angle equal to the
solid angle described by the vertical 27 (1 — cos @), where 8
is the colatitude.

i The parallel transport may also affect the phase of the
pcnod1c motion of the Foucanlt pendulum or the rotation
b b phase of a gyroscope. Leét us consider a gyroscope whose
. rotation axis is constrained to remain parallel to the axis n;
g/ let us now move the rotation axis n round a closed circuit C.
\J:The rotation angle of the gyroscope will be the sum of the
8 dynamic rotation angle wt and the geometric anholonomy
angle 3(C) equal to the solid angle described by the rotation
fiaxis. Thus if we have two synchronous gyroscopes and
b perform different circuits with the rotation axes, they will
-‘G‘v’entually be dephased with respect to each other, an effect
b that could easily be observed by stroboscopy. This geometric
anholonomy angle is known as Hannay’s angle (Hannay,
1985; Berry, 1985). If the Foucault pendulum is given a
Conical oscillation instead of a planar swing, then we have
8 Cxactly the same situation as described in the preceding

text for the gyroscope, and the rotation angle will have an
anholonomy excess angle given by the solid angle described
by the vertical. Thus, two identical Foucault pendula (i.e., of
same Jength) with circular oscillations in opposite directions
will have slightly different oscillation frequencies and will
progressively get dephased with respect to each other. The
swinging motion of the usnal Foucault may be viewed as
the superposition of circular motions in opposite directions,
so that the rotation of the swinging plane may be viewed as
resulting from the previously mentioned frequency shift.

4 PARALLEL TRANSPORT IN QUANTUM
MECHANICS: THE BERRY PHASE

Let us now consider a quantum mechanical system described
by a Hamiltonian controlled by a set of external parameters
(R|, Ry, . . .). which we describe collectively as a vector R
in some abstract parameter space. Physically, the external
parameters may be magnetic or electric fields, and so
on. For each value R of the external parameters, the
Hamiltonian H (R} has eigenvalues E, (R} and eigenvectors
[2(R)) satisfying the independent Schrédinger equation,
that is,

H(R)|n(R)) = Ex(R) |n(R)) (25)

The eigenvectors |[n(R)) are defined up to an arbitrary
phase, and there is a priori no particular phase relation
between eigenstates corresponding to different values of the
parameter R. We make a particular choice for the phase of
the eigenstates, simply requiring that |n(R)} varies smoothly
with R in the region of interest. It may happen that the
eigenstates we have chosen are not single-valued functions
of R. If this happens, special care must be given to this point.

Let us perform an adiabatic closed circuit C =
{R(t)|t =0 — T} in the parameter space. The adiabatic
theorem (Messiah, 1991) tells us that if the rate of variation
of the external parameters is low enough, a system that is
initially in the nth stationary state |n) (assumed nondegener-
ate) of the Hamiltonian will remain continuously in the state
[n). The condition of adiabaticity is that the stationary state
under consideration remains nondegenerate, and the rate of
variation of the Hamiltonian is low enough to make the prob-

ability of transition to another state [m) vanishingly small,

that is,
Biim|H|n)| < [Em — Eqf> Ym#n (26)

Then of course, if one performs a closed adiabatic circuit
C, the system has to return to its original state.
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Berry (1984) asked the following question: what will be
the phase of the state after completion of the circuit C? It
may be difficult at first sight to realize that this question
may be of any interest. Indeed, the expectation value of any
observable quantity A,

(A) = (PIAlY) (27)
does not depend on the phase of |). This lack of interest is
certainly the main reason why the Berry phase was (almost)
completely overlooked for more than half a century of
quantum mechanics. One should mention here that there
has been, prior to Berry’s seminal paper (Berry, 1984),
a number of precursor works on effects related to the
Berry phase, including, notably, Pancharatnam’s work on

optical polarization (Pancharatnam, 1956), Aharonov and’

Bohm’s work on the phase die to the electromagnetic
potential vector (Aharonov and Bohm, 1959), and Mead and
Truhlar’s work on the molecular Aharonov—-Bohm effect
in the Born—Oppenheimer theory of molecular vibrations
(Mead and Truhlar, 1979). However, Berry (1984) was the
first to point out the geometric significance and the generality
of the adiabatic geometric phase. After the publication of

Berry’s paper, the generality and the fecundity of this new '

concept has been widely recognized, soon leading to a
considerable amount of developments {Shapere and Wilczek,
1989; Bohm e al., 2003).

So, following Berry, taking

[¥(t = 0)) = [n(R(z = 0))) (28)

we express the state |y (£}) at a latter time ¢ as

[ (1)) = exp [%‘ [ o En(r(r’)')} 6,00 29

that is, we introduce an auxiliary wave function [¢, ()} with a
zero dynamical phase. Using the time-dependent Schrédinger
equation,

Rl (0) = HOW @) 30)
and projecting it on {(¥(£)], we get
0= () (H(x) - ihéa-t-) @)
= (@n(1)1gs () 31
where we have used the 'relatjon
WOIHOW®) = Ed(0) 32)

which follows from the adiabatic theorem. Equation N
shows that the wave function |¢,(¢)) obeys a quantyp,
mechanical analog of the law of parallel transport (6),

In complete analogy with the problem of paralle] transpogt
on a surface, we now express the paraliel transported State
i@, (1)) in terms of the fixed eigenstates [n(R)) as

|, (1)) = exp((iy, (1)} In(R)) (33)
where the phase y,(f) plays the same role as the angle —8(r)

for the problem of parallel transport on a surface. We thep
immediately get the equation of motion of v, (), that is,

d
Vo) = ilnln) = —Im{n(RG)| Z=nR{E))  (34)

which is analogous to equation {(11).
Finally, the answer to the question originally asked by
Berry is

(D)) = exp [iG3n + 7, @] W) (35)
where
-1 5T
b= fo EL(R() dr (36)

is the dynamical phase, and
va(C) = —Im [ﬁ(n(R)IBR[n(R)) -dR} —a,(C)  (37)

is the Berry phase. The last term in the latter equation arises
when the states |r(R)) arc not a single-valued function of R
in the region of interest of the parameter space and is given
by

a, (€} = iln{{n(RO)|2RT)IN] (38)

Note that this term was absent in Berry’s original paper
(Berty, 1984), because the basis states |n(R)) were assumed
to be single valued. We shall omit this term in the subsequent
text, and consider only the case of single-valued basis states.

We note the very close analogy between the results
obtained for quantum and classical systems. The dynamical
phase of a quantum system is analogous to the rotation
angle @7 in classical mechanics, whereas the Berry phase
is analogous to Hannay’s angle (they both arise from the
anholonomy of parallel transpott).

Defining the connection A™(R) as

A"(R) = —Im [{n(R)|3rn(R)}] (39)

Sl T e
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|

we reexpress the Berry phase as

TESEEE

yalC) = %A” (R)-dR 40
4

Ry T kT ol

i which constitutes the 1-form expression of the Berry phase.
. The latter clearly depends only on the geometry of the cir-
: it C. The connection A™(R) is not gauge invariant — if we
make a new choice for the phase of the reference state, that is,

TR RTE

[n(R)Y = exp(—iw(R))|n(R})) (41)

© with a single-valued function (R}, we obtain a different
connection

A"(R) = A"(R) + drpt(R) (42)
However, the Berry phase y,(C) is gauge invariant, as it
. should be.
- Asfor the geometric parallel transport on surfaces, we may
obtain a gauge-invariant and more transparent expression by
: transformlng the precedmg result to a surface integral using
" Stokes® theorem. Here too, we have to pay attention to the
: existence of holes in the parameter space — if the parameter
= space is multiply connected, and if the circuit C cannot be
¢ continnously deformed to a point {i.e., it is not homoitopic
{ 'to a point), we must take ihto account terms associated with
e winding of C around holes of the parameter space.
i The formulation of the Berry phase as a surface integral
L in a form that is independent of a particular choice of
- oordinates of the parameter space generally requires the
{& use of mathematical formalism of differential forms (Bohm
“E et al., 2003), which is beyond the scope of this article. We
pg can nevertheless obtain a useful result without resorting to
7 iy advanced mathematics if we make a suitable choice of
_v coordinates of the parameter space. Let us choose a surface
it § in the parameter space which is bound by the circuit C, and
; 4 parameterization (R, Ry) of the surface . Using Stokes’
i theorem, we then get

By e T

@

1O = [[ B @R R+ M) @

Pace and N;, the corresponding winding numbers of the
lrcmt C around them, and where

: EH(R).E '(31?1‘4’2l - a1'?2“]311)

= —Im [(3, n(R)[3r,n(R)} — (3k, n(R)|3x, n(R))]
(44)

1 ‘the Berry curvasure. In the case where the parameter space

: three-d1mensmnal we can use the familiar langnage of

here C; are the circuits bounding the holes of the parameter

vector calculus, as in electrodynamics, and Stokes’ theorem

yields

nO= [[B®-nas+ Y neme @

B"(R) =V x A"(R)
= —Im[{Va(R)| x |Va(R)}] (46)
= —Im ) _(Vn(®)[m(R)) x (m(R)|Vn(R)) (47)
m#£n

Making use of the relation

_ {(m|VH]n)
V) = = (48)

one eventually gets
—Im Z

n(R)|VH(R)|m(R)> x {m(R)|VHR)|n(R))
(En(R) — E.(R))?

B"(R) =

(49)

Obviously, the Berry curvature is gauge invariant. As the
notation suggests, the Berry curvature B” plays the role of
a magnetic field in the space of parameters, whose vector
potential is the Berry connection A"

The energy denominator in equation (49) shows that if
the circuit C lies in a region of the parameter space that
is close to a point R* of twofold degeneracy involving
the two states labeled + and —, the corresponding Berry
connections B.. and B_ are dominated by the term involving
the denominator (E.+ — E_)* and the contribution involving
other states can be neglected. So, to first order in R — R*,
one has

B.(R) = —-B_(R) = ~Im
(+(R)IVH(R*)I — (R)) x (—(R)|VH(R")| + (R))
(E4+(R) — E_(R))

(30

The general form of the Hamiltonian H(R) of a two-level
system is (without loss of generality, we may take R* = Q)

1 Z X-—iY
with eigenvalues
1
ELR)=—-E_R)= ER (52)
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‘This illustrates a theorem due to von Neumann and Wigner
{1929), stating that it is necessary to adjust three independent
parameters in order to obtain a twofold degeneracy from a
Hermitian matrix. The gradient of the Hamiltonian is

VH = -;-a (53)

where ¢ is the vector matrix whose components are the
tamiliar Pauli matrices. Simple algebra then yields

R

By=-B_=-=

(54}

The preceding Berry curvature By is the magnetic field
in parameter space generated by a Dirac magnetic monopole
(Dirac, 1931) of strength 1/2. Thus, the Berry phase y 4 (C)
of a circuit € is given by the flux of the monopole through
the surface & subtended by the circuit C, which, by Gauss’
theorem, is nothing but F8(C), where Q(C) is the solid angle
described by R along the circuit C.

The corresponding vector potential (or Berry connection)
A (not calculated here) has an essential singularity along a
line (Dirac string) ending at the origin and carrying a ‘flux’
of magnitude 4-2x. The position of the Dirac string can be
moved (but not removed!) by a gauge transformation, as
sketched in Figure 3. If the Dirac string happens to cross
the surface S, the Berry phase remains unchanged (modulo
27), so that the result is indeed gauge invariant.

5 EXAMPLES OF BERRY PHASE
5.1 Spin in a magnetic field

As the first example, we consider the case of a single spin
(of magnitude §) in a magnetic field, which is both the most
immediate application of the formal theory presented in the
preceding text and one of the most frequent cases encoun-
tered in experimentally relevant situations. The Hamiltonian

Gauge
transformation
-~

c

Q Q

/ Dirac
monopole

Dirac string

Figure 3. Sketch showing the flux of the Dirac monopole through
the circuit C, and the effect of a gauge transformation.

considered is
Hb)=-bh-S (55)

with the magnetic field b being the external parameter. The
eigenvalues are

En(b) = —nb (56)

with 2r integer and —S <2 = 5. For b =0, the 25+
eigenstates are degenerate, so the circuit C has to avoig
the origin. The Berry connection can be calculated using
equation (49) and well-known properties of the spin opera-
tors, and one gets

b
B'(b) = —ny3 (57)

which is the ‘magnetic field’ (in parameter space) of a
monopole of strength —n, located at the origin. The Berry
phase is thus

¥a(C) = —nQ(C) (58)

where £2(C) is the solid angle described by the field b along
the circuit C. For § = 1/2, this of course reduaces to the result
obtained in the preceding text for the two-level problem. Note
that the Berry phase y,(C) depends only on the quantum
number # (projection of S on b} and not on the magnitude §
of the spin. Note also, that while H(b) is the most general
Hamiltonian for a spin § = 1/2, this is not the case for a spin
S > 1: in the latter case, we restrict ourselves to a subspace
of the full parameter space. If a more general Hamiltonian
and a wider parameter space is considered, the simple result
obtained in the preceding text would not hold any more.

5.2 Aharonov—Bohm effect

Another example that is of great interest, both conceptually
and experimentally is the well-known Aharonov-Bohm
effect (Aharonov and Bohin, 1959). We follow here the
presentation of the Abaronov-Bohm effect given by Berry
(1984). ‘ _

Let us consider the situation depicted in Figure 4, namely,
a rnagnetic' field confined in a tube with flux @ and a box,
located at R, in which particles of charge g are confined. The
magnetic field vanishes everywhere outside the flux tube and,
in particular, inside the box. Let A(r) be the corresponding
vector potential. The latter generally does not vanish in the
regions of vanishing field (unless the flux @ is a multiple of
the flux quantum ®g = A/e).
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Fiux tube

1

AN

Box

U

Figure 4. Sketch describing the Aharonov—Bohm effect.

Let the Hamiltonian describing the particles in the box
be H(p,r — R); the corresponding wave functions, for a
vanishing vector potential, are of the form v ,(r — R), with
energies E, independent of R. When the flux is nonzero, we
can choose as basis states |n(R)), satisfying

H(p—qA(r), r — R)[n(R)) = Eq[n(R)) (59

whose solufions are given by
(ta(R)) = exp [‘% f dr’ - A(r’):| V. r—R) (60
R

where the integral is performed along a path contained in the
box. The energies E, are independent of the vector potential,
because it is always possible to find a gange transformation
that would make it zero in the box (but not everywhere in
space!),

The Hamiltonian depends on the position R of the box
via the vector potential. Thus, our parameter space, in this

* ¢xample, is nothing but the r_eal space, with exclusion of the

. fegion of the flux tube. If we transport the box around a
closed circuit C, the Berry phase will be given by

¥,(C) = féA”(R) -dR (61)
with the Bén'y connection

A"(R) = ~Im [{n(R)|3gn(R)}]

= —Imfff &ryrr —R)

x [%A(R)wn (1 — R) + ety (r — R)}

=1
= ﬁA(R) (62)

The Berry curvature B"(R) = V x A"(R) = (¢/R)B(R) is
t given by the magnetic field and vanishes everywhere
8ide the flux tube. But because the tube region is excluded

from the allowed parameter space, the latter is multiply
connected, and the Berry phase is purely topological, given
by the winding number N (C) of the circuit € around the flux
tube, and by the flux ¢

Va(©) =27N () (63)

The Aharonov—Bohm effect was confirmed experimen-
tally by electron holography by Tonomura et al. (1986) in

- a configuration where the magnetic field truly vanishes, and

plays an outstanding role in the physics of mesoscopic sys-
tems; here, it gives rise to conductance oscillations and to
persistent currents in mesoscopic metallic rings threaded by
a magnetic flux (Olariv and Popescu, 1985; Aroncv and
Sharvin, 1987; Washbum and Webb, 1992).

5.3 Thomas precession and spin-orbit coupling

In relativistic kinematics, space—time coordinates perceived
by observers in different inertial frames are related to each
other by Lorentz transformations. The latter may consist of
pure Lorentz boosts, pure rotations, or combinations of a
boost and a rotation. As is well known, Lorentz boosts with
different velocity axes do not commute with each other, and
the product of two pure Lorentz boosts with different axes
is not a pure Lorentz boost but the product of a Lorentz
boost and a rotation. This effect gives rise to the phenomenon
of Thomas precession (Thomas, 1926, 1927), which is one
of the contributions to the spin-orbit coupling (the other
contribution being the result of the Lorentz transformation
of the electric field).

Recently, it has been pointed out that the Thomas preces-
sion may be understood as an anholonomy associated with
the parallel transport on the manifold Loreniz boosts (Jor-
dan, 1988; Aravind, 1997; Rhodes and Semon, 2004). This
important result is briefly outlined here.

For simplicity, we restrict to Lorentz boosts in the xy
plane and rotations around the z axis. A Lorentz boost
of velocity v = (vx, vy) can be characterized by a point
(ct, x, y) on the hyperboloid (c£)* — (x2 4+ 3% =1 (¢ = 0),
such that (v, vy) = (x/¢, y/t). Thus a closed trajectory in
the space of Lorentz boosts is characterized by a closed loop
on the hyperboloid. One can show (Jordan, 1988; Aravind,
1997; Rhodes and Semon, 2004) that upon such a closed
loop the system does not return to the initial inertial frame
but to an inertial frame that differs from the initial one by
a rotation around the z axis, of angle # = —A, where A
is the area enclosed by the loop on the hyperboloid. This
rotation is precisely the Thomas precession (Thomas, 1926,
1927), the geometrical nature of which appears clearly from
the present formulation. For a quantum spin, a Berry phase
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results from the Thomas precession. Another contribution
(for charged particles) arises from the Lorentz transformation
of the electric field and combines with the Thornas precession
to give the familiar spin-orbit coupling of the electron.

For velocities much smaller than the velocity of light,
the Berry phase corresponding to a closed loop C in the
(v;,vy) plane due to the spin-orbit coupling (including
both the Thomas precession contribution and the Lorentz
transformation of the electric field) is given by the simple
expression

AO)

v x dv
Vo€ G_?g 4¢ct e 64)

with & = %1 for 5, = +=1/2, respectively, and where A(C)
is the area swept in the (vy, vy) plane.

The geometric character of the spin-orbit coupling appears
clearly from the preceding expression. For an electron in a
periodic orbit, the Berry phase accumulates linearly in time,
which amounts to an additional term in the dynamical phase,
that is, to the spin-orbit coupling term of the Hamiltonian,
which is given by the following expression (for velocities
much smaller than ¢):

Heo = hs- ("“) 65)
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where a is the acceleration.

The preceding formulation of the spin-orbit coupling
allows us to understand qualitatively why electrons with
group velocities much smaller than ¢ may nevertheless have
a spin-orbit splitting, several orders of magnitude larger
than that of free electrons with equivalent velocity. In a
quasiclassical picture, the motion of electrons in a solid
may be viewed as consisting mostly of periodic orbital
motion around nuclei, combined with a hopping interatomic
motion. The hopping frequency from atom to atom, which
determines the average electron velocity, is typically much
smaller than the frequency of the intra-atomic orbital motion
around the nuclei. The Berry phase accumulated between
two successive hopping events, determined essentially by
this intra-atomic orbital motion, is considerably larger than
the one accumulated in the interatomic hopping motion, s0
that the effective spin-orbit coupling of Bloch electrons in
a solid may be enhanced by a factor of the order of 10* as
compared to the spin-orbit coupling of free electrons.

5.4 Experimental observations of the Berry phase
for a single spin

Let us now discuss how the Berry phase could be detected
experimentally. As already mentioned, this is not immedi-
ately clear since the expectation value of any observable

would be independent of the phase of the system. Ag always,
when considering phases, some kind of interference g t(;‘ .
be observed. There are various ways in which this can pe
done.

e Berry's original proposal (Berry, 1984) was as follows:
A monocenergetic polarized beam of particles in the
spin state n along the magnetic field b is split jng
two beams. For one of the beams, the field b ig kept
constant in magnitude and direction, whereas for the
second beam, the magnitude of b is kept constant and its
direction is slowly varied along a cireuit C subtending
a solid angle Q. The two beams are then recombined
to interfere, and the intensity is monitored as a function
of the solid angle €. Since the dynamical phase is the
same for both beams, the phase difference between the
two beams is given purely by the Berry phase (plus
a propagation factor is determined by the phase shift
for € = 0). Although conceptually possible, it seems
unlikely that such an experiment would be feasible in
practice. In particular, it would be extremely difficult
to ensure that the difference between the dynamical
phases of the two beams is smaller than the Berry
phase one wants to detect, unless some physical principle
enforces it. This kind of experiment may be said to
be of type ‘one state — two Hamiltonians’. This kind
of experiment, being based on interferences, is truly
quantum mechanical, .

e An alternative approach, more amenable to an experi-
mental test, is to prepare the system into a superposition
of two states, that is,

[y (¢ = 0)) = a|n(R(z = 0))) + Blm(R(x = 0))) (66)

with m =n — 1 and |2 + |B|* = 1, for example, by
polarizing it along a direction perpendicular to the
field b. The orientation of the transverse component
of the spin is given by the angle 8(t = 0) = arg(8) —
arg(a). The spin of course precesses at around b at the
Larmor frequency w; = b/h. After completion of the
circuit , the system state has evolved to

W (T)) = a expli(ds + 7, (CNnR(E = O)))
+8expliSm + ¥mC)]ImR( = 0))} 67)

and the polarization angle has evolved to 8(T) =€ (=
0) 4+ AG with

AG = ABgyn + A3 (68)
Agdyn = Bm — 5,1 = wLT (69)
ABg = ¥,(C)) — ¥, (C)) (70)
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Here the angle A8y, gives the polarization rotation due
to the Larmor precession {(dynamic phase), while Afg
is the polarization rotation due to the Berry phase accu-
mulated along the circuit C. Thus by investigating how
the polarization varies as the circuit C is modified, the
Berry phase can be detected. Such an experiment may
be said to be of the type ‘two states-— one Hamiltonian’.
Note that this type of experiment can be interpreted in
purely classical terms (Cina, 1986) (it bears a clear anal-
ogy to the rotation of the swinging plane of the Foucault
pendulum); this is related to the fact that- only Berry
phase differences between two states, and not the abso-
lute Berry phase of a given state, are detected.

e A further possibility consists in repeating the circuit C in
a periodic manner. Thus, the Berry phase is accumulated
linearly in time, just as the dynamical phase, and leads
to an apparent energy shift for the state n,

ki
A, = TV”(C) {71)

which gives rise to an observable shift of the transition
between two levels n-and m. Such an experiment too is
of type ‘two states — one Hamiltonian’. It can also be
interpreied in classical terms and has close analogy to
the period shift of a Foucault pendulum with circular
oscillation.

The Berry phase has been observed for neutrons (§ = 1/2)

by Bitter and Dubbers (1987), who used the experiment

shown in Figure 5. A slow (v =~ 500ms—!), monochromatic
beam of neutrons polarized (P = 0.97) along an axis per-
pendicular to the beam axis z is injected in a cylinder with
a helical magnetic field with longitudinal component B, and
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Figure 5, Measurement of Berry phase of neutrons. The inset
Shows the arrangement of the coil giving a helical field; the neutron
beam ig along z; length: 40 cm, diameter: 8 ¢m; an axial coil (not
shown) produces a field B,. The curve shows the Berry phase (more
Precisely y_; /2 — ¥1,2) and solid angle €2 as a function of the ratio
B,/B,. (Reproduced from Bitter & Dubber 1987, with permission
from the American Physical Society. @ 1987.)

transverse component B; making a right-handed tumn of 2.
Depending on the values of B, and B, various values of the
solid angle £2 may be achieved.

After having traversed the cylinder, the polarization of
the beam is measured, from which the Berry phase can be
extracted. The comparison of the measured Berry phase (or
more precisely the difference of Berry phase between states
S; = +41/2 and §; = —1/2) and of the solid angle is shown
in Figure 5. The observation is in good agreement with the -
theoretical prediction,

The Berry phase has also been confirmed for photons
(§ = 1) by Tomita and Chiao (1986) using an experimen-
tal procedure proposed by Chiao and Wu (1986); for protons
(& = 1/2) by Suter, Chingas, Hamis and Pines (1987) fol-
lowing a proposal of Moody, Shapere and Wilczek (1986);
and for ¥Cl nuclei by Tycko (1987).

6 ANOMALOUS HALL EFFECT

The Berry phase plays an important role in the modern
understanding of the anomalous Hall effect. Therefore this
problem will be discussed here in a detailed manner.

6.1 Brief historical sketch and survey of the state
of the art

The history of the anomalons Hall effect has been quite a
turbulent one, rich in misconceptions and controversies, and
the reader approaching the corresponding literature without
a sufficient overview of the historical developments might
easily get lost in details of controversial debates. Therefore,
it appears useful to briefly sketch the main stages in the
historical development of the field.

Soon after his discovery of the Hall effect of normal metals
subject to an external magnetic field (Hall, 1880a), Erwin
H. Hall discovered that ferromagnetic metals may exhibit
a spontaneous (i.e., in the absence of an external magnetic
field) Hall effect (Hall, 1880b, 1881). Toward the end of
the nineteenth century and in the first half of the twenti-
eth century, extensive experimental and phenomenological
investigations of the anomalous Hall effect of ferromagnetic
metals and alloys were carried out (Kundt, 1893; Smith,
1910; Perrier, 1930a,b; Pugh, Rostoker and Schindler, 1950;
Smit and Volger, 1953; Pugh and Rostoker, 1953).

From these early studies, the following phenomenological
description emerged. In linear response regime, the electric
field E is linearly related to the current density j by

E = pj (12)
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with a resistivity tensor p (for a magnetic field and/or
magnetization parallel to the z-axis) of the form

Prx  Pzy O
£ = _pxy Prx 0 (73)
0 0 o

The Hall effect is given by the antisymmetric part of the
resistivity tensor, giving rise to a voliage that is transverse
to both the current and the magnetic field (or magnetiza-
tion). In a ferromagnet, the Hall resistivity- pg = —p,, is
experimentally found to be of the form

pu = RoH + RsM (74)

where H is the magnetic field, M, the magnetization, Ry,
the normal Hall coefficient, and Rg, the anomalous Hall
coefficient (the quantity of interest here). Alternatively, the
Hall effect may be expressed in terms of the conductivity
tensor, o = p~!. Another important quantity measuring the
Hall effect is the Hall angle 6y (the angle between the
electric field and the current) given by

nfy = 22 = P (75)

T xx Pxy

For values of the magnetic field usually available experi-
mentally, the spontaneous contribution is usually much larger
than the normal contribution in ferromagnets. In many.cases,
it has been found that as the temperature varies, the anoma-
lous Hall resistivity varies as pZ,, which implies that the Hall
conductivity o ¢, is essentially independent of the relaxation
time.

Various mechanisms contribute to the anomalous Hall
effect of homogenously magnetized systems:

e the Karplus-Luttinger mechanism (Karplus and Laut-
tinger, 1954)
the skew-scattering mechanism (Smit, 1955)
the side-jump mechanism (Berger, 1970).

All three mechanisms rely on the combined effect of
exchange and spin-orbit interactions. Thizs can be eas-
ily understood from the following considerations. From
the Onsager—Casimir symmetry relations (Onsager, 1931,
Casimir, 1945), it follows that the antisymmetric part of the
resistivity (or conductivity) tensor, that is, the Hall effect,
is antisymmetric with respect to time-reversal invariance. In
ferromagnets, time-reversal invariance is spontaneously bro-
ken by the appearance of the exchange splitting of the band

structure. This fact, however, is not sufficient to explain

the existence of the Hall effect; indeed, in the absence of
spin-orbit interaction, the spin (magnetization) and orbital

—_—

(electronic motion) degrees of freedom are complete]y ind

. &-
pendent of each other. This implies that all propertieg of the
system (including the resistivity tensor) would he in\rariant
under a continuous uniform rotation of the magnetizatigy,
resulting in a vanishing Hall effect. This state changes, how:
ever, when the electron motion and spin are coupled to each
other via the spin-orbit coupling, so that the physicat prop.
erties are no longer invariant under a global rotation of the
magnetization, resulting in the possibility of a nonzerg spon-
taneous Hall effect.

Although sharing a common microscopic origin, the thyee
mechanisms mentioned in the preceding text are quite
different in the way they depend on the electronic structyge
and/or on the impurities present in the ferromagnet,

The Karpius—Luttinger mechanism (Karplus and Iy
tinger, 1954} results from a velocity correction (the anoma.
lous velocity) due to interband matrix elements of the velgc-
ity operator. It yields a Hall conductivity that is essentially
a property of the pure Ferromagnet and (for low impurity
concentration) is independent of the nature and- concentra-
tion of impurities, that is, to a Hall resistivity proportional
to p;";x, as observed in many cases. The original derivation
by Karplus and Luttinger is quite involved and not really
physically transparent. This, together with various other
theoretical difficulties, led to misunderstanding and contro-
versies that could be definitely lifted only quite recently,
through the reinterpretation of the Karplus—Luttinger mech-
anism in terms of the Berry phase (Chang and Niu, 1996;
Sundaram and Niu, 1599; Jungwirth, Niu and MacDonald,
2002). Interestingly, this important progress emerged from
concepts developed in the context of the quantum Hall effect
(Thouless, Kohmoto, Nightingale and den Nijs, 1982; Avron,
Seiter and Simon, 1983; Simon, 1983; Thouless, 1984, 1994;
Niv and Thouless, 1984: Niu, Thouless and Wu, 1985,
Kohmoto,. 1985,1993), which allowed the interpretation of
the quantized Hall conductance as a topological invariant,
expressed as the integral of a Berry curvature over a closed
manifold. ‘

The skew-scattering mecbanism (Smit, 1955) arises from
the Mott scattering (Mott, 1929) at impurities, that is, from
the fact that, owing to spin-orbit interaction, the scattering
amplitude depends on the relative orientation of the spin
with respect to the scattering plane. An illustrative picture
of this mechanism is given in Figure 6(a) (Crépieux and
Bruno, 2001). Consider an incident plane wave characterized
by a wave vector k, which is scattered by a central potential
owing ‘to, for example, impurity. In the presence of spil-
orbit coupling, the amplitude of the wave packet becomes
anisotropic in the sense that it depends on the relative
directions of the scattered and incident waves and the spin.
After a succession of scattering events, the average trajectory
of the electron is deflected by a spin-dependent angle,
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Figure 6. Sketch of the skew-scattering (a) and side-jump (b)
mechanisms. (Reproduced from Crepieux & Bruno, 2001, with
permission from the American Physical Society. © 2001.)

which is typically of the order of 102 rad. Because the
skew scattering yields an angular deflection of scattered
electrons, it induces a Hall angle that is independent of the
impurity density (for sufficiently low impurity density), or
in other words, a Hall resistivity that is proportional to the
longitudinal resistivity.

The side-jump mechanism (Berger, 1970) arises from the
fact that as a plane wave is scattered at an impurity, the out-
going scattered wave is generally not centered exactly at the
impurity, but may be slightly shifted away from the impurity,
as depicted in Figure 6(b) (Crépieux and Bruno, 2001). This
shift can be transverse and/or longitudinal (with respect to the
incident wave vector). The longitudinal shift is not directly
relevant to the Hall effect and will be ignored here. The trans-
verse shift (side jump) is due to the effect of the spin-orbit
coupling and changes sign as the spin component perpen-
dicular to the scattering plane is reversed. The existence of
the side jump may be easily understood by examining the
reflection of a free electron on a potential barrier under the
influence of the spin-orbit coupling (Crépieux and Bruno,
2001). For free electrons, the magnitude of the side jump is
of the order of kAc?/4 = 10715 m, where Ao = i/ (mc) is the
Compton wavelength. As pointed out by Berger (1970), and
discussed in Section 5.3 in the preceding text, band-structure

considerably enhance the effective spin-orbit coupling expe- .

tienced by electrons in solids, and yield an enhancement
factor of the order of 10* of the magnitude of the side jump.
The side Jjamp contributes to the Hall current in two ways: (i)
the side jumps experienced at each collision add up to yield
a transverse current, and (ii) in the presence of an external
electric field, the side jump induces a shift of the electron dis-
tribution function away from the Dirac distribution, yielding
another contribution to the transverse current (Berger, 1970).
The two contributions can be shown to be identical. The
Most important feature of the side-jump contribution is that

it yields a Hall conductivity that is independent of the impu-
rity concentration (and, at least for s-scattering, independent
of the sign and magnitude of the scattering potential). Thus,
it is essentially an infrinsic contribution to the total Hall con-
duoctivity just like the Karplus—Luttinger term, and, therefore;
yields a contribution to the Hall resistivity that is proportional
to p2, (Berger, 1970). _

Until recently, it was believed that spin-orbit coupling
is an essential ingredient to obtain a nonvanishing anoma-
lous Hall effect. This belief is indeed correct in uniformly
magnetized ferromagnets for the reasons explained in the
preceding text. However, the argument put forward to jus-
tify the necessity of the spin-orbit coupling does not hold
any more for magnetic systems with noncollinear magne-
tization. In fact, in general, a time-reversed magnetic con-
figuration (i.e., with all magnetic moments flipped) cannot
be obtained by a global fotation of the magnetic moments,
unless the magnetization is collinear or coplanar. There-
fore, from symmetry considerations, a nonvanishing anoma-
lous Hall effect may be expected, even without spin-orbit
coupling, in a magnetic system with a chiral spin texture.
Quite recently, it has been proposed that the chiral tex-
tured magnetic system may exhibit anomalous Hall effect
not (directly) related to the spin-orbit coupling (Ye et al.,
1999; Ohgushi, Murakami and Nagaosa, 2000; Chun et af.,
2000; Taguchi and Tokura, 2001; Taguchi et al., 2001, 2003,
2004; Lyanda-Geller et al., 2001; Shindou and Nagaosa,
2001; Yanagihara and Salamon, 2002; Tatara and Kawa-
mura, 2002; Onoda and Nagaosa, 2002, 2003a,b; Bruno,
Dugaev and Taillefumier, 2004; Onoda, Tatara and Nagaosa,
2004; Baily and Salamon, 2005; Kézsmirki et al., 2005). The
mechanism responsible for the anomalous Hall effect, in this
case, relies on the Berry phase accumulated as an electron
moves in a textured exchange field. If the exchange splitting
is large enough and the electron velocity small enough, the
electron spin must adiabatically follow the direction of the
local exchange field as it moves through the lattice. In the
reference frame where the electron is at rest, it experiences an
adiabatically moving exchange field, and the associated geo-
metrical phase in turn generates a fictitious Aharonov—Bohm
phase as the eleciron moves through the lattice. The elec-
tron’s orbital degree of freedom is coupled to the fictitious
field in exactly the same way as to a real magnetic field,
and therefore also responds in the same way. In particular,
it expertences a Lorentz force that can give rise to a nonva-
nishing anomalous Hall effect if a net chirality is present.

It is worth pointing out that the theory of the anomalous
Hall effect involves the Berry phase in two distinct ways:

1. In the anomalous Hall effect of homogenous ferromag-
nets, the Karplus—Luttinger contribution can be inter-
preted as a Berry phase in momenturn space.
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2. In chiral textured ferromagnets, the anomatous Hall
effect arises from the Berry phase due to the exchange
field texture in real space.

In the following text, we shall discuss in more detail the
interplay of the Berry phase and anomalous Hall effect in
these two different contexts.

6.2 Berry phase and the anomalous Hall effect
in homogenous ferromagnets

From Kubo’s linear response theory, the conductivity tensor
for independent electrons is given by Luttinger {1969)

ie?h

i = ——llms_,o-f-

<Z  (&n) ~ [ (sm) {nl v} [m) (m]v; |n)> 6
— m — En Ep — Em + 18 .

In this equation, », m label the eigenstates, the thermody-
namic limit is implied (volume €2 tending to infinity), and
{. ..} indicates averaging over impurity configuration. For
metals, particular care is heeded to perform the limit s — 07,
Simply setting 5 = 0 yields the Karplus—Luttinger term. The
remaining contributions arise from the vicinity of the Fermi
level and yield the skew-scattering and side-jump contribu-
tions. Here, we are interested in the Karplus—Luttinger term.
Disorder is usually considered to be of minor importance for
the Karplus—Luttinger term and will be neglected from now
otl, o that the eigenstates are labeled by the band index n
and the wave vector k in the first Brillouin zone, We thus

get

d?k .
KL _ _ 2 B
oft=-¢n[ o 307 610) £ om0

tm [ (k| v mik) k| vy [nk)]

(en(k) — £ (K))? an
Using the fact that, for m # n,
(nk| H |mk) =0 (78)
one obtains
(O (nk)| mK) £ (k) + (nK| Bc(mk)) e, (k)

+ (mk I8 L )Ink)—O (79)

Similarly, (nk| mk) = 0 implies that
{B(nk)| mk) + (nk| &c(mk)) = 0 (80)

so that
(nkj v; [mk} 1
P e R ORIy
Finally, we get
okl 2 [ k)1
U - h \BZ (ZR_)D Zf(‘g!’l( )) I
x ({3, (nk)| B, (nk))] (82)
Defining the Berry curvature in band n as
) = —Im ({3 (k)| x 13 (nk))) (83)

we finally obtain

dPk

kL _¢
18z (2m)P

if _ﬁ,

o

E F(ey (k)) g (k) (84)

where g;;; 1s the fully antisymmetric tensor. This result is
best understood for two-dimensional systems (D = 2), where
only o,y and QU are of interest. There the contribution
of the band of index n to the Karplus—Luttinger term
is simply determined by the Berry phase associated with
parallel transport (with the k-plane playing the role of the
parameter space} around the Fermi surface (which is a line
in two dimensions).

The case of an insulating system is of particular inter-
est. In this case, there are no Fermi surface contributions
(skew scattering and side jump) to the Hall conductivity, and
the latter thus reduces to the Karplus—Luttinger term. The
contribution of the occupied bands is thus given by an inte-
gral over the whole first Brillouin zone (empty bands do not
contribute). Because the first Brillouin zone may be viewed
as a closed surface (torus), the conductance is topologically
quantized in multiples of the quantam of conductance, £%/h.
Since the longitudinal conductance vanishes, we obtain the
integer quantum' Hall effect without an external magnetic
field. This result is completely analogous to the quantum
Hall effect obtained in the problem of the Hofstadter butterfly
(Hofstadter, 1976; Thouless, Kohmoto, Nightingale and den
Nijs, 1982; Avron, Seiler and Sirmon, 1983).

It is completely similar to the Bonnet theorem in differen-
tial geometry (Nakahara, 1990), which relates the integral of
the Gaussian curvature (which is a local geometrical prop-
erty) over a closed surface to its Euler index (which is 2
global topological invariant).

The simplest example for the Berry phase formulation of
the Karplus—Luttinger term is given by the two-dimensional
electron gas in the presence of Rashba spin-orbit coupling
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e

and exchange splitting. It is described by the following
Hamiltonian:

RK®
= 2m

H +a{ocky — oyky) — Mo, (85)

The eigenvalues (shown in Figure 7) are

g _
k7 gy

F Alk) (86)
with
Ak) = v M? 4+ o2k? - (8D

The eigenstates |k, 4} are polarized along (resp. against)
the unit vector

{88)

(k) = (aky -M otky)

A0 AE) 2R

Thus, as one performs a closed loop around the Fermi
line, the spin quantization axis describes a cone, the solid
angle of which determines the Berry phase, and, hence, the
Karplus—Luttinger contribution to the anomalous Hall effect.
We have

on = “E;;ﬁ f &k [F(E) — FE)] Eaﬂ?”“z%aa%
(89)
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Figure 7, Energy spectrum of electrons in a two-dimensional
fEITOmagnet with Rashba spin-orbit interaction (schematically).
(Reproduced from Dugaev et al., 2005, with permission from the
American Physical Society. © 2005.)

which, for weak spin-orbit coupling (wkr < M), finally
yields

er+ M
2M

& m*a?
O'i,'[' o ET I:Q(M—SF)

+0(eF — M)i|

90

For more extensive discussions, the reader is refeg'rec)l

to otiginal publications (Jungwirth, Niu and MacDonald,

2002; Fang ef al., 2003; Culcer, MacDonald and Niu, 2003;

Yao et al., 2004; Lee er al., 2004; Haldane, 2004; Sinova,

Jungwirth and Cerne, 2004; Dugaev er al., 2005; Sinitsyn,
Niu, Sinova and Nomura, 2003).

6.3 Berry phase and the anomalous Hall effect
in chiral textured ferromagnets

Let us consider here a system with the Hamiltonian
2

P
2m*

H= —Alr)o oL
where A(r) = A{r)n(r) is a spatially varying exchange
potential. Here the quantization axis is chosen to be along z
everywhere. This choice is arbitrary, however (it is in fact
a gauge choice), and any other choice could be made. In
particular, the exchange term becomes simpler if we choose
a gauge such that the quantization axis is everywhere along
n(r), that is, if we perform the unitary transformation

H—>H=THT (92)
with
T ) @ - 017(x) = o, S ©3)

However, we should pay attention to the fact that the
unitary operator 7 (r) does not comraute with the momentum
operator p = —ihd/dr. Thus, the price to pay for the
simplification of the exchange term is a more complicated
expression of the kinetic energy term, and the transformed

. Hamiltonian reads

1

(0 + eA)? — AK)o, (94)
2m*

H=

where A(r) is a nonabelian (2 x 2-spinor) gauge potential
given by

A = 2indy T (8T ®) ©95)

Note that in the definition of the gauge potential A(r), we
have introduced the flux quantum ¢, = /e for convenience,
in order to be able to express the gange potential in the same
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units as a usual vector potential. It is important to realize,
however, that this is merely a convention — the electron
charge (being absent from the original Harmiltonian) plays
" no role here, and we would have obtained the same result
for a neutral particle, such as the neutron. -

It may seem at first sight that we have made no real
progress by changing to a new gauge — the exchange has
been simplified, but the kinetic energy has taken a more
complicated form. However, if the exchange splitting is large
enough compared to the rate of variation of n(r) (as seen in
the reference frame in which the electron is at rest), spin
flip terms due to the kinetic energy term become negligible,
. and the spin has to adiabatically follow the local direction
of n(r). More precisely, the condition of adiabaticity (for an
electron at the Fermi level) reads:

kg
m*EA

o= 1 (96)
where £ is the typical length on which the direction of n(r)
makes a change of the order of z. If the adiabaticity condition
is satisfied, the two-spin channels decouple and one gets:

y 77& 0
T ¢ 97

( 0 m) oD
with

(p+oea®)? —ocA@ + V(I  (98)

7
2m*

with ¢ = +1 (—1) for 4 ({), respectively, and where the
effective vector and scalar potentials are respectively given

by

RyOiny — nydiny

a; (I‘) = ?T(.p[) 1 T n, (99)
and
2 .
V@) = o= X#: (8:n,)’ (100)

Thus, we have mapped the original problem onto that of -

spinless particles subject to spin-dependent vector and scalar
potentials. The effective magnetic field associated with the
effective vector potential is defined as usual by

bh=Vxa (101)
and is given in terms of z(r) by
_ %o
b; = _Eijkapwknﬁ(ajnv)(akﬂl) (102)
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where Einstein’s convention of summation over Iepeateq
dummy indices is implied. One can check that the effective
Aharon_ov—Bohm phase associated with a closed pah in
space corresponds exactly with the Berry phase for a spin | /2
for the corresponding path in n space, that is, £Q/2, where
is the solid angle described by n. This observation establigheg
the link between the effective magnetic field experienceq by
the electron because of the exchange field texture and the
concept of the Berry phase.

The electron couples to the effective vector potential iy,
exactly the same way as it would couple to a real vectgr
potential, and therefore the same physical consequences gpe.
expected, and obtained. These effects can be classified intg
two categories:

¢ nonlocal effects due to quantumn interferences, such ag
the Aharonov—Bohm effect and associated persistent
currents; intrinsically, these effects are of quantum
mechanical nature and require phase coherence.

s local effects such as the Lorentz force and it conse-
quences like the Hall effect; these effects are nof quan-
tum mechanical in essence, but classical, and do not rely
on phase coherence. An insightful paper by Aharonov
and Stern (1992) beautifully explains how the effective
Lorentz force arises in a classical description.

A good example of the anomalous Hall effect due to
a chiral texture is provided by the pyrochlore compound
Nd;Mo,07 (Taguchi et al., 2001). The structure and mag-
netic ordering are displayed in Figure §. The electronic trans-
port takes place on Mo sites, which adopt a chiral ‘umbrella’
spin texture owing to the exchange coupling to the Nd
moments. The hopping of an electron around any Mo tri-
angle gives rise to a Berry phase related to the solid angle
described by the magpetic moments, and hence to a chirality-
induced anomaious Hall effect. This is corroborated by the
fact that the application of a large magnetic field closes the
‘umbrella’ texture, thereby suppressing the solid angle and
the anomalous Hall effect.

7 OUTLOOK AND CONCLUSIONS

Besides the applications that have been discussed in the
preceding text, the concept of Berry phase has been of great
importance to a number of topics in solid-state physics. In the
theory of the fractional quantum Hall effect, the occurrence
of excitations with fractional charges comes naturally out of 2
Berry phase argument and gives rise to the concept of anyon
(Wilczek, 1990). In quantum Hall ferromagnets, the Berry

- phase gives rise to topological excitations, called skyrmions
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Figure 8. Schematic magnetic and crystal structures of pyrochlore. (a) Spin chirality, that is, the solid angle subtended by the three spins.
(b) “Two-in, two-out’ spin structure, in which each spin points along the line that connects the center of the tetrahedron and the vertex.
The total fictitious magnetic field is the vector sum of each fictitions magnetic flux that penetrates each plaguette. (c) The B sublattice of
pyrochlore structure A2B207. The A sublattice is structurally identical with this one, but is displaced by half a lattice constant. (d) Relative
position of Nd tetrahedron (gray circles) and Mo tetrahedron {black circles) in Nd;Mo20O9 pyrochlore. (e) The ‘umbrella’ structurc observed
for Ndz;Mo207 (A = Nd, B = Mo) by a neutron diffraction study. A magnetic unit cell contains four inequivalent Nd 4f moments n; and '
four Mo 4d momeénts m;. In the umbrella structure, (m; —m) L m and (n; — n) L n for each m; and n;, where m and n are the average
moments of four m; and four n;, respectively. (Reproduced from Y. Taguchi et al: Spin chirality, Berry phase, and anomalous Hall effect
in a Frustrated Ferromagnet. Science 29, (2001) 2573-76, with permission from AAAS.)

{Girvin, 1999) with novel properties. In one- and two-
dimensional quantum spin systems, the physical properties
depend, in a crucial manner, on whether the spin is integer
or half-integer (Haldane, 1983, 1988), a phenomencn that is
best understood in terms of Berry phase considerations (Loss,
1998). In molecular magnets, the Berry phase can induce
destructive interferences of macroscopic tunneling between
classically degenerate states, giving rise to the occurrence
of diabolical points (Loss, DiVincenzo and Grinstein, 1992;
von Delft and Henley, 1992; Garg, 1993; Wemsdorfer and
Sessoli, 1999; Villain, 2003; Bruno, 2006).

The concept of the Berry phase appears as one of the most
profound and insightful concepts in quantum mechanics.
This article aimed at giving an introduction to this topic
and illustrating its importance and versatility by means of
a number of examples in the field of magnetism.
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