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Abstract

Magnetic moments and the magnetic anisotropy energy (MAE) are calculated
for Co chains on a stepped Cu(111) surface in a fully relaxed geometry.
The Korringa—Kohn—Rostoker Green’s function method is used to determine
parameters of N-body interatomic potentials and to fit the semi-empirical tight-
binding electronic Hamiltonian. The strain relief at steps and in the Co chains
is demonstrated to have a profound effect on the morphology of the substrate.
Atomic relaxations are shown to decrease the magnetic moments and the MAE.
The MAE and orbital moments are found to exhibit an oscillatory behavior with
increasing size of the chains.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the pioneering work of Elmers et al [1] on Fe nanostripes on a W(110) surface, a large
number of experimental and theoretical studies have been devoted to quasi-one-dimensional
(1D) systems on different substrates [2-16]. A question of primary interest is related to
the magnetic properties of low-dimensional systems. Such nanostructures are considered
as possible candidates for future magnetoelectronic device use: magnetic properties of low-
dimensional systems can be very much different from properties of bulk materials. For
example, the orbital contribution to magnetism can be strongly enhanced at surfaces as was
shown by Ticher et al for Co on Cu(001) [14]. According to their experimental and theoretical
studies, the orbital moment of the first Co layer was twice larger than in the bulk. The enhanced
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spin magnetic moment in the surface layer and reduced spin magnetic moment in a subsurface
layer of 2Co/Cu(001) have been obtained in ab initio calculations of Pentcheva et al [17].
Strong relaxation of the interlayer spacing has been shown to affect magnetic moments. Felix-
Medina et al [15] performed tight-binding (TB) calculations which revealed remarkably large
total magnetic moment of Co wires on Pd(110). They have shown that the orbital moment per
Co atom in wires is almost three times larger than the Co bulk orbital moment. Diirr ez al [18]
reported on similar results for Co films on a stepped Cu(l 1 13) surface. TB calculations of
Dorantes-Ddvila and Pastor [5] have predicted that the MAE of 3d transition metal wires can
be an order of magnitude larger than in two-dimensional thin films [5]. Experiments revealed
extremely large MAE values for Co adatoms, nanoparticles and Co wires on Pt(111) [4, 19, 20].
On the other hand, the full-potential linearized augmented plane wave (FLAPW) calculations
performed by Hong and Wu [8, 9] revealed no obvious MAE enhancement in Co chains in
comparison to Co thin films. The MAE and orbital magnetic moments were found to exhibit
an oscillatory behavior with increasing size of the chains. Magnetic moments of supported
monatomic Co chains on Cu(001) and Pt(001) were found to align along the chain, contrary
to the perpendicular alignment of the magnetic moment of the same free-standing chains.
Calculations for spin and orbital moments of finite Co nanowires on Cu(001) performed by
Klautau and Frota-Pessda [21] by means of the linear muffin tin orbital atomic approximation
(LMTO) method have predicted orbital moments of 0.7 ug for the Co sites at the end of a
Co nanowire on Cu(001), and 0.3 up per atom in the infinite Co wire on Cu(001). These
values should be experimentally observable. Lazarovits et al [12, 13, 22] have studied magnetic
properties of finite monatomic Fe chains on Cu(001) and Cu(111) by means of Korringa—Kohn—
Rostoker (KKR) Green’s function method. They have found that spin and orbital moments
in the chains are larger than those in the monolayer. A strong out-of-plane easy axis of
magnetization was found for chains on Cu(001) and Cu(111).

Stepped surfaces bring an additional magnetic anisotropy within the surface plane since
the direction parallel and perpendicular to the step edge are no longer equivalent [23]. Dhesi
et al [24] have found by means of x-ray magnetic linear dichroism measurements that the spin—
orbit coupling parallel to the step is larger than that perpendicular to the step. Weber ef al [25]
have reported on the adatom-induced reorientation of spins in Co on a stepped Cu surface from
the direction parallel to steps to the perpendicular one. Hahlin et al [26] have performed x-ray
magnetic circular dichroism (XMCD) and x-ray reflectivity measurements on Co deposited on
vicinal and flat Cu(111). They have revealed that the orbital moment and the spin moment for
the vicinal surface are enhanced by 25% for the thickness range 1-25 monolayers as compared
to those found for Co on the flat surface. The first-principles investigation of Shick et al [27] of
the anomalous ferromagnetism of a quasi-one-dimensional Co chains at the Pt(111) step edge
has shown that the symmetry breaking at the step leads to an easy magnetization axis at an odd
angle of about 20° towards the Pt step.

Still little attention has been paid so far to the effect of strain relaxations at steps on
structure and magnetic properties of chains. There have been only a few investigations, to
our knowledge, which have addressed this problem for infinite chains. Ab initio calculations of
Mica et al [28] have indicated that the effect of structural relaxations on magnetic properties
of infinite Co wires on a stepped Pt surface could be important to correctly describe the MAE
on stepped surfaces [28]. SpiSak and Hafner [10, 11] have found by use of a PAW package
that the equilibrium bond length of a free-standing straight wire is smaller by 12% than the
corresponding bond length of a wire on a Cu substrate. These results indicate that wires on a
surface are under a strong tensile stress. The aim of our work is to study the strain relaxations
in finite atomic chains at stepped surfaces and their effect on magnetic properties. Performing
ab initio and TB calculations, we concentrate on Co chains on a stepped Cu(111) surface.
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2. Computational methods

Ab initio calculations for ideal Co chains on a stepped Cu(111) surface are performed by
KKR and Screened KKR Green’s function method (SKKR) [29, 30] in the framework of
the density functional theory (DFT) in the local spin density approximation (LSDA). Up to
several hundreds of inequivalent atoms can be involved in self-consistent calculations. The
concept of a vicinal surface is applied to simulate a superlattice of regularly separated steps
of monatomic height [31, 32]. A stepped surface is treated as a two-dimensional perturbation
of the infinite bulk. The Dyson equation for stepped surfaces is solved in k| representation,
where kj belongs to 2D Brillouin zone. Finite chains adsorbed at the step edges destroy
the 2D periodicity. Therefore, we calculate electronic and magnetic properties of chains
in a real-space representation. In this case, the Green’s function of a stepped surface (we
have chosen Cu(554) surface) calculated by means of the SKKR method is used in the
Dyson equation as the reference Green’s function. Details of our approach can be found
elsewhere [29-31].

The relaxed atomic geometries have been obtained by means of ab initio fitted many-
body potentials formulated in the second moment approximation of the TB theory [33-35].
The KKR Green’s function method [29, 30] is used to create an ab initio data pool to fit the
parameters of the potentials. Surface (binding energies of supported Co clusters of different
sizes, the Hellmann—-Feynman forces acting on the Co adatom for different positions above
the surface) and bulk properties (bulk modulus, lattice constants, cohesive energies, and elastic
constants) are included in the data pool. The reliability of such potentials for different atomic
configurations has been demonstrated [36—42]. Recent studies [43] have shown that our method
describes atomic relaxations in nanostructures in very good agreement with fully ab initio
calculations. Note, a full optimization of the structure of chains, steps and the substrate by
ab initio methods is still beyond the accessible computation time. For technical details we refer
to our former studies [35].

In order to avoid tedious first-principles electronic structure calculations for relaxed atomic
geometries and to include spin—orbit coupling we apply the TB method for relaxed chains.
To make the extensive calculations feasible, only the changes introduced by the geometry
relaxation of the Co atoms and their nearest neighbors are taken into account. It has been
demonstrated in our previous studies [38, 44] that moderate perturbation of more distant Cu
atom can be safely neglected. The parameters of a semi-empirical TB Hamiltonian are fitted
to reproduce closely the ab initio KKR results for ideal chains at the step (atomically resolved
local density of states (LDOS) and magnetic moments). TB calculations are performed self-
consistently with commonly used conditions: the local charge neutrality and linear dependence
of the exchange splitting on the spin magnetic moment [45]. The local densities of states
(LDOS) and electronic properties of interest are calculated with the help of the recursion
method technique (continued fraction with large number of levels) [46, 47]. Actually, the
method is essentially the same as in our previous investigations [38, 44]. In order to avoid
too sharp peaks near Er we have changed the small ddé parameter of Co [48] to fulfill the
canonical prescription [49] ddo:ddé = 6:1. This minor change in the parameterization seems
to have no effect on the results.

3. Results and discussion

Relaxation of short Co chains placed at the Cu(111) vicinal surface step edge would differ
significantly from the case of the flat Cu(111) substrate due to interactions of Co atoms with
the Cu atoms of the step. We calculated relaxations of short Co,—Co7 chains at the step edge
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Figure 1. Strain relaxations in short Co chains placed at the Cu(111) vicinal surface step edge.
The upper panels of all the figures demonstrate displacements of Co atoms in (a) Co,, (b) Cos,
(c) Coy, (d) Cos, (e) Cog, (f) Co7 chains. The corresponding relaxation profiles of underlying
substrate atoms are shown in lower panes. Coordinate origins coincide with the geometrical centers
of corresponding unrelaxed structures.

of Cu(554) vicinal surface. The coordinate frame used is drawn in the inset of figure 1. The x-
axis is parallel to the step, the z-axis direction matches the surface terrace normal and the y axis
points from the step. Projections of relaxed atomic positions of the Co chains and underlying
substrate atoms on xz plane are plotted respectively in upper and lower panels of figures 1(a)—
(f). Vertical displacements of Co atoms strongly depend on the chain length. To rationalize such
a difference and to find common features in Co chain relaxations, we should stress that the edge
atoms of Co chains due to lower coordination number, exhibit the strongest relaxations towards
the substrate, towards the step and towards the adjacent Co atom. The positions of Cu atoms in
the step remain practically the same except when at the chain edges (they are marked with green
arrows in the inset of figure 1). These atoms move out from the step to the terrace. The picture
described above remains valid for all the considered Co chains (see upper panels of figures 1(a)—
(f)). Such a displacement of the edge Co atoms hinders the relaxation of the second atom in the
chain towards the substrate. As a result, the second Co atoms are situated remarkably higher
than the edge ones. This ‘edge effect’ completely explains the arched relaxations profiles of
Cos and Coy chains. The longer Cos, Cog and Cos chains have the ‘letter M-like’ shape when
three outermost Co atoms form two arches at each edge of the chain and the remaining Co
atoms in the center exhibit similar relaxations forming steady central region. The description
of the atomic relaxations in the Co chains can be summarized in the 3D illustration as it is
plotted in figure 2 for the Co; chain. All the considered Co chains push underlying substrate
atoms downwards, but the outer substrate atoms exhibit upward vertical relaxations due to the
shift of the edge Co atoms towards the chain center. The relative changes of Co—Co and Co—
Cu bonds in Co; chain caused by relaxation are listed in table 1. The Co atoms’ enumeration
is explained in figure 3. Because of the reflection symmetry x — —x only the first four Co
atoms are considered in table 1. The zoomed view in figure 3 clarifies the bond notation. To
illustrate the effect of relaxations on the electronic structure of the Co; chain we also put in
table 1 values of spin magnetic moments for ideal and relaxed configurations. In both cases
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Figure 2. The three-dimensional relaxation profile in the Co; chain. Edge atoms are strongly
attracted to the step due to the lower coordination number. The second atoms from the edge are
shifted from the step. Atoms in the middle of the chain lie approximately in a straight line.

Table 1. Effect of atomic relaxations on structural and magnetic properties of the Co7 chain. Values
of Co—Co and Co—Cu bonds length changes are listed in per cents relative to the unrelaxed bond
length. Order of the Co atoms and bonds notation are illustrated in figure 3.

Co atom

Bonds 1 2 3 4

1 — —6.2 -3.2 -2.3
2 —6.2 -3.2 2.3 2.3
3 0.3 0.6 -0.8 —-1.5
4 —-5.2 —-2.6 -2.0 —-1.5
5 -0.8 -0.4 -1.9 —-2.6
6 —6.1 -3.8 -3.2 -2.6
7 -3.5 -3.3 —-3.3 —-3.3

Magnetic moments (i4p)
Ideal 1.71 1.68 1.64 1.66

Relaxed 1.59 1.52 1.53 1.50

edge Co atoms have the maximum magnetic moment in the chain. Atomic relaxations reduce
magnetic moments of all the atoms.

Some general discussion on the symmetries in the considered systems is required. The
presence of the reflection symmetry x — —x fixes the x-direction (parallel to the chain)
for the magnetic anisotropy and therefore the corresponding orbital and spin moments are
parallel. But it is still necessary to perform a complete analysis of the magnetic anisotropy
in yz plane. Strictly speaking, the magnetic spin® and the orbital moments need not to be

5 We identify the spin moment by the direction n included in the part of the TB Hamiltonian 0.5A (no) introducing
the exchange splitting A.
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Figure 3. Sketch of the Cu(111) vicinal surface step with the Co7 chain. Substrate Cu atoms
are drawn with grey colour; the Co chain is light blue. The top view illustrates the Co atoms’
enumeration order used in table 1. The bottom zoomed view is designed to clarify the bond notation
used in table 1.

mutually parallel [50], so we vary the orientation of the spin moment in the yz plane and for
each spin moment orientation we calculate the orbital moment projections onto y and z axes.
The obtained orbital moments and anisotropy energies are fitted by the formula

A+ B cos(2(¢ — o)), M

where ¢ is the angle between the spin moment in the yz plane and the (111) normal. It
is positive (negative) for a magnetic moment tilted above the upper (lower) terrace. The
coefficients A, B and ¢ are found by the usual Fourier-series technique.

The common property of all studied cases is that the energetically preferred easy axis
of the magnetization is found to be parallel to the x-axis of the coordinate frame drawn in
figure 2, similar to the ab initio results of Hong and Wu [8, 9]. To illustrate the physics behind
this, let us consider an infinite free-standing Co chain oriented along the z-axis. The minority-
spin electrons form a wide o -band (3z%-r? orbitals), doubly degenerate -band (xz, yz) and a
narrow doubly degenerate §-band (xy, x2—y?) [51-53]. Analogous features in the local density
of states at the third Co atom in the Coy chain are drawn in figure 4(a). Ef falls well inside a
high-density peak in LDOS stemming from the §-orbitals with the magnetic orbital numbers
m = =2 and therefore an effective spin—orbit coupling is possible. LDOSs calculated with
spin—orbit coupling are drawn in figure 4(b). The effect of spin—orbit coupling on the §-band is
obvious.

Before proceeding to the discussion on the hard axis orientation, let us clarify the following
point. The hard axis lying in the xy plane and providing most of the energy for the whole
system is determined by the Fourier fit of the MAE of the whole system. The angles found
by an analogous fit of local MAE contributions from particular atoms need not coincide with
the system hard axis direction. It is also true for extrema of angular moments on particular
atoms [50]. This misorientation varies in a range from negligibly small values up to several
degrees. Larger differences are possible due to numerical errors in fitting if the B parameter in
equation (1) is very small. The orientations of the hard axis in the yz plane both for ideal and
relaxed Co,—Co7 chains are demonstrated in figure 5. Relaxation has no significant effect on
Co, dimer. In both cases the angle between the hard axis and (111) normal is approximately
40°. Calculations performed for Co dimer on Cu(111) revealed an in-plane hard axis. A similar
result was obtained by Lazarovits et al [54] for Co on Ag(001). The difference between the
orientations of the hard axis of the Co dimer adsorbed at the step and on the flat surface is
definitely the effect of the step Cu atoms. The effect of relaxation becomes very significant for
the Co trimer. The hard axis orientation of the unrelaxed trimer is almost in-plane, but strong
relaxation disturbs linear shape of the trimer (see figure 1) and makes hard axis to be almost
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Figure 4. The effect of spin—orbit coupling on the d-electron LDOS at the third Co atom in the Coy
chain adsorbed at the step. (a) Spin—orbit coupling is neglected, (b) it is taken into account. The
Fermi level coincides with the energy zero. Solid, long-dashed and short-dashed) curves correspond
to the orbital moment eigenvalues m = =£2, £1, 0 with the quantization axis parallel to the x-axis
of the coordinate frame drawn in figure 2.
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Figure 5. Orientation of the hard axis in the yz plane for Co,—Co7 chains. Empty (full) circles
correspond to ideal (relaxed) chains at the step. See the text for details.

parallel to the (111) normal. We check the direction of the hard axis of the Co trimer on the flat
Cu(111) surface and found that it also points out-of-plane. The same result was obtained for
Co trimer on Ag(001) [54]. The hard axis orientation of the Co4, Cos, Cog are very similar for
relaxed and ideal atomic positions but for the Co; chain its orientation changes. Such a large
difference between the relaxed and ideal Co; can be explained by the very low anisotropy in
the yz plane for the relaxed chain.

Now we focus on the distribution of the magnetic properties along the chain and their
averages. The total spin magnetic moments in the Co7 chain calculated by means of KKR
Green’s function can be found in table 1. The exhaustive information on MAE and orbital
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Table 2. MAE and magnetic orbital moments L™ calculated for the ideal Co; chain for the
magnetization orientations along the easy, hard, and intermediate axis, respectively. Zero energy
is chosen for magnetization orientation parallel to the surface (111) normal. Negative energy means
that corresponding magnetization orientation is more energetically preferable. Easy magnetization
axis (corresponding to the ground state) is oriented along the chain. Order of the Co atoms is
illustrated in figure 3. Average values (-) per atom in the chain are also shown.

Co atom

Magn. orient. 1 2 3 4 ()
MAE Along the chain  —3.59 —-3.72 —488 —-2.890 —3.90
(meV) ¢ =51° 0.14 0.11 0.31 0.06 0.17

¢ = —39° -0.11  -0.10 -0.13 —-0.07 —-0.11
m Along the chain 0.55 0.47 0.63 0.42 0.53
() ¢ =51° 0.28 0.22 0.19 0.27 0.23

¢ = —39° 0.29 0.24 0.22 0.27 0.25

Table 3. MAE and magnetic orbital moments L™ calculated for the relaxed Coy chain. For details
see description of table 2.

Co atom

Magn. orient. 1 2 3 4 ()
MAE Along the chain —3.23 —-3.80 —-5.05 —2.54 —3.81
(meV) ¢ =2° 0.00 0.00 0.00 0.00 0.00

¢ = —88° 0.05 0.02 -0.17 —-041 —0.09
Lm Along the chain 0.48 0.40 0.59 0.39 0.47
(B) ¢ =2° 0.25 0.18 0.24 0.19 0.22

¢ = —88° 0.25 0.18 0.25 0.24 0.23

moments for the same chain in ideal and relaxed configurations is listed in tables 2 and 3
respectively. The MAE and the orbital moments of the relaxed Co; chain drop in comparison to
the ideal system. We expect that the properties of chains will converge with damped oscillations
as the chain length increases. Actually, we did some tests that allow us to compare unrelaxed
infinite and Coy chains on the ideal or stepped Cu(111) surface, respectively. The corresponding
differences of the MAE, orbital moment or the hard axis orientation do not exceed several
per cents. Orientation of hard axes is shown in figure 5. Stabilizations of the intermediate
magnetization axis and easy axis with respect to the hard axis are demonstrated in figure 6. For
ideal chains the tendency towards stabilization is visible starting from Co4. The same trend is
obtained for magnetic orbital moments (see figure 7). For relaxed chains a similar comparison
is problematic since there is no effective way of Co—Co distance relaxation for very long but
finite chains. For example, for the Co; chain, the Co—Co bond length at the central part of the
chain is relaxed only by 2%. Naturally, broken-symmetry geometries should be checked for
very long chains [51].

For short chains, there are marked oscillations of chain properties in dependence of
their length. Such an oscillatory behavior, which has pronouncedly odd—even atomic length
character (see figures 5-7), can be understood on intuitive grounds. Let us consider
transformation of eigenstate orbital part (i.e. transformation of the spinor is not taken into
account) with respect to the symmetry-plane reflection. For antisymmetric states and chains
with odd number of atoms, the amplitude of the above two important §-orbitals (xy, x?>—y?) is
zero on the central atom which has no analogy for even-atom chains.
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Finally, the changes of MAE and L™ caused by a switch of magnetization direction can
be connected by the approximate relation [55] involving the intra-atomic spin—orbit coupling
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parameter &:
AE ~ —0.256AL™. 2)

We use & = 0.06 eV as in our previous studies [44]. As a rule, no serious deviations from
equation (2) have been found. Equation (2) permits to qualitatively estimate the changes of the
MAE.

4. Conclusions

We have demonstrated that the strain relief in the Co chains at a stepped Cu surface significantly
affects the atomic structure of the chains and the morphology of the substrate. We have
performed extensive calculations of the MAE for ideal and relaxed short Co chains. The
easy axis is found to be aligned along the chains and the MAE is determined to be several
meV per atom. The magnetic properties of chains exhibit oscillations with increasing chain
length. Atomic relaxations are found to affect significantly the direction of the easy axis. We
demonstrate also that relaxations reduce the MAE and magnetic moments of Co chains.
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