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Abstract

We present an approach for the simulation of complete electron backscatter diffraction (EBSD) patterns where the relative intensity

distributions in the patterns are accurately reproduced. The Bloch wave theory is applied to describe the electron diffraction process. For

the simulation of experimental patterns with a large field of view, a large number of reflecting planes has to be taken into account. This is

made possible by the Bethe perturbation of weak reflections. Very good agreement is obtained for simulated and experimental patterns of

gallium nitride GaNf0 0 0 1g at 20 kV electron energy. Experimental features like zone-axis fine structure and higher-order Laue zone

rings are accurately reproduced. We discuss the influence of the diffraction of the incident beam in our experiment.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Electron backscatter diffraction (EBSD) has developed
into a valuable tool for the analysis of crystalline materials [1].

This technique, which is based around the scanning
electron microscope (SEM), uses a highly tilted specimen
which points towards the scintillating screen of an EBSD
detector. A schematic picture of this is shown in Fig. 1.
When the stationary electron beam strikes the specimen,
the electrons backscattered from the sample produce a
diffraction pattern on the phosphor screen. A high
sensitivity, low-light level CCD camera is used to view
the phosphor and to capture an image of the electron
backscatter pattern (EBSP).

An EBSP consists of a series of overlapping Kikuchi
bands. The edges of each Kikuchi band correspond to
front matter r 2006 Elsevier B.V. All rights reserved.
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diffraction from opposite sides of the same set of planes
within the crystal. In presently existing commercial soft-
ware, dedicated image analysis and indexing algorithms are
used to identify the orientation of the crystal that would
produce the corresponding diffraction pattern. By auto-
mating the movement of the electron beam or stage in the
SEM, it is possible to produce maps that show variations in
crystallographic orientation and phase across an area of
the specimen.
The main advantages of the EBSD technique are that it

has high spatial resolution, of the order of 20 nm in a
Schottky field emission SEM, and it allows the local
crystallography to be measured and directly compared with
the microstructure. In addition, it is possible to tune the
depth sensitivity by the choice of the electron energy.
Applications of EBSD include measurement of texture,

grain size and phase distribution. With the combination of
high-quality EBSPs, chemical data from X-ray fluorescence
measurements, and suitable crystallographic databases, it is
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Fig. 1. Schematic showing the EBSD geometry used in this work.
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possible to perform phase identification and crystal
symmetry determination [2]. EBSD has also been applied
to the measurement of local elastic strain and small
rotations [3].

Most commercial EBSD systems use the Bragg equation,
nl ¼ 2d sin y, to predict the positions of the Kikuchi band
edges and the kinematical diffraction model to estimate the
relative intensities of the Kikuchi bands [1,4]. The Hough
transform [1,5] is used to detect the Kikuchi bands, the
angles between the corresponding crystal planes are used as
a key to match against the theoretical interplanar angles.
For this reason, it is essential to have accurate crystal-
lographic data (including atom position information) for
the phases to be analyzed.

There is significant information contained in the
complicated intensity distributions of the EBSPs. Pro-
nounced improvements in applications of the EBSD
method can be expected if it is possible to gain access to
a quantitative description of EBSD patterns and hence
extract the information provided by intensity variations in
the EBSPs. The continuous improvement of the experi-
mental technique has resulted in observable fine-structure
effects in the patterns which call for a comparison with
such quantitative simulations.

A complete simulation of the observed intensities is only
possible by applying the dynamical theory of electron
diffraction which properly includes the effects of multiple
scattering in the crystal. This theory is well developed and
used extensively in various areas of electron diffraction for
the analysis of experimentally observed effects [6,7].

In this paper, we present results of an attempt to
simulate the relative intensity distributions of complete
backscatter patterns which can be used for thin film
crystallography. Our first results focus on the reproduci-
bility of experimental patterns from gallium nitride. We
will show that by the application of our approach, the
experimental patterns can be very nicely reproduced. We
have to stress that we do not attempt quantitative
agreement in intensities, but rather it is our aim to show
how much of the complicated relative intensity distribution
can be explained by taking into account all possible
diffracting planes and their interaction in dynamical
scattering. The results will be displayed as a two-dimen-
sional map emphasizing the structures in the diffraction
pattern and their relative intensities comparable to
the approach described in the paper of Rossouw et al. [8]
with the additional inclusion of geometrical effects in our
setup.

2. Experiment

The experimental EBSPs were taken using a Nordlys II
detector with CHANNEL 5 software (HKL technology)
on a Carl Zeiss Supra 55VP FEGSEM. For EBSD work,
the lateral spatial resolution is of the order of tens of nm.
The 1600 nm GaN sample was grown by metalorganic
vapor phase epitaxy using a Thomas Swan Showerhead
reactor. A 30 nm GaN nucleation layer was first grown at
525 �C on a (0 0 0 1) sapphire substrate. This nucleation
layer was then annealed briefly at a GaN growth
temperature of 1023 �C prior to thin film growth. The
sample was mounted on an aluminum stub, tilted to � 70�

from the horizontal and positioned below the electron
beam at a working distance of 8mm. The accelerating
voltage was 20 kV, the probe current was about 1 nA. The
Nordlys detector was inserted 176mm into the SEM
chamber providing a phosphor-to-sample distance of
19mm. All patterns were taken at room temperature;
however, the effects of localized heating due to the electron
beam are unknown. The incoming beam direction was
estimated to be near the ½1̄ 3 2̄ 1� direction. Because a flat
phosphor screen is used in the detection of the EBSPs, the
observed patterns are given in a gnomonic projection.

3. Theory

Our approach is a straightforward application of the
Bloch wave theory of electron diffraction which describes
the diffraction of an electron plane wave by a crystal
lattice. The crystal lattice acts as a very complicated
diffraction grating where electrons are focused to different
positions inside the crystal. Depending on the incidence
angle of an incoming plane wave relative to the lattice
planes, the diffracted electrons interact differently with the
atoms which constitute the crystal. This effect for instance
causes the incoming electrons to penetrate the crystal along
certain directions further than along others. Pictorially, this
has been termed as ‘‘channeling’’, but one should keep in
mind that in general one has to deal with a diffraction
effect which modulates the probability of inelastic pro-
cesses. Manifestations of this can be observed as an angular
dependence of a number of inelastic processes which
happen during the diffraction of the incident beam, for
instance the production of Auger electrons, X-rays, and
backscattered electrons. If the latter are observed as a
function of the incidence angle in a SEM, one obtains the
electron channeling patterns (ECP).
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ECP are closely related to EBSD [9]. The reciprocity
principle states that the observed intensity at a point
detector inside the sample, after diffraction of an incoming
plane wave, is the same as for a detected plane wave
intensity after diffraction of waves emanating from a point
source inside the sample. This powerful principle has a
large number of applications in electron diffraction
theories, because it restates the difficult problem of
spherical waves emanating from point sources to the
conceptually simpler picture of a diffracted plane wave
[10]. In this way, the dominant diffraction process in EBSD
(outgoing beam diffraction) and ECP (incident beam
diffraction) can be described by exactly the same mathe-
matical formalism. This does not mean that EBSD and
ECP are the exact reciprocal versions of each other. They
both emphasize different parts of a more general process
containing incident beam diffraction, inelastic scattering,
and outgoing diffraction.

Theories for the observed intensities in ECP have been
presented by Hirsch and Humphreys [11], Vicario et al. [12]
and Reimer et al. [13]. A large number of the investigations
were driven by the need to understand the diffraction
contrast of lattice defects [14,15]. Many-beam effects in
ECP have been studied before by Marthinsen [16–18].
Further simulations were done by Rossouw [8] using a
dependent Bloch wave model and Dudarev [19] using an
inhomogeneous transport equation approach for the
inelastically scattered electrons.

The model that is used for our EBSD simulations is
schematically summarized in Fig. 2. An incident beam with
a certain angular divergence is impinging on the sample
and diffracted to produce a modified distribution of the
incoming electrons relative to the atoms of the crystal. This
diffracted electron distribution undergoes an inelastic
process, in our case the quasi-elastic backscattering from
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Fig. 2. Schematic model app
the atomic nucleus. The backscattered electrons are
thought to originate with the energy of the incident beam
from point sources inside the crystal and are then subject to
the diffraction process by the surrounding crystal lattice.
The source strength for this outgoing diffraction is
determined by the cross-section of the inelastic process
under consideration. We also assume that the inelastic
process destroys the coherence, and in this approximation
the incoming and outgoing diffraction processes do not
interfere. For the case of quasi-elastic backscattering, it is
shown in Fig. 2 that Ga has a much larger cross-section
than N. Thus the electrons backscattered from Ga
dominate the EBSP if the relative intensity incident on N
and Ga atoms clearly differs less than the inelastic cross-
sections. This means that if the incident beam cannot
produce a large enough difference of the incoming
electrons on Ga and N atoms, the final intensity will
always be dominated by the stronger backscattering on Ga
alone and any effects due to the diffraction of the incoming
beam will be reduced. In this approximation, diffraction of
the incident electron beam and inelastic transport effects
can be assumed to have a minor influence on the final
backscattering pattern, also considering the geometrical
setup of the experiment [9]. For the case of GaN, we
discuss the influence of the incident beam diffraction and
attenuation in Section 4.
Our assumption of quasi-elastic scattering clearly is very

simplified, because also inelastically scattered electrons
with larger energy losses contribute to the EBSP. Ideally, a
number of EBSP for different energies would have to be
calculated and summed according to their spectral weight.
This will have the main effect of blurring the diffraction
features in the experimental patterns as compared to
simulations at a fixed energy. As long as the spectrum of
inelastically scattered electrons is dominated by electrons
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within a small enough energy range, the approximation of
a single fixed energy should be reasonable. Thereby the size
of the computation is considerably reduced.

In the general case for arbitrary incidence and takeoff
angles, the effects of multiple inelastic scattering, for
instance, can lead to a contrast reversal of the Kikuchi
bands [9]. We have to stress that while a complete theory
has to take into account the inelastic transport effects, our
approach will reveal the effects for which basically the
many-beam diffraction processes are responsible.

The reciprocity principle allows us to use the framework
of previous ECP simulations also for EBSD [20,21]. A
Bloch wave approach is used to describe the diffraction of
electrons with wavevector k0. The use of this method is
described in several reviews [6,7], the following is a short
summary.

The wavefunction inside the crystal is described as a
superposition of Bloch waves with wavevectors kðjÞ

CðrÞ ¼
X

j

cj expðik
ðjÞ � rÞ

X
g

CðjÞg expðig � rÞ. (1)

One introduces the total (scaled) potential UðrÞ:

UðrÞ ¼ UcðrÞ þ iU 0ðrÞ ¼
X
g

Ug expðig � rÞ. (2)

The potential is described by complex electron structure
factors Uc

g ¼ 2mV g=_
2 with Vg being a Fourier coefficient

of the crystal potential in eV and the relativistic electron
mass m. The loss of electrons from the initial population
due to inelastic effects is included by the definition of the
imaginary components U 0g.

Substitution of these expressions for the wavefunction
and the potential into the Schrödinger equation leads to the
standard dispersion relation

½K2 � ðkðjÞ þ gÞ2�CðjÞg þ
X
h

Ug�hC
ðjÞ
h ¼ 0, (3)

where K is the electron wavevector inside the crystal,
k2
0 ¼ K2 �Uc

0.
Then kðjÞ is written as

kðjÞ ¼ Kþ lðjÞn, (4)

where n is a unit vector normal to the surface. One can
then transform (3) into an eigenvalue problem [7]
which gives the eigenvalues lðjÞ and eigenvectors with
elements CðjÞg . This includes the effects due to the tilt of the
outgoing direction to the surface [22] and is valid for
reciprocal space vectors g also in higher-order Laue zones
(HOLZ).

The boundary conditions at the surface determine the
coefficients cj in (1). These quantities are given by the
elements of the first column of the inverse of the matrix
whose elements are CðjÞg [7]. After this, the wavefunction (1)
is known and can be used to calculate the electron
probability density inside the crystal.

The Fourier coefficients V g of the real part of the crystal
potential can be calculated from the contributions of the
atoms which constitute the unit cell:

Vg ¼
1

O

X
i

f e
i ðsÞ expð�ig � riÞ (5)

with the atoms at positions ri in the unit cell volume O and
the Fourier coefficients f e

ðsÞ, s ¼ jgj=2 of the atomic
potentials. The f e

ðsÞ can be calculated from parameters
tabulated in the literature by Doyle and Turner [23] or
taken from other available parametrizations [24,25]. For
the imaginary part of the potential we used the absorptive
form factor parameters of Weickenmeier et al. [25] which
were calculated using an Einstein model for the lattice
vibrations.
The eigenvalue method described above scales as N3

with the number N of the included reflecting planes. This
quickly leads to impractically long computation times if a
large number of reflections has to be included. This can be
overcome by the use of the Bethe perturbation scheme [7]
which allows the inclusion of the effects of weak reflections
Uh by the transformation into an effective potential of the
strong beams U eff

g without increasing the matrix dimen-
sions:

U eff
g ¼ Ug �

X
h

UhUg�h

2KSh

, (6)

where 2KSh is defined by 2KSh ¼ K2 � ðKþ hÞ2, contain-
ing the excitation error Sh. For the use of the Bethe
perturbation, beam selection and convergence criteria have
been developed in the context of convergent beam electron
diffraction [26,27]. Strong and weak beams are selected
according to their structure factor and the excitation error,
describing how strong the influence of a certain reflecting
plane is at the considered point in the diffraction pattern.
In our case, we have tested the convergence of this
approach by comparing sets of perturbational simulations
with calculations solving the full eigenvalue problem.
Finally, to compute the probability of electrons to be at

the position of the backscattering nuclei, one has to
calculate cc� from Eq. (1) [22]. The interaction of
diffracted electrons with the crystal can be modeled by
generalized potentials [28,29]. In the case that these
potentials have the form of delta functions (point sources
or point detectors) which are broadened by thermal
vibrations, Rossouw et al. [8] have given the following
expression for the depth integrated dynamically back-
scattered intensity from the crystal:

IDYN /
X
n;ij

Z2
nBijðtÞ

X
g;h

CðiÞg C
ðjÞ�
h

� expð�Mn
g�hÞ exp½iðg� hÞ � rn� ð7Þ

with atoms at rn, Debye–Waller factors expð�Mn
g�hÞ and a

depth integrated interference term BijðtÞ of the Bloch waves
i and j:

BijðtÞ ¼ cicj

exp½iðli
� lj�
Þt� � 1

iðli
� lj�
Þ

. (8)
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Because the wave functions are known to be of the form
in Eq. (1), the thickness integration can be carried out
analytically. To the dynamical term has to be added a
kinematical part which represents a plane-wave contribu-
tion to the backscattered intensity due to dechanneled
electrons:

IKIN /
X

n

Z2
n 1�

X
ij

BijðtÞ
X
g

CðiÞg CðjÞ�g

 !
. (9)

In our calculation, the parameter t corresponds to the
thickness of the film along the surface normal, the varying
thickness for different outgoing directions is taken into
account into the definition of the initial eigenvalue problem
(see above). The relative intensity distribution will not very
sensitively depend on this parameter since it produces only
large angular range intensity variations.

Using the method described above, the backscattering
pattern can be calculated point by point, each describing a
well-defined wavevector direction k0. The application of
the Bethe perturbation scheme allows the inclusion of a
large number of reflecting planes so that the large viewing
angles in EBSD can be handled. For comparison with the
experimental patterns, the calculation has to be rescaled
according to the gnomonic projection used in the experi-
ment.

While the model described is conceptually simple, so far
there have not been simulations which can take into
account the large number of lattice planes necessary to
describe the dynamical fine structure in the patterns.

4. Results

4.1. Parameters

For the calculation of the GaN backscattering pattern,
more than 1200 reflections with a minimum lattice spacing
dhkl ¼ 0:5 Å have been taken into account. This set of
lattice planes was generated by an automatic beam setup
routine which can select reflecting planes due to their
scattering strength (structure factor), their lattice spacing
or whether they belong to a specified (higher order) Laue
zone. The lattice constants for GaN in the wurtzite
structure were assumed as c ¼ 5:178 and a ¼ 3:189 Å.
The Debye–Waller factor was taken from Yoshiasa et al.
[30].

4.2. Incident beam diffraction

First, we discuss the influence of the diffraction of the
incoming beam in our experimental geometry. Because the
incoming beam direction is not known exactly, we need an
estimation of the influence of this parameter on the final
intensity variation. This is especially important for samples
containing different kinds of atoms. The final EBSP is the
sum of the backscattered intensity from all atoms in the
unit cell. In this sense, each atom of the unit cell produces
its own ‘‘element-resolved’’ EBSP. If the unit cell contains
atoms which differ in their local crystallographic environ-
ment, the EBSP produced by each element will also differ.
With a change of the diffraction of the incoming beam, the
number of electrons diffracted to each of these atomic sites
can change and thus their relative contribution to the final
EBSP. We will show that in our case the Ga atoms are
usually the most relevant in the end because of their much
larger backscattering cross-section.
An estimation of the upper limit of the relative

magnitude of the diffraction of the incoming beam comes
from the analysis of the intensity variations in the
diffraction features of the experimental backscattering
pattern. By reciprocity, a hypothetical incident beam would
be able to produce only variations of roughly this
magnitude at the backscattering atoms. From a histogram
analysis of the experimental backscattering pattern, we find
that typically for 95% of the incident directions analyzed
the intensity variations are within a factor of 0.5–1.5 from
the average value. This already illustrates that without a
very accurate setting of the incident beam direction it is
very unlikely that large effects due to the diffraction of the
incoming beam will be discernible.
To analyze this also theoretically, we show in Fig. 3 the

calculated element resolved intensity at the Ga and N
atoms due to the diffraction of a plane wave with the
energy of the incident electrons (20 kV). This calculation is
equivalent to a simulation of element resolved ECP. Using
a spherical projection, we show how much intensity is
present at the lattice sites of Ga and N, respectively, after
diffraction of the incoming beam with a direction in the
quadrant plotted. The patterns shown are a fourth of the
full hemisphere above the sample and each point corre-
sponds to a specific incident beam direction with polar
angles up to 801, which mark the border of the circular
area. The surface normal direction f0 0 0 1g is located in the
lower left corner of the figures. The lower panel of Fig. 3
shows the ratio between the intensity diffracted to the N
atoms and the intensity diffracted to the Ga atoms. For
95% of the incident beam directions, the ratio N/Ga of the
relative intensities at the N and Ga atoms is between a
factor of 0.4–2.5. Thus the simulation predicts a higher
influence of the incident beam diffraction than estimated
from the experiment. This is not surprising since we
assumed a perfect parallel beam in the simulation. Never-
theless, the order of magnitude of the predicted effect is
comparable to the experimental estimation.
The much heavier Ga atoms usually have the most

influence on the final diffraction pattern, due to the Z2

dependence of the backscattering cross-section. Ga back-
scatters almost 20 times more than N for equal incident
intensities. So even if we assume that we have a perfect
plane wave incident beam and our incident direction is near
one of the very specific diffraction directions where the
N/Ga incident ratio is exceptionally high (say 4), after
backscattering there will be 20 parts for Ga and 4 parts for
N, which means even in this situation, the N atom
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Fig. 3. Incident beam diffraction: element resolved intensities in

GaNf0 0 0 1g at 20 kV, top: Ga, middle: N. The data shown is drawn

according to a spherical projection with the maximum polar angle of 801.

The surface normal direction f0 0 0 1g corresponds to the lower left corner

of each graph. The lower panel shows the ratio between the integrated

intensities near Ga and N atoms.
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diffraction pattern will still only contribute less than 20%
to the final EBSP. For a beam with a certain angular
divergence which is not incident along one of the special
directions, this value will become much less. We thus have
good reason to assume that the ratio of backscattered
intensity from Ga and N will usually be dominated by Ga
for our experimental conditions if no special measures are
applied to enhance the incident beam diffraction effect. It is
thus not surprising that our experimental EBSP are still
very well described by neglecting the incident beam
diffraction influence in the simulation. That is why in the
following we assume that the incoming beam direction as
well as the probe convergence and incoherence are
sufficient for the observed EBSD pattern not to be
dominated by fine structure effects of the incoming beam
diffraction, e.g. an exceptionally high N/Ga intensity ratio
in certain directions.
Fig. 3 also illustrates how much information is lost due

to the fact that EBSD is not element sensitive, because the
pattern from N is quite different from the Ga pattern. If we
turn our argument around, use of these differences could
possibly be made for polarity determination by selective
excitation and detection along special directions where the
N/Ga ratio is increased due to diffraction effects. This
incoming beam diffraction effect on EBSD patterns is
applied for instance in the method of electron channeling
contrast imaging (ECCI) [2] by choosing a geometry of
incoming and outgoing beam directions which allow the
sensitive observation of lattice defects.

4.3. EBSD from GaN

We calculated the EBSD intensity under the assumption
that the backscattered intensity from Ga and N is near the
ratio of Z2

Ga=Z2
N. The calculated intensity was rescaled

using a gnomonic projection according to the geometrical
conditions in the experiment. Due to the nature of this
projection, there is a pronounced loss of resolution in the
bottom area of the simulation which mimics the behavior
of the experimental pattern which is subject to the same
effect.
On comparison of a measured and the simulated pattern

for GaNf0 0 0 1g (Fig. 4), a very good agreement is evident
between simulation and experiment. First of all, the
Kikuchi line positions are correctly reproduced—a result
which by itself could also be obtained by the much more
simpler kinematic theory. However, in addition to the line
positions, the intensity distribution is also predicted by the
dynamical theory. The dynamical intensities are not always
a simple summation of intensities from different reflections,
instead dynamical scattering leads to interference terms
producing more complicated features, like bright spots or
rings, especially when two or more lines cross. We also
stress that although kinematic theory is able to predict the
angles between Kikuchi lines, at least the two-beam
dynamical theory is necessary to predict the minimum in
intensity of a cross-section of a Kikuchi band. This
minimum is a function of the electron beam energy and
the structure factors and in general does not coincide with
the Bragg angle of the lattice planes under consideration.
In addition, the higher-order systematic row reflections
which show up as parallel lines near to the main Kikuchi
bands, are correctly reproduced. The reduced contrast and
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Fig. 4. EBSD of GaNf0 0 0 1g at 20 kV, top: experimental pattern, bottom:

dynamical simulation. In area b, attention is drawn to the HOLZ ring at

approximately 2
3
of the radius of the area.
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resolution in the experimental pattern as compared to the
simulation are probably due to the neglect of multiple
inelastic scatterings leading to a spread of the energies of
the electrons producing the EBSP and a corresponding
blurring of the diffraction features.

Because of the large number of features in the EBSD
pattern, we draw attention to several selected regions of the
pattern in Fig. 4. For instance, it can be seen that the fine
structure in the zone axis regions (a) and (c) is strikingly
similar in the two patterns. Because of strong dynamical
interactions near a zone-axis, it is very important that our
approach can reproduce the rather complicated intensity
distribution near a zone axis. These intensities also show a
pronounced energy dependence, even to the extent that
they can be used as a fingerprint in identification of
crystallographic phases [20,21].

In region (b) of Fig. 4, attention is drawn to the
appearance of a HOLZ ring, which is located at about 2

3
of

region’s (b) diameter. The increased intensity in this ring is
related to decreased intensity at the position of dark HOLZ
lines (deficient lines) near the zone axis [20]. Since the
structure of these deficient lines is particularly sensitive to
changes in lattice constants, obtaining more information
by zooming in on this zone axis fine structure, by using a
larger screen-to-sample distance for example, will certainly
be a topic for future research.
Michael et al. [31] have analyzed the diameter of HOLZ

rings observed in EBSD patterns. They found that
dynamical effects cannot be disregarded. Our simulation
by definition takes into account these dynamical effects and
shows clear HOLZ rings for a number of zone axes, but
some HOLZ rings in the simulated pattern do not appear
as prominently as in the experiment. This may be due to the
still limited number of lattice planes which have been taken
into account. From the point of view of thin film
crystallography, the diameter of HOLZ rings is related to
the distance between atoms in a zone-axis direction. Single-
scattering (real space) calculations and many-beam dyna-
mical (reciprocal space) simulations have been used to
demonstrate how the real space and the reciprocal space
views of this diffraction process are connected in the closely
related technique of photoelectron diffraction [32].
The observed fine structure is rather sensitive to the

energy of the incoming electrons. In our calculations we
saw noticeable changes in the pattern with a variation of
50 eV. In this way, the best fit between theory and
experiment was found at 19.95 keV, as judged by visual
inspection. Further investigations will focus on the energy
dependence of the fine structure and the conclusions which
can be drawn using this additional degree of freedom in the
experiment.
Because the simulation very nicely reproduces all fine

structure in the pattern, it shows that for further
development of the EBSD method, the approach applied
in this work represents a possible way to go. The quality of
the simulated patterns directly implies their use as a
fingerprint for phase identification. With the advantage of
being able to include the gnomonic projection correctly,
this greatly simplifies the procedure of comparison with
experimental patterns.

5. Conclusion

In this paper, we have presented results of an attempt to
simulate complete backscatter patterns which can be used
for thin film crystallography. Our first results focused on
the reproducibility of experimental patterns from gallium
nitride. We showed that the experimental pattern can be
very nicely reproduced by the application of the dynamical
theory of electron diffraction and the use of the Bethe
perturbational approach to solve the many-beam case, an
approach which to our knowledge has not been previously
taken for the simulation of EBSD. This opens the way for
more quantitative analysis of EBSD patterns, with possible
future applications in the fields of phase identification,
determination of sample polarity, and the analysis of
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HOLZ effects manifesting themselves in ring-structures
and zone-axis fine structure. It will possibly also helpful in
the development of methods for the determination of alloy
compositions and to obtain a more detailed description of
the channeling contrast of dislocations.

Our approach is a rather straightforward and concep-
tually simple implementation of the long-known and well-
developed dynamical theory of electron diffraction for the
case of EBSD with a very large number of reflections in
arbitrary Laue zones. Necessary improvements include e.g.
the handling of inelastic scattering processes and an
improved description of the excitation process. We believe
that quantitative simulations of experimental patterns are a
prerequisite for further progress in the applications of
EBSD. As has been the case in other fields of electron
diffraction, the ability to compare simulated and experi-
mental results should open up new ways for the inter-
pretation of the wealth of information that is contained in
the observed patterns.
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