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Green’s function technique for studying electron flow in two-dimensional mesoscopic samples
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With scanning probe experiments, it became possible to visualize electron flow in a two-dimensional elec-
tron gas. In this paper, a Green’s function technique for efficient simulation of such experiments is presented.
Interpretation of the experiments is further facilitated by a calculation of the current distribution. Furthermore,
an alternative imaging method is put forward for measuring the local chemical potential. As an application,
electron flow through a quantum point contact is studied. All features seen in experiments are reproduced, and

an interference effect is predicted resulting from the crossing of coherent beams of electron flow.
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I. INTRODUCTION

Electronic transport properties in mesoscopic systems
have gained a lot of attention in the last two decades (for a
review see, e.g., Refs. 1 and 2). A lot of effort already went
into the study of global transport quantities (mainly conduc-
tance), and a range of interesting phenomena emerged: e.g.,
quantized conductance in a point contact,? the quantum Hall
effect,* and universal conductance fluctuations® to name a
few.

Recently, scanning probe methodshave offered the possi-
bility of obtaining local information on electron transport,
not accessible with ordinary global measurements, by using a
scanning tunneling microscope tip as a localized scatterer
and measuring the conductance change of the sample as a
function of the tip position. This makes it possible to obtain
a spatial map of electron flow in a two-dimensional electron
gas (2DEG).*® Such visualizations of current flow are inter-
esting both from an experimental and a theoretical point of
view.

The results obtained in these experiments were mainly
interpreted with the help of electron or flux density calcula-
tions. Here, a numerical technique is developed that allows
us to calculate in an efficient way the quantity that is actually
measured, which is a conductance difference as a function of
the tip position. The standard recursive Green’s function
(SRGF) method used in Ref. 9 is not very efficient because
one has to start over the complete calculation for every tip
position. The numerical effort then scales like M*N? in the
number of operations, where M is the width and N is the
length of the system (N> 1), and one therefore is limited to
small systems. On the other hand, our method scales like
M3N for the same problem. Moreover, with our method it is
straightforward to obtain other relevant information like the
local density of states and the electron and current density
distributions which can then be compared with the experi-
mental observables. These quantities are unavailable with the
standard technique.

The imaging technique with the tip as a scatterer will not
always give the expected results in the regime of high mag-
netic fields. To obtain more information about electron flow
in this regime, a measuring method is proposed where the
STM tip is used as a local voltage probe.
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The paper is subdivided as follows: In Sec. II, the imaging
method used in Refs. 6 and 7 is briefly reviewed and the
voltage probe method is described. In Sec. III, we discuss
how the considered systems can be described within a tight-
binding model. Our numerical method is then applied to
study electron flow through a quantum point contact in Sec.
IV, while technical details of the method are discussed in
Sec. V and in the appendixes.

II. IMAGING METHODS
A. Tip as a local scatterer

The experiments in Refs. 6 and 7 take place as follows:
Current is passed via two contacts through a 2DEG, while
simultaneously a scanning probe tip is moved across the
sample. The local electrostatic potential that results from a
negative voltage on the tip can function as a scattering center
for electrons in the device. If the tip is placed over a region
where a lot of electrons are flowing, the conductance of the
sample will decrease considerably because of enhanced
backscattering due to the tip, whereas in an area of low elec-
tron flow, the conductance decrease will be small. As such,
by mapping the conductance decrease of the sample to the
tip position, one gets a spatial profile of electron flow.

The relevant quantity for this imaging method is the
position-dependent conductance difference

Ag(x’y)=g0_gr('x7y)7 (1)

where g,(x,y) is the conductance with the tip positioned on a
point (x,y) and g is the conductance without the tip. Con-
ductances can be calculated within the Landauer-Biittiker
formalism

g=—T, (2)

where T is the transmission coefficient between the contacts.
Since g is a two-terminal conductance, it is symmetric with
respect to reversal of the direction of an applied magnetic
field: g(+B)=g(-B),!? and therefore the map of electron flow
obtained with this scattering method has the same symmetry.
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B. Tip as a voltage probe

The imaging method in the previous section can give nice
visualizations of the electron flow, as proven by the experi-
mental results of electron transport through a quantum point
contact.” One of the interesting subjects to study with this
imaging method would be the quantum Hall effect, because,
even after intensive theoretical and experimental effort, since
its discovery* some of the details of electron transport in this
regime remain unclear. Unfortunately, the appearance of
edge states in the high-field regime leads to the suppression
of backscattering,“ so that the method described above will
not yield the expected results in the quantum Hall limit.

However, a picture of this edge-state transport can be ob-
tained by investigating the local chemical potential in the
sample. This can be done using the STM tip as a voltage
probe; the STM tip voltage equilibrates itself to the local
chemical potential when electrons are allowed to tunnel into
and out of the tip. Experimentally, this technique has already
been used to probe the potential distribution at metal-
insulator-metal interfaces'? and at grain boundaries.'?

In this case one has three contacts: the left and right con-
tact through which a current is passed and the STM tip that
measures a voltage. For this three-lead structure, one obtains
for the voltage on the tip'

Vtip_ VL=—THL(VR— Vi), (3)
Ttip,L Ttip,R
with V), the voltage on lead p.

This imaging mode corresponds to making a three-
terminal measurement, which means that the obtained spatial
map will not be invariant under magnetic field reversal. The
only symmetry relations that hold are T, (+B)=T,,(-B),'
so the information obtained when the tip is used as a voltage
probe is different from that when the tip is used as a local
scatterer, and both imaging methods will contribute differ-
ently to our understanding of electron flow in two-
dimensional (2D) systems.

C. Charge and current density

One can (at least in principal) experimentally observe the
total current density in the sample by measuring the mag-
netic field it induces. Another physically observable quantity
is the total charge density, due to the electrostatic field it
generates. Both of these quantities can also be calculated
within the numerical framework presented in Sec. V and
Appendices A and B.

Since we have access to the electron density, it would also
be possible to include self-consistently the effect of the ap-
plied voltage and the resultant current flow on the transport
properties. However, this will not be pursued further in this

paper.

III. SYSTEM MODELING

The system we will consider is a two-dimensional device
connected to semiinfinite leads extending in the x direction.
By discretizing the Schrodinger equation, one obtains the
standard tight-binding model
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where (m,n) label the sites on the lattice, and ¢, are the
on-site energies. Sites are not meant to represent atoms as in
the usual tight-binding model; rather they may represent a
region containing many atoms, but this region should be
small with respect to physically relevant quantities such as
the Fermi wavelength. The quantities 7, , (£, ,) give the hop-
ping amplitude in the horizontal (vertical) direction. Since a
square lattice is assumed, one has (in absence of magnetic
fields)
h2
t/:n,n = tzun =—1=- 27’)’1*612 s (5)

with a the lattice spacing, and m" the effective mass of the
electron.

The leads extend from n=—,---,0 for the left lead, and
n=N+1,---,% for the right one. The device itself is com-
prised by the other M X N sites. In the leads, only homoge-
neous fields perpendicular to the 2D device will be consid-
ered, while both homogeneous and inhomogeneous fields
can be treated in the central device. The fields are described
by Peierls substitution'4

t)’;q(z) —_ te—ie/th-dl, (6)

where [A-dl is the integral of the vector potential along the
hopping path.

IV. APPLICATIONS

In the preceding section, we have discussed quite a lot of
quantities giving information about the flow of electrons in a
2DEG. Before giving explicit technical details about our nu-
merical method, we will first show calculation results for two
physical systems.

A. Single quantum point contact

The first system that we consider is the one that is used in
the experiment of Topinka et al.” It consists of a 2DEG with
a quantum point contact in the middle. The point contact is
modeled by a potential of the form

w exp‘le §2y2 . (7)

We have taken a lattice of 1001 by 351 sites, with a lattice
parameter of a=6.2 nm, which corresponds to a hopping pa-
rameter r=14.5 meV (the effective mass of the electron is
taken to be that for electrons in GaAs: m*=0.068m). The
parameters of the potential are chosen as W=0.56¢ and &
=10a. The Fermi energy is put equal to Ep=1.1#=16 meV
(corresponding to a wavelength \ z=6a), which is on the first
conductance plateau of the point contact. For the calculations
where the tip is used as a local scatterer, the strength of the
delta function scattering potential used to model the tip is
chosen to be v=8t. Disorder in the system is modeled by a
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FIG. 1. (Color) Maps of electron flow through a quantum point
contact. Lengths on the axes are given in units of the lattice param-
eter a. Current density distribution (a) in units of 2¢*V/(ha), STM
conductance map (b) (conductance is measured in units of 2e2/h),
and STM volt probe map (c). The voltage on the left lead V; =0 and
voltage is measured in units of V. The Fermi energy contour is

depicted as a dotted white line. There is a clear correspondence
between the different images.

plane of impurities above the 2DEG, where the repulsive
potential from a single impurity is taken to vary with dis-
tance r as 1/7°, which is characteristic for the screened po-
tential in a 2DEG from a point charge.'> The concentration
of impurities is fixed at 1% of the total number of lattice
sites. The impurity lattice is located at a distance 6a above
the 2DEG. Within the Born approximation, the mean free
path of the potential we use is estimated to have a value of
4% 10%a which is much longer than the system size so that
we are in the ballistic regime. The mobility corresponding to
these parameters is of the order u=~2 X 10° cm?/V s.

In Fig. 1(a), the calculated current density is seen to ex-
hibit a branching behavior that was also apparent in the ex-
periment in Ref. 7. The branched flow is also present in the
map of the conductance difference versus the tip position,
when the tip is used as a local scatterer [Fig. 1(b)]. It is clear
that there is a direct correspondence between the current den-
sity calculation and the conductance map. Therefore one can
conclude that the experiment in Refs. 6 and 7 really probes
the current distribution in the sample. Also visible in the
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conductance difference map are the interference fringes
spaced by half the Fermi wavelength [see the inset in Fig.
1(b)], which were explained as resulting from scattering be-
tween the point contact and the STM tip.> The magnitude of
the conductance decrease in our calculations is smaller than
in the experiment, because we model the tip as a delta func-
tion while it has a finite width in the experiment, thus scat-
tering electrons more effectively. The map of the local
chemical potential, as measured by the STM voltage probe
[Fig. 1(c)] in this case gives similar information as the pre-
vious plots: On the left the current flow appears as regions
with increased voltage compared to that of the left lead (V is
put equal to zero). This corresponds to a decreased chemical
potential due to a deficit of electrons resulting from the non-
equilibrium transport process. On the right, the current flow
appears as regions with a decreased voltage compared to the
right lead. This corresponds to an increased chemical poten-
tial (excess electrons due to the transport process).

Small oscillations of the chemical potential with a wave-
length on the order of N/2 are apparent in Fig. 1(c). They
result from interference between paths which emerge from
the leads and directly enter the probe, and paths which first
pass the probe, are reflected from the quantum point contact
(QPC) and only then enter the probe. This effect was already
described in Ref. 16: The voltage measurement we make is
phase sensitive.

In Fig. 2, the quantities are calculated for the same system
as before, but now a magnetic field is included. The field is
characterized by a magnetic length of /[z=28a and a cyclo-
tron radius r,=835a. From the nonequilibrium transport cur-
rent density plot [which is symmetric in the magnetic field
by its definition in Egs. (22a) and (22b)], it is clear that the
branches of electron flow start bending. The radius of curva-
ture has the same order of magnitude as the cyclotron radius,
so we are seeing here the onset of the skipping orbit move-
ment of the electrons. The branches are reflected on the up-
per and lower edges of the sample, proof that one is still in
the ballistic regime.

The conductance difference map [Fig. 2(b)] is quite un-
clear. This can be explained as resulting from the reduction
of backscattering in the presence of a magnetic field.!! But
nevertheless, the tendency of the branches to curve can be
observed.

In this regime, the voltage probe method gives better re-
sults. The curved branches are clearly visible in Fig. 2(c).
Please keep in mind that the voltage method is not symmet-
ric under reversal of the field, which results in the asymmetry
of the voltage map. This asymmetry will be explained in
more detail with the help of Fig. 3(c).

In Fig. 3, results are shown for a high magnetic field
(magnetic length Iz=4.8a, cyclotron radius r-=24a). In a
plot of the transport current density the electrons are seen to
describe skipping orbits along the edges of the sample; we
are in the quantum Hall regime. In this regime the original
tip scattering method fails because of a lack of
backscattering.!! This is visible in Fig. 3(b) only in the
middle of the quantum point contact there is some conduc-
tance decrease because in this region waves traveling in op-
posite directions are “forced” to overlap. The map of the
local chemical potential [Fig. 3(c)] gives better results: the
skipping orbits are clearly visible.
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FIG. 2. (Color) Maps of electron flow through a quantum point
contact with a moderate magnetic field. Transport current density
distribution (a), STM conductance map (b) and STM volt probe
map (c). Units on the color scales are the same as in Fig. 1.

The asymmetry of this plot was already pointed out
above, and can be understood as follows: the voltage on the
right lead is chosen to be higher than that on the left lead, so
electrons are flowing from the left to the right. The magnetic
field for this plot is pointing out of the plane of the paper, so
electrons emerging from the left lead flow along the upper
left edge of the sample, and this edge is in equilibrium with
the left lead (no skipping orbits are seen on this edge, only a
uniform potential distribution). Some of these electrons are
transmitted through the point contact, which results in a
higher chemical potential (so there is lower voltage) than ug
at the upper right edge of the sample. The electrons reflected
from the contact, continuing their path on the lower left
edge, give rise to a chemical potential that is lower (=voltage
that is higher) than u, (V,) on that edge.

B. Two quantum point contacts

Looking back at Figs. 1 and 2, another interesting inter-
ference effect is taking place which has not been observed in
the experiment. When the branches of electron flow hit the
upper and lower border of the sample (in the regions from 0
to 200a and from 800a to 1000a on both figures), there are
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FIG. 3. (Color) Maps of electron flow through a quantum point
contact with a high magnetic field. Transport current density distri-
bution (a), STM conductance map (b), and STM volt probe map (c).
Units on the color scales are the same as in Fig. 1.

clear interference fringes visible, perpendicular to the border.
The wavelength of these fringes is larger than that of the
fringes observed in the scatterer experiment (which resulted
from back-and-forth scattering between the tip and the QPC).
This interference pattern can be explained as a crossing of
two or more coherent electron beams (branches). In Fig. 4, a
simulation is shown where the current density due to two
crossing Gaussian beams with wave vectors k; and k, is
calculated. A clear interference pattern is visible, extending

(a) (b)

FIG. 4. (Color) Interference between two crossing Gaussian
beams. The wavelength of the interference pattern depends on the
angle between the beams. Fringes are more closely spaced for an
angle of 7/2 (a) than for an angle /4 (b).
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(a)
2

FIG. 5. (Color) Fourier transforms of the flow maps without a
magnetic field: local scatterer method (a), voltage probe method (b),
and current density distribution (c). Wave vectors are in units of
1/a, the color scale has arbitrary units.

in the direction k;—k,. From comparison between Figs. 4(a)
and 4(b), it is clear that the wavelength of the fringes de-
pends on the angle between the two beams. It can be shown
that this wavelength is given by

Ap

A=5 sin(6/2)” ®

with |kq| =|k;[|=27/Nr, and 6@ the angle between the
beams.

The different periodicities in the different flow maps can
be made more visible by doing a Fourier transformation. In
Fig. 5, this is done for columns 1 to 400 of the flow maps in
Fig. 1 without a magnetic field. In both maps where an STM
is used, a circle with radius ~2m/3a centered on (k,.k,)
=(0,0) can be seen. This circle corresponds to the interfer-
ence pattern resulting from a superposition of paths between
the STM tip and the quantum point contact, which creates
the fringes spaced at half the Fermi wavelength. In the cur-
rent density distribution [Fig. 5(c)], this circle is, of course,
absent.

Another feature in Fig. 5 is the presence of two smaller
circles centered on the X axis. They result from the interfer-
ence effect between crossing beams explained above. Using
Eq. (8) together with the fact that the intereference pattern is
directed along k;—k,, these circles can indeed be reproduced
by having interference between a main beam directed along
the X axis and others crossing it. While this effect has noth-
ing to do with scattering off the STM tip, these circles are
visible in Fourier transforms of all flow maps, including that
of the current density distribution.

If one looks at the plot of the transport current with a
magnetic field (Fig. 2), one can see that some branches bend
upwards, while other bend downwards under the influence of
the magnetic field. This can be interpreted as follows. In the
device, the chemical potential will be somewhere between
that of the left and the right lead. If one assumes that the
chemical potential on the left lead is larger than that on the
right, we have an excess of electrons flowing from left to
right. On the other hand, we have a deficit of electrons
(“holes”) flowing the other way. These electrons and holes
bend in opposite ways under the influence of a magnetic
field, because they fill different scattering states. It is clear
then that electrons and holes, and thus branches curving up-
wards and downwards, are emerging from different reser-
voirs and are thus phase incoherent. Now, at crossings be-
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FIG. 6. (Color) Maps of electron flow through a double quantum
point contact with a moderate magnetic field. Transport current den-
sity distribution (a), STM conductance map (b), and STM volt
probe map (c). Units on the color scales are the same as in Fig. 1.
The voltage map is symmetrized with respect to the direction of the
magnetic field. In the conductance map, interference fringes with
wavelength N\ /2 resulting from scattering between the STM tip and
the QPC are smoothed out.

tween two incoherent beams, an interference pattern, such as
that in Fig. 4, will not occur. As a result, one does not expect
to see interference between beams with different chirality.

In order to test this statement, we considered a system of
two QPCs placed above each other. The potential of both
QPCs has the same form as in Eq. (7), and all parameters are
chosen as in Fig. 2. Results are shown in Fig. 6. Under the
influence of the magnetic field, the branches are curved. One
can see the interference between beams with the same chiral-
ity, but there is no interference at the crossing of two beams
with opposite chirality, as we expected. This distinction be-
comes clear when comparing the crossings encircled in Fig.
6. To make things more clear, we have smoothed out the
interference fringes in Fig. 6(b) resulting from scattering be-
tween the tip and QPC which had a wavelength of A\;/2. In
Fig. 6(c), we symmetrized the voltage probe plot with re-
spect to the direction of the magnetic field. Also in this plot,
the behavior for coherent beams crossing is different from
that for incoherent branches. This proves that the effect could
be studied experimentally.
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FIG. 7. Green’s functions necessary to calculate the relevant
quantities of our system. The first and last columns of the lattice are
colored gray to indicate that they are influenced by the self-energies
%, and 2 of the leads.

V. NUMERICAL METHOD
A. Introduction

The basic quantities that need to be calculated in order to
describe the scanning probe experiments are transmission co-
efficients from one lead to another. In Sec. V, it will be
shown that these transmission coefficients, and in fact all
quantities we wish to calculate (density of states, current
density distribution,...) can be expressed in terms of the

Green’s function matrices G, Go . Gy, andO Gy, (for all

possible values of n). These M X M matrices G,;, are defined
as
(m|G?Z,|m'>=<m,lG0|m’,l'>, 9)
where
0 1
G (10)

is the Green’s function of the device without the influence of
the tip. In this expression, H? is the Hamiltonian of the cen-
tral device disconnected from the leads, while 2; and 2 are
self-energies of the left and right lead, respectively. The
Green’s functions G?l, are thus submatrices of G° connecting
points from column [’ to those of column [ of the lattice (see
Fig. 7).

The method used to calculate these Green’s functions will
be presented in Appendix A, the main result being that they
can be obtained with a number of operations that scales as
M3N. For calculation of the self-energies of the leads, we
have chosen a method originally developed for the calcula-
tion of surface electronic structure, described in full detail in
Refs. 17 and 18.

B. Local scatterer method

The scattering potential created by the STM tip is mod-
eled by a delta function on a site (m,n), so it adds a repulsive
contribution VWP=v|m,n)(m,n| to the Hamiltonian (4). As
explained in Sec. IT A, one has to calculate a conductance
difference
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2
Ag(m,n) = 2%[70 - T(m,n)], (11)

for every tip position (m,n). The transmittance T(m,n) can
be calculated by'

T(m,n) = TGy TGy, (12)

with [z, related to the retarded self-energies 2, of the
left (right) lead as

FL(R) = i(EL(R) - EZ(R)) > (13)

and Gy, is the Green’s function between columns 1 and N.
The matrix Gy, includes the effect of the STM tip, and is
therefore different from Gy, mentioned in the Introduction.

In Ref. 9, one uses the SRGF method for calculating Gy;.
First, the system is divided into its separate columns (by
making the hopping matrices between them zero), and the
repulsive potential VU is added on a certain site. Subse-
quently the columns are attached one by one making use of
Dyson’s equation. This attachment procedure has to be
started over and over again for every single position of the
tip, and the method is therefore quite inefficient (scaling as
M*N? in the number of operations).

However, supposed that we have access to the Green’s
functions G°,, Gy,,, and G, (see Appendix A), we can in-

nl>

clude the effect of the tip with Dyson’s equation:
G=G"+G"VG, (14)

where V is the potential introduced by the tip, V=V'P. Pro-
jecting (14) between columns 1 and N, one obtains [it is
assumed that the tip is located at lattice site (m,n)]

Gy =Gy + G, V(1 = G° ViP)1GY,. (15)

nn nn ' nn

Since V‘i? has only one nonzero element, the inversion
(1-G° ViP)=1 will boil down to the inversion of a scalar.
This means that no extra matrix inversions are needed to find
Gy, for an arbitrary lattice position of the tip, once we have

the functions GY,, G°, and G, for all n. In Appendix A, we

nn
will show a way of calculating these functions with a com-
putational effort scaling like M>N. In this way, we gain a
factor MN over the SRGF method.

At first sight, it might seem that this efficiency is de-
creased for the complete calculation because one has to
evaluate the trace in Eq. (12) for every tip position, which
involves products of M X M matrices, so that the total effort
for all tip positions would scale as M*N. However, we have
a better way of evaluating this trace, scaling as M>N, so that
we do not loose our efficiency. Technical details are de-
scribed in Appendix B.

C. Voltage probe method

The STM tip will now be modeled by a one-dimensional
(ID) lead, attached to the central device at position (m,n).
The voltage on the tip can be written as a function of the
transmission coefficients Ty, ; and Ty, between the STM
tip and the left and right leads [Eq. (3)]. These transmit-
tances, with the tip positioned over site (m,n), can be ex-
pressed as
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FIG. 8. Green’s function method. After the hopping matrices between columns are set to zero to separate the device in vertical slices, and
their Green’s functions G};‘f’o1 are calculated (a), the slices are added one by one to obtain G%‘ (b). Then, the isolated slices are added to each

other again but now starting from the right (c). Finally, by combining sections pairwise, one can obtain the GR,

and G°

0
Gllil’ nl

(d). In the

n’

figure, the first and last column of the device are colored gray to denote the influence of the self-energies of the leads.

Tipr= T 4,Gul LGl 1, (16a)

tip
Tipr =TT 4,GwT kGl

where I'y,=i(2p— Enp) Since the lead modeling the tip is
one-dimensional, the self-energy 3., is known analytically!

Etip: =1

The SRGF technique cannot be used to obtain the Green’s
functions G,; and G,y in expression (16). But we can use
Dyson’s equation (14) to relate them to Green’s functions of
the device without the tip (calculated in Appendix A)

(16b)

tip
ei[arccos(l—E/2t)] ) (]7)

Gy=01- GS,,VL‘E IG,,l, (18a)
=(1-G,, Vi 'Gy, (18b)

where the tip influence leads to an imaginary potential V'P
=3 | mn)(mn|.

Again, the inversion (1-G° V'P)~! will reduce to the in-
version of a scalar, because V' has only one nonzero ele-
ment. In this case, the calculation of the traces in Egs. (16a)
and (16b) is also not computationally expensive since I'y,
has only one nonzero element. Therefore the total computa-
tional effort scales like M>N, needed for the calculation of
the Green’s functions without the influence of the tip (see
Appendix A).

D. LDOS—electron density

It can be useful to calculate the local density of states
(LDOS) and the electron density distribution in the sample
(without the STM tip over the sample) for comparing them
with the two imaging methods. For the LDOS, the standard
expression is!

1
p(E,m,n) =— — Im<m|G,m(E)|m). (19)
The electron density in the sample can then be found by
integrating over energy.

E. Current density distribution

When a magnetic field is present, persistent currents are
flowing through the device, even in the absence of an applied
bias. In a recent paper by Cresti et al.,'” an expression for
this equilibrium current is derived from the Keldysh formal-
ism. Adapted to our notation, the expression for the particle
current at temperature 7=0 flowing from one node to a
neighboring node reads (remember that m labels the rows of
the lattice, n the columns)

2e (Er dE
Lo 1) () = = f —2Re(m|[G), 3" = 3G m),
hl)y 2m
(20a)
2e (Er dE
I?%,n)*(ﬂHl,n) = XJ 2_2 Re(m + 1|[tm n nn nn)]|m>
0
(20b)

Here, Ej is the Fermi energy of the device, and e is the
negative electronic charge. We have also introduced

Elett_ e IGOLln lV s (21)

where V,,,_; describes the hopping between columns n—1
and n. The Green’s functions GOL are defined in Fig. 8(d) of
Appendix A.

It is clear, by taking the trace over the row indices m, that
the total current flowing through every single column is
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equal to zero, so as expected in equilibrium there will be no
net current through the leads. Also, when no magnetic field is
present, all Green’s functions in Egs. (20a) and (20b) are
symmetric so that the equilibrium current density in this case
vanishes like it should.

In the nonequilibrium situation, the applied bias leads to
an additional transport current. Since persistent currents are
antisymmetric with respect to the direction of the field, we
can define a pure transport current as the symmetric part of
the total current density distribution. This transport current is
gauge invariant, and corresponds to a physically relevant
(and measurable) quantity. In the linear response regime, it is
given by (see also Ref. 19)

2
Lnp=1)—(mm) = _;Tehv{A(E)LB +A(E)|_g}.
with
A(E) =2 Im{m|[G,,, "G (2" Tm), (22a)
2
iyt = r ACE o+ B},
with
C(E) =2 Im{m + 1|[£, ,G° TG |m),  (22b)

mmn=—nn-n nn

where V=V;—-V, is the potential difference between the
leads, and

Eizeﬂ = n,n—ng’—Ll n—1 Vn—l,n’ (238')
Esght = Vn,n+ngzﬁ ,n+1Vﬂ+1Jl’ (23b)
[ight  j[ s right _ (rightyi] (23¢)

The Green’s functions Gg;lL(R) in these expressions are de-
fined in Fig. 8(d) of Appendix A.

VI. CONCLUSION

We have established an efficient tight-binding method to
numerically calculate spatial maps of electron flow as ob-
tained in a recent series of scanning probe experiments
where an STM tip is used as a local scatterer for electrons.
The computational effort of our numerical approach scales
like M3N (in the limit N> 1), where M is the width of the
lattice and N is the length. It is in this way more efficient
than the standard recursive Green’s function (SRGF) method
which scales like M*N? for the same problem.

We have also shown expressions for the local density of
states, the electron density, and the current density distribu-
tion. These quantities cannot be calculated within the SRGF
approach, but within our scheme they can be expressed in
terms of the same Green’s functions already known from the
numerical simulation of the scanning probe experiment.

When a magnetic field is applied, backscattering of elec-
trons will be strongly reduced because of the presence of
edge states so that the original STM method does not give
the desired results. Therefore, a probe method was proposed
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where the tip is used to measure the local chemical potential.
The image one obtains from such a method is not always
directly related to the current pattern in the sample, but one
can expect to obtain relevant information about transport in
the sample.

The power of the method was proven in example calcu-
lations, where a tight-binding lattice with more than 350 000
sites has been used. Moreover, by direct comparison between
a numerical simulation of the experiment and a calculation of
the exact current density distribution, it became clear that the
original scanning probe technique of Topinka et al.® is really
imaging current flow. Furthermore, an interference phenom-
enon has been predicted which results from the crossing of
phase coherent branches, and a new setup with two QPCs
has been discussed to distinguish between crossings of co-
herent branches and incoherent ones. This distinction is vis-
ible both when the tip is used as a scatterer and when it is
used as a voltage probe, so that an experimental investigation
of the effect should be possible.

It should be clear that the method proposed is very gen-
eral, and the information obtained by the different imaging
tools very broad so that it can be used to study electron flow
in a variety of systems ranging from, e.g., the quantum Hall
effect* to quantum chaos in electron billiards.”> Moreover,
including the spin degrees of freedom proves to be rather
easy; every matrix element should be replaced by a spinor.
As such, an even broader range of phenomena could be stud-
ied, ultimately also those including spin-orbit coupling (e.g.,
the spin Hall effect®!??).

APPENDIX A: CALCULATION OF GREEN’S FUNCTIONS
RELEVANT TO OUR PROBLEM

In the paper, it became clear that indeed all quantities we
need can be expressed in terms of a small subset of Green’s
functions G°|, G° ., G°,, and GY,, (see Fig. 7). In this appen-
dix, we will treat in detail how to obtain these functions with
a numerical effort that scales like M>N.

The first step is to divide the central device into its sepa-
rate columns and to put the hopping matrices between them
equal to zero so that the columns become isolated, as de-
picted in Fig. 8(a). Next, one calculates the Green’s function
G}?"l for every isolated column i=1,2,--+,N. This first step
thus needs a total of N inversions.

The next step is to attach the isolated columns one by one
to each other by including the hopping matrices between
them using Dyson’s equation (see, e.g., Ref. 2). As such, one
calculates the Green’s functions G';- and G [see Fig. 8(b)].
Please note that since not all columns are attached to each
other in Gg’lL and ngL (only those to the left of column n),
these Green’s functions are not equal to the Green’s func-
tions GV, and G" we are trying to obtain. The superscript L
is added to make this distinction clear. Attachment of a single
isolated column costs one matrix inversion, so a total of
N-1 inversions are necessary for the second step.

For the third step, we start over from the isolated Green’s
functions already calculated in step 1, and glue them together
by using Dyson’s equation, but now beginning from the right
[see Fig. 8(c)]. The Green’s functions we calculate with ev-
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ery step are Gy, GOF and GX. Again, a single matrix in-

version is needed for the attachment of a single column, so a
total of N—1 inversions for the completion of the third step.
The final step is to get the GY,, Gy, G, and G°, we are
looking for by attaching the previously calculated Green’s
functions in pairs, as illustrated in Fig. 8(d). One takes a
section to the left with Green’s functions G and G%, and
attaches it to a section to the right with Green’s functions
Gz%fl .1 and Gg;ﬁ’n +1- A single inversion is necessary for each
pairwise addition.
In total we need N+3(N—1) inversions for calculating
Gy, GOy, G° . and G°| for all n. Computational effort for

inversion of a single matrix scales like M3, so our method
scales indeed like M>N for large N.

APPENDIX B: EVALUATION OF THE TRACE

For the scatterer method, it is necessary to calculate the
conductance difference in Eq. (11). For this, it seems that we
have to evaluate the trace in Eq. (12) for all MN tip posi-
tions. This trace contains products of M X M matrices, so the
numerical effort for this step would scale like M*N. As such
one would loose a factor of M in efficiency compared to the
rest of the calculation. However, there is a better way to
evaluate the conductance difference in Eq. (11).

We write [see Eq. (15)]

Gy =G +A, (B1)

with the M X M matrix,
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A=GY,VE(1 -G VIHIGY,. (B2)

nn- nn

It is important now to make it clear that since V)" has only
one nonzero element, namely on position (m,m), one can
write A as a product of a column matrix and a row matrix,

A= [Gj(i/n]mth columnT[GSI]mth row > (B3)

with the scalar 7 given by (v is the magnitude of the repul-
sive tip potential)

v

= 1—v(m|G° |m) (B4)

By substituting Eq. (B1) into Eq. (12), one obtains
T(m,n) = T° + 2 Re Tr{T AT (G%,) ]+ Tr{ T zAT;,AT].

In order to evaluate the conductance difference Ag(m,n), we
need to evaluate only the last two terms. The last term only
involves products of an M X M matrix with row or column
matrices because of the special form of A. The computational
effort for this term scales thus as M2, which corresponds
to a total effort of M>N for all tip locations. Now, since the
product I';(GY,)" is independent of the tip position, it has to
be calculated only once (with an effort M3). When this ma-
trix is known, the trace in the second term also contains only
products of an M X M matrix with a row or column matrix,
so the total effort for this term also scales like M>N in the
limit of large N.

*Electronic address: georgo@mpi-halle.de

Electronic address: bruno@mpi-halle.de

fURL: http://www.mpi-halle.de

I'S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge
University Press, England, 1995).

’D. K. Ferry and S. M. Goodnick, Transport in Nanostructures
(Cambridge University Press, England, 1997).

3B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Will-
iamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon,
Phys. Rev. Lett. 60, 848 (1988); D. A. Wharam, T. J. Thornton,
R. Newbury, M. Pepper, H. Ahmed, J. E. FE. Frost, D. G. Hasko,
D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C 21,
L.209 (1988).

4K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45,
494 (1980).

SP. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039
(1987).

®M. A. Topinka, B. J. LeRoy, S. E. J. Shaw, E. J. Heller, R. M.
Westervelt, K. D. Maranowski, and A. C. Gossard, Science 289,
2323 (2000).

7M. A. Topinka, B. J. LeRoy, R. M. Westervelt, S. E. J. Shaw, R.
Fleischmann, E. J. Heller, K. D. Maranowski, and A. C. Gos-
sard, Nature (London) 410, 183 (2001).

8B. J. LeRoy, J. Phys.: Condens. Matter 15, R1835 (2003).

9G.-P. He, S.-L. Zhu, and Z. D. Wang, Phys. Rev. B 65, 205321
(2002).

10M. Biittiker, Phys. Rev. Lett. 57, 1761 (1986).

I'M. Biittiker, Phys. Rev. B 38, 9375 (1988).

2P, Muralt and D. W. Pohl, Appl. Phys. Lett. 48, 514 (1986).

3], R. Kirtley, S. Washburn, and M. J. Brady, Phys. Rev. Lett. 60,
1546 (1988).

4R, E. Peierls, Z. Phys. 80, 763 (1933).

13]. H. Davies, The Physics of Low-Dimensional Semiconductors:
An Introduction (Cambridge University Press, Cambridge,
1998).

16M. Biittiker, Phys. Rev. B 40, R3409 (1989).

7M. P. Lopéz Sancho, J. M. Lopéz Sancho, and J. Rubio, J. Phys.
F: Met. Phys. 15, 851 (1985).

181, Turek, V. Drchal, J. Kudrnovsky, M. Sob, and P. Weinberger,
Electronic Structure of Disordered Alloys, Surfaces and Inter-
faces (Kluwer, Boston, 1997).

19A. Cresti, R. Farchioni, G. Grosso, and G. P. Parravicini, Phys.
Rev. B 68, 075306 (2003).

20C, M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopkins,
and A. C. Gossard, Phys. Rev. Lett. 69, 506 (1992).

21J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).

22]. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A.
H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004).

235304-9



