PHYSICAL REVIEW B 71, 205109(2005
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We propose a simplified version of self-interaction corrected local spin-de(®iGrLSD) approximation,
based on multiple scattering theory, which implements self-interaction correction locally, within the KKR
method. The multiple scattering aspect of this new SIC-LSD method allows for the description of crystal
potentials which vary from site to site in a random fashion and the calculation of physical quantities averaged
over ensembles of such potentials using the coherent potential approximation. This facilitates applications of
the SIC to alloys and pseudoalloys which could describe disordered local moment systems, as well as inter-
mediate valences. As a demonstration of the method, we study the well-kmowphase transition in Ce,
where we also explain how SIC operates in terms of multiple scattering theory.
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I. INTRODUCTION nance, corresponding to the localized electron. A broader

The self-interaction corrected local spin densiIC- resor?ance would fimplyl_redufced Iolg:alizr?tion. |
LSD) approximatiof? has proved to be a useful scheme to. The Sr:C'LS[r)] ormals[)n r?rl SO Il'dsd asdbgeln d?.ve(?p?d
describe static correlations in strongly correlated electrodt0 @ scheme that treats both localized and delocalized elec-

systems. In particular, it can determine whether an electron igﬁnsldog equalldfootigg. 'Il'he l(_jecgsiond V}/het?erdan glect(rjon
delocalized or localized, i.e., whether its orbital is part of theS'OU!d D€ considered as localized or aelocalized IS based on

valence states or not. This leads to a determination of th@ delicate balance between the energy gain due to the inclu-

number of valence states and a nominal valence, as demonio Of the self-interaction correctiofiocalization) energy

strated by numerous calculations on rare earths, actinideﬁnd the energy loss in band or hybridization enéryyhile

transition metal oxides, including the parent compounds o is methodology has been successful in differentiating local-
the highT, materials and the CMR materiats’

ized from delocalized electrons, i.e., a dual character of the

. - electron, it does not describe the interesting crossover be-
__The fulll SIC-LSD scheme is unfortunately difficult 10 0o |ocalized and delocalized states whicr?occurs, for ex-
|mpleme_nt.0 This is due to the repeated transformauonsamme, in heavy fermion systems. Our aim here is to develop
from reciprocal spacék space to real space to evaluate the 5 theory which describes local fluctuations of the electronic
self-interaction potential and the back transformationk to configurations between that where an electron can be said to
space to solve the band structure problem. So far most agye |ocalized and another where an electron is delocalized. It
plications of the full SIC-LSD formalism have been imple- will be shown that the present local formulation of SIC-LSD
mented in the LMTO-ASA(inearized muffin-tin orbitals in  readily lends itself to be the basic idea of such a develop-
the atomic sphere approximatioband structure methdd.  ment. The origin of our approach goes back to the invention
In this paper a simpler but more versatile scheme is develand use of the coherent potential approximation to describe
oped and implemented within multiple scattering theory, inthe charge and spin fluctuations about the Hartree-Fock so-
the Korringa, Kohn, RostockdKKR) formulation. Its main  lution of the Hubbard model by Hubbard himsé@{ubbard
advantage, thanks to a straightforward determination of théll approximation.’~1° The present implementation of this
Green'’s function, is a possible generalization to alloys viaidea rests on its generalization to account for the correspond-
the coherent potential approximatigg€PA).*>16 Since a  ing fluctuations about the local density approximatibBA )
single-site approximation underpins this new formulation, into the first-principles density functional thedf®FT).2%-22In
what follows it is referred to as a local self-interaction cor-the literature this generalization, when applied to spin fluc-
rection(LSIC) formalism. It is based on the experience with tuations, is referred to as the KKR-CPA implementation of
the full SIC-LSD implementation showing that to better thanthe disordered local momefLM) picture?3-?* Indeed, the
98% the electron is localized on the site under consideratiorpresent work can be considered as the further elaboration of
which justifies the single-site approximation. While in the this basic idea in which the LSIC replaces the LDA as the
full LMTO-ASA implementation, the representation of the local description of the electronic structure and the attention
localized orbitals over a real-space cluster determines this being focused on the valance fluctuations. Interestingly, it
extent of these orbitals, in the present scheme the degree i3f now well established that Hubbard’s so-called “alloy anal-
localization is determined by the energy dependence of thegy” approximation, which prompted the use of the CPA,
single-site phase shift, in particular the width of its reso-leaves out of consideration some very important fluctuations.
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The most significant of these are those which give rise to &ound state at positive energies, i.e., above the zero of the
Kondo-like resonance at the Fermi energy in the case of thpotential which in our case is the muffin-tin zero. The energy
Hubbard model and correspond to such a qualitatively nevderivative of the phase shift is related to the Wigner delay
physics as the Mott transition. The relevance of this in theime. If this is large the electron will spend a long time on the
present context is that such fluctuations are well described bsite. Such slow electrons will be much more affected by the
the dynamical mean field theorfDMFT)?® whose static spurious self-interaction and therefore should see a Sl-
limit, for the Hubbard model, is precisely the “alloy analogy” corrected potential.
CPA of Hubbard® This point was particularly clearly ex- In most systems, where the electrons are truly delocalized,
plained in the recent paper of Kakeha$hConsequently, it the self-interaction contribution to the potential is negligible
is reasonable to regard our LSIC based KKR-CPA-DLM cal-and therefore the LDA is an excellent approximation. When
culations as investigations of the static limit of a yet unde-the phase shift has a resonance one has to calculate the self-
veloped first principles DMFT. In what follows when we interaction correction for thig(l,m) angular momentum
refer to the need to include dynamical effects in the theory ithannel. This is accomplished by calculating the one-
is the above theoretical considerations we will have in mindelectron charge density for this channel, defining the charge
The paper is organized as follows. In Sec. Il we outlinedensity for the self-interaction correction. From this one can
the physical picture underlying the present approach. In Seceadily calculate the self-interaction potential which has to
[l a general formulation of SIC-LSD, following Perdew and be added to the LSD potential, and then the new phase shifts
Zunger! is briefly summarized with reference to some as-are calculated for the totdSIC-LSD) potential. This has to
pects of the LMTO-ASA implementation based on the Wan-be carried ouim channel bym channel for a given angular
nier function representation of localized orbitflsin Sec.  momentuml. The minimum of the total energy will deter-
IV, the formalism of the local self-interaction corrected local mine the optimum configuration ¢f, m) channels to be self-
spin density(LSIC-LSD) within multiple scattering theory is interaction corrected. Therefore to each of thechannels
described in detail. There we concentrate on the phase shiféhe can assign two potential functiongS™S(r) and
and single-site Green'’s function from which the SIC charga/'égD(r). The formalism determining the energy functional
and potential, corresponding to localized electron states, argssociated with the potentisfiC-S2(r) is briefly outlined in
calculated within the KKR method. Since the latter can behe pext section. It should be mentioned here that if the total
easily extended to include coherent potential approximationgnergies corresponding to these two different potentials are
Sec. V briefly summarizes its most important equations ingficiently close, one can envisage dynamical effects to play
terms of the multiple scattering quantities. In Sec. VI thegp, important role as a consequence of possible tunneling

formalism is extended to finite temperatures. The potentiahetyeen these states. We shall return to this point in the later
and versatility of the LSIC method is demonstrated on thesections.

application to thex-y phase transition in Ce. In Sec. VIl we

first discuss thd-phase shifts, total energies, lattice param-
eters, densities of statg®0S), and spectral functions at

T=0 K for the « and y phases, as obtained from the LSIC-
KKR method. Wherever appropriate we compare with the
results of the full SIC-LSD implementations within
LMTO-ASA.19 In this section we also present calculatlonsdensity approximation, suffer from a spurious self-

fo_r flnﬁfséig?\iggé%reéo?ﬁ?h;hgFr,zlIar?g?DTMd:;grimizztj ttr;ﬁnteraction of the electrons with themselves. In principle, this
ayp ' self-interaction term should vanish exactly, as it does in the

accomp.hsh the latter, and'to |Ilustrate: how the present aPhartree-Fock theory. In practice, however, this cancellation
proach IS qapable to describe bo_th spin ?‘”d valence ﬂucn.“i’ls' incomplete. Perdew and Zunger suggested an approximate
tions at finite temperatures. Section VIII is devoted to vari- o1 tion to this problem, which was constructed for finite

ggrﬁsié:jse?:tci:)sn g‘; ;23\, Pnrteesremn; dgigr\?:g;]cingoj?gggrgzl(?;?e i?stems but is here extended to solids in a different way as
ompared to previous implementations for sofids.

within the present implementation, which motivates a pos- The usual representation of the total energy within the

sible generalization to include dynamics, as outlined in SeG. o HET formalism in the Kohn-Sham approA&ks
IX. The paper is summarized in Sec. X. PP

lll. SIC-LSD FORMALISM

It has been pointed out by Perdew and Zuhdkat den-
sity functional theory(DFT) schemes, like the local spin

occ

Il. PHYSICAL PICTURE ELSD[nT,nl] - E <¢w| _ V2|¢w>
In the present formulation of SIC, we adopt the physical ag
picture of multiple-scattering theory, where a solid is repre- + Egy+ B[] + EicSD[nwnl], (1)
sented by an array of nonoverlapping scattering centers. The

electronic motion is then broken down into a sequence of

scattering events and a free propagation in between. Thahere¢,,'s are the Kohn-Sham orbitalgvo is a combined
most useful concept of this method is a phase shift, describindex labeling the orbital and spifi or |), respectively,
ing scattering of electrons from ions, the scattering centers in,,=|d.,/% N,==0N,,, N=N;+n|. Eqy is the external field
a solid. If a phase shift is resonant it is reminiscent of aenergy functionalEy is the Hartree energy

205109-2



SELF-INTERACTION CORRECTION IN MULTIPLE.. PHYSICAL REVIEW B 71, 205109(2005

5 5, n(nn(r’) SIC implementation$-?” which start from a band-picture
EH[n]=fd rfd r’m, (2 scenario.
and E->P is the LSD approximation to the exchange- IV. SINGLE-SITE SIC-LSD FORMALISM

correlation energy functional. On the basis of the above, Per-

dew and Zunger proposed a self-interaction corrected LSD As already mentioned, the proposed generalization of the
on an orbital by orbital basis Perdew and Zunger idea is based on the notion of resonances

in scattering theory, which are the reminiscence of atomic
sic-Ls _ LSD B LSD, states in the solid. Core states are represented by bound
E Tinao}1=E=ng,n ] % (EnlNeo] + Exc [Nar 0D, states at negative energies, where the imaginary part of the
generalized complex phase shift jumps abruptlysby.ocal-
3) ized valence states still have very sharp resonances but band-

by subtracting explicitly the self-Coulomb and self-exchangéike States are characterized by slowly varying phase shifts.
and self-correlation energy of altcupiedorbitals. This cor- The central quantity ofscalar-relativistiz multiple scat-
rection restores the property that the true functioBan]  t€ring theory is the single-particle Green's function

should have, namely that the self-Coulomb energy exactly AT i -

cancels the self-exchange and self-correlation energy for ev- Gylrir'ie) = E Z (15 €75 (21,1 €)

ery single orbital Ey[n,,]+ES3n,,,,0]=0. This leads to an e

occ

(()z)rbital dependent SIC potential seen by an electron in orbital -> Zil_(r(r<;6)\]i_(r(r>; 3y, (7)
ao L
VATESO(r) = Voo (1) + V[n(r) + VioPny.n )(r) with r=R;+r;, wherer; is a vector inside the cell &;, L

=(I,m) denotes the combined index for the decomposition
into symmetrized lattice harmonid% andr _(r ) is the vec-
—Vyln,,J(r) - V&fg[nw,O](r), 4) tor smaller(largep in magnitude from the pai¢r,r’). The

: building blocks of the Green’s function are the regular and

1.8D>
Vertor (1)

VSIC (1 irregular solutions of the radial Schrddinger equation at a
with the external lattice potentiad.,(r), and given (complex energye,
' Z,,(ri;0 = Z,(ri; Y, (Fy), ®)
VH[n](r):Zf dSrr%, (5) L I | i LA
7,160 =2, Y, (), 9)

Bl e
ého. ' La.(ri;f) :\]:U(ri;f)YL(Fi). (10)

This self-interaction correction vanishes exactly only for The scattering-path matrix (in iL, jL’ and o representa-
extended states. In order to apply the SIC scheme to solidgon),
the approach by Perdew and Zunger has to be generalized. el .
This involves simultaneously a Wannier representation of the 7€) =[t7(e) ~ gle)] (11)
orbitals, necessary to determing, of Eq. (4), and a Bloch s related to the structural Green’s functigfe), describing

representation to solve the band structure problem. Furthefne free propagation between the scattering centers, artd the
more, the Wannier functions are required to fulfill the local- matrix defines the single-site scattering.

ization criterion which ensures that the energy functional is  The total valence charge density per spifis given by
stationary with respect to unitarian mixing among the orbit-

als. This localization criterion is necessary, because the SIC 1 Er .

is not invariant under unitary transformations of the occupied Ny(r) =~ ;L delm G,(r.rie), (12)
orbitals. This is in contrast with the LSD where a unitary 5
transformation of the occupied orbitals leaves the LSD powhereEg andEg denote the bottom of the valence band and
tential invariant, since the total charge density remains unalthe Fermi energy, respectively. In standard LSD calculations,
tered. For the orbital dependent SIC potenti&l© such a  the new effective potential for the next iteration of the self-
unitary transformation will change®'®. The localization cri- consistency cycle is calculated from this dengityw in-
terion (a|V5'°~V3'9B8)=0 determines the unitary transfor- cluding the core contributionss

mation which ensures the global minimum of the total en- 1SD /.y _ LSD

ergy and the hermiticity of the Hamiltonian. Solutions of this Veiro(1) = Vexdr) + VUn](r) + Vigo[n.nyJ(r). - (13)
equation usually take the form of the eigenvedtarhaving  In order to remove the spurious self-interaction, still present
weight in one channel only(Im a;)*+(Req;)?=1] which in this potential, we consider the problem of electrons mov-
would be different from the channel where the weight of theing in an array of scatterers. As already mentioned, an elec-
eigenvectotB) [(Im B)?+(Re B))?=1] is concentrated, i.ei,  tron which shows localized behavior has a sharp resonance
is not equal toj. This generalization forms the basis of the in its phase shift, associated with a large Wigner delay time

Vieoln,n 1(r) =
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on a particular site. To determine the SIC charge we willintegration limit could be either chosen such that the SIC
consider for a moment the atomic limit, i.e., the situationcharge density integrates to exactly one electron, or simply
where the scatterers are far apart. In this case the single-siset to the Fermi energlfe. Using thet matrix, we find that

t matrix and the local multiple scatteringmatrix coincide, we have to integrate up to &, Which is slightly above the
and all occupied states correspond to bound states. In thisermi level in order to capture one electron. Thmatrix, on
limit each bound state contributes exactly the charge of onéhe other hand, due to hybridization, yields a charge of one
electron, and this charge can be calculated by integrating thier energies slightly below the Fermi energy. Unfortunately,
diagonal of the spectral function just around the energy ofvhen dealing with ther matrix, it is computationally very
the bound state. In order to be able to decompose the charggpensive to assumg, different from the Fermi energy.
density [Eq. (12)] into different angular momentum chan- However, the excess charge due to integrating up to the
nels, we choose symmetry adapted spherical harmonic&ermilevel is only of the order of a hundredth of an electron.
These are defined by applying a unitary transformation to théThe missing charge in case of integrating theatrix up to
ordinary real(or compley spherical harmonics, such that the the Fermi level is of similar magnituden the following we

on-site scattering matrix becomes diagonal, used ther matrix integrated up tde to determine the SIC
£ i i charge. Some tests with thenatrix, and the requirement of
2 UL A QU= a0 (o). (14)  a SIC charge of unity, resulted in an upward shift of the total
Lotz energies by about 1 mRy.
It is easy to verify that the required transformation matsix The charge density, calculated in either of the proposed

is, in fact, independent of the energyThis transformation Ways, is used to construct the effective self-interaction free

to symmetry adapted spherical harmonics also ensures thagtential, namely

the degeneracy of states, which are localized, is conserved. | sic-Lsp,,\ _ \/ALSD /.y _ SICy/,y _ \/LSDF~SIC

We will demonstrate this later by Sl correcting the triplet VeitiLs (1) = Veit,or) = VAlmi,](r) = V" Inic, OX(r).

stategone by ongof the Cef manifold. In this symmetrized (17)

[im;eese:;?stl?r?’e ;ht(ca)mci;c:egrne?arf’infcutlnocr:i'o\ryhll)?ahco%éze digtocr)?lan this paper we only consider the spherically symmetric part

with reqs ect to this quantum number Hénce we can dgco of the SIC density and SIC potential. Hence, theatrix is
pect q N rT}JIiagonaI inl and m. Here it should be noted that, if we

pose the spin resolved charge density intd_itsomponents

and define the charge of a state, characterized by its princi fransform the equations back to the unsymmetried! or
9 ! Oy IS p p(,eomple>§ spherical harmonics, this effective potential as-
quantum numben, angular momenturh, and spinc,

sumes matrix character with respect to the angular momen-

e 1 (B tum, and would not simply couple to the density, but rather
NoLo(r) == ;f delm Gy ,(r,re), (15  to the nondiagonalm,!’m’ density matrix. This is concep-
Bl tually analogous to the rotationally invariant formulation of
where the energieE; and E, lie slightly below and above LDA+U by Dudarevet al?® o
the energy of the stateLo. Within the multiple scattering For each self-interaction corrected chanhel(l,m) and
formulation, in the atomic limit, this charge density can bey. |, replace th&th element of the original matrix by the
written as one obtained from the Sl-corrected potential
1 (B — ; . i i - i,SIC-LSD, .
nie(n)==— f delm(Zy,(ri; 71 (9ZL,(ri;€) U=t (=818, aids (18
E; )
S wheret, is thet matrix calculated from the effective poten-
~Z(ri@d{rie)l, (18 tial ViB(r), andt}S°'SPis calculated from the Si-corrected

wherei is the site index, since in this case the single-site potentialVgy;>X(r). ThisT matrix is then used in Eq11) to
matrix and ther matrix are obviously identical. This, of calculate the Sl-corrected scattering path matrikrom the
course, is not the case for a solid with finite lattice spacingslatter the new SIC-LSD charge density is calculated, and the
When considering resonances in a solid it is aopriori process is iterated until self-consistency is reached. The cor-
clear whether to use theor = matrix for calculating the rection term, which approximately compensates the self-
charge density in question. The main difference between ugepulsion, is an attractive potential which will pull down in
ing thet matrix or r matrix is that the latter does include a energy the state to which it is appli¢see Sec. VIl.
small hybridization of the localized state with the surround- To finish this section we would like to mention that in
ing atoms, while the former does not. Also the choice of thecontrast to the LSD, the SIC-LSD Hamiltonian is not invari-
lower and upper integration limits is not clearly defined. Weant under unitary transformations of the occupied orbitals. As
will now give a short discussion of the possible modes forpointed out before, in the full implementation the localiza-
calculating the SIC charge of a resonant state. tion criterion is applied to make the solution stationary under
The lower integration limit is most reasonably chosen tothis unitary mixing of states. In the present implementation
be the bottom of the energy contdtg. However, care has to there is no such localization criterion, and one has to be
be taken that this contour always encloses the Sl-correctesblely guided by the energetics to find the global energy
states. In the case of Ce, discussed in the following sectionsinimum. Note that the total energies are invariant under a
the contour also includes thepSemicore states. The upper rotation of the coordinate system owing to the symmetry
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adapted spherical harmonics that diagonalizestheatrix at ~ temperatures the physics is dominated by thertlaksical

theI” point. Hence, the energies of the configurations wherefluctuations. Therefore, to properly take into account the fi-

one by one, each state out of a degenerate manifold is locahite temperature effects, one needs to evaluate the free en-

ized are the same. This was tested on Ce by Sl correcting adirgy of the systenfalloy) under consideration, namely

f states separately. As expected, the energies for localizing

any of theTy,, (or, respectively, th&,,) states were identical. F(T,c,V) = EioT,6,V) = T[Su(T,6,V) + Sii(€) + Snad ©)
+Sin(C)], (23

V. CPA GENERALIZATION where S, is the electronic(particle-hol@ entropy, S,y the
mixing entropy, S, the magnetic entropy, ansl;, the en-
tropy originating from the lattice vibrations.

The electron-hole entropy is defined?as

One of the advantages of the multiple scattering imple
mentation of the SIC-LSD formalism is that it can be easily
generalized to include the coherent potential

approximationt?~1¢ extending the range of applications to

random alloys. In addition, one can use it to treat static cor- S(T,c,V) =- ka den(e){fg(e)In f4(€)

relations beyond LSD by studying pseudoalloys whose con-

stituents are composed, e.g., of two different states of a given +[1-f4(a)]in[1-fa(e)]}, (24)

system, one delocalized, described by the LSD potential, and .
another localized, corresponding to the SIC-LSD potential'Vhereke is the usual Boltzmann constant afyle) denotes
Combined with the DLM formalism for spin fluctuatiods24  the Fermi-Dirac distribution function. The entropy of mixing

this allows also for different orientations of the local mo- In the case of a binary system can be expressed as

ments of the constituents involved. _
(©)==kg[clnc+(1-c)in(1l-c)]. 25
In the CPA extension of the SIC-LSD formalism, bearing Six(©) el (1=0in ~c)] (25

in mind its single-site aspect, it is required to satisfy theThe magnetic and vibrational entropies are strongly depen-

following CPA self-consistency condition dent on the system under consideration, and they will be
A0 00 €00 discussed in more detail in the section dedicated to the phase
c7 e + (1 _C)ZB' (e)=1""e), (19 diagram of Ce.
where the impurityr matrices7%%e) and 72%%e) are given 'Finally, note that in the defini'tion of the free. energy, _the
by finite temperature enters only via the Fermi-Dirac distribu-
tion and the entropy contributions, while for the exchange-
00 759 ¢) correlation energy, being part of the total enefgy, the T
>~ (E)_{1+TC’OO(€)[IA(€)_tc(€)]} (20) =0 K LDA (LSD) approximation is used for all tempera-
- - tures, which is a common practice in ab initio calcula-
C,OO( ) tions.
£¢) = COOI d , (21) This section completes the formal description and imple-
{1+ Me)ta(e) ~te(e)]} mentation of the LSIC-KKR-CPA band structure method. In

the following sections we shall illustrate the potential and
versatility of this approach for describing strongly correlated
coo »_ 1 3 electron systems by an application to Ce. There we present
T e) = Owsr [t-X(e) - g(K )]' (22) both theT=0 K and finite temperature results, including the
Bz fcle)mgike phase diagram of the famousy phase transition.

and ther matrix of the coherent potential approximation

Here(gz is the volume of the Brillouin zoneBZ), tx(e) and
tg(e) are the respective single site scattering matrices of the
A and B species, occurring with the concentratianand 1 Ce is the first element in the periodic table that contains
—c, respectively, andc(e) is thet matrix of the effective anf electron, and shows an interesting phase diagfaim.
CPA medium. Note that in the CPA extension of the SIC-particular, its isostructurdfcc— fcc) a-y phase transition is
LSD formalism, the CPA conditiofEq. (19)] is an additional  associated with a 15%—-17% volume collapse and quenching
self-consistency criterion to the usual charge or potentiabf the magnetic momenf. The low-pressurey phase shows
self-consistency. a local magnetic moment, and is associated with a trivalent
Finally, it should be mentioned that the formalism of this configuration of Ce. At the temperatures in which tie
section can be easily generalized from a binary to a multiphase is accessible, it is in a paramagnetic disordered local
component case, as described in Ref. 29. In addition, an exnoment state. Increasing the pressure, the material first
tention of the LSIC-CPA formalism to finite temperatures transforms into thex phase, which is indicated to be in an
can be implemented as described in Sec. VI. intermediate valence state with quenched magnetic moment.
At high pressure$50 kbar at room temperatyr€e eventu-
ally transforms into the tetravaleat phase. With increasing
temperature, thex-y phase transition shifts to higher pres-
In this section we summarize the relevant formulas undersures, ending in a critical point600 K, 20 kba), above
lying the finite temperature generalization of the present forwhich there is a continuous crossover between the two
malism in its CPA extention. In contrast {b=0, at finite  phases.

VIl. CE a-y PHASE TRANSITION

VI. FINITE TEMPERATURES
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FIG. 1. (Color online Phase shifts of the Sl-corrected and un-  FIG- 2. (Color onling Density of states and integrated density of
correctedf states in Ce from the SIC-LSD calculation. The energiesStates of the Si-correctefdchannel.
are relative to the Fermi level.
at about -2.5 eV, is slightly less than 1. This is most likely

In the following paragraphs we first discuss the SIC anddue to the integration method used to display the quantities
non-SICf-phase shifts and densities of states. Then we comin Fig. 2 which is less accurate than the contour integral used
pare the results of LSIC total energies, for the ferromagnetié the self-consistent calculations.
arrangement of local moments, with the earlier calculations
of the full SIC implementation, in order to benchmark the B. Total energies and equilibrium volumes of Cear and y
method. After discussing the density of states of the LDA phases
and SIC-LSD calculations, we mix the two phases using the
CPA and DLM for the spins. Finally, allowing for finite tem-
peratures, we describe the full phase diagram of Ce.

In order to determine the ground state configuration of Ce
at a given volume, we calculated the total energies for dif-
ferent volumes using the LDA to describe thephase and
the SIC-LSD formalism for they phase, when Sl-correcting
one localizedf electron, allowed to populate in sequence all
) ] possiblef states. In both LDA and SIC-LSD calculations
Before presenting our results for the phase diagram, W&pin-orbit coupling has been neglected for valence electrons,
disc_uss briefly the scattering properties of a single Ce site. Ipt fully included for core electrons, for which the Dirac
particular, we concentrate on the phase shifts and corresquation has been solved. The corresponding total energies
sponding densities of states férelectrons. In Fig. 1 we a5 functions of volume are shown in Fig. 3. We find that the
channels of Ce. It can be seen that the uncorrettstites  minimum, as seen in Table I. There the ground state proper-
have a very sharp resonance just above the Fermi energyes of the studied configurations are summarized. Table I

The steep resonance corresponds to a long Wigner delay tim@mpares the present results for the ground state configura-
and indicates that the state is already well localized. The

self-interaction correctefistate is shifted down in energy by 50— . . . ‘ . . . N
about 9 eV, and becomes a bound statdies below the E /
muffin-tin zerg. X _ — LDA 1

A. f-phase shifts and corresponding densities of states

In Fig. 2 we present the density of states and the inte- 40
grated DOS for the self-interaction correctécchannel. It
can be seen that by integrating E{6) up to the Fermi_ Z 30
energy, one collects slightly more than one electron. This isg
because there is a small density of states in the vicinity of themﬁ
Fermi level(note the scale of the left-hand-side axis in Fig. , 20
2), which is due to slight hybridization of the SIC channel
with the otherf channels whose resonances occur in the
vicinity of the Fermi level(see Fig. L Some contribution to
this density of states might also come frofhdates. This is
implied by the behavior of the phase shifts in Fig. 1. The 0
sharp jump byr indicates that the fstate is a bound state of
the SIC potential, and the slow rise of the phase shift above
the Fermi energy can be associated with the progression to- FIG. 3. (Color onling The calculated total energies for Ce from
wards the % state. Figure 2 also shows that the integrated DA and SIC-LSD, with different states localized, as functions of
DOS at the energy where the phase shift goes throygle.,  volume, given in atomic unitéa.u)3.

10 -

P . s i R TP

" 1 "
150 160 170 180 190 200 210 220 230 240 250
3
Volume [(a.u.)’]
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TABLE I. The total energy differences as obtained from the when extrapolated to zero temperature, and with other theo-
LDA and SIC-LSD calculations, with respect to the ground stateretical valuegsee also Table 1) The bulk moduli, given in
energy solution(LDA), for Ce in differentf configurations. The Table I, are calculated at the theoretical equilibrium volumes.
corresponding volumes and bulk mod(gvaluated at the theoreti- When evaluated at the experimental voluntas it is com-

cal lattice constanjsare also given. mon practice in DFT calculationstheir values are substan-
tially reduced to 239 kbar for the phase and 203 kbar for
AE (mRy) V (a.u)® B (kban the y phase, which is in considerably better agreement with
the experimental numbers. The volume collagagth re-
LDA 0.0 158 701 spect to the volume of the phasg is obtained at 22%,
Ay 0.8 202 355 which also compares well with the experimental values of
SIC Tiy 20.3 201 352 15%-17%. We note that the underestimation of the volumes
Ty 15 197 351 of both thea and y phases is due to the KKRconvergence

problem, which was addressed by Moghadeival3* They
demonstrated that angular momenta as high as 16 were
tions with previous calculations and with experimental val-needed to obtain satisfactory convergence in the total energy.
ues. Note small differences between the different calculain the present calculations we chodgg,=3, which does not
tions, which are due to different schemes, and indicate theeem sufficient for a good description of the equilibrium vol-
sensitivity of the results to computational details. umes of the two phases. Although it seems that this

The observed degeneracy of the states within the tripletsconvergence problem should affect the LSD and SIC-LSD
demonstrates the rotational invariance of the formalismcalculations in a similar manner, we see a significantly larger
Note the large crystal fieldCF) splitting, separating th&,,  error for thea phase, in agreement with the results obtained
triplet from the other SIC states. As already mentioned, thdy other well-known KKR packages when the LDA approxi-
calculations presented in this section assume a ferromagnetication is implemented to describe the electronic structure of
alignment of the local moments in thg phase. However, the a phase®® The larger error for ther phase than for the
when discussing the phase diagram of Ce, we will also conphase(found also in the LMTO-ASA calculationgs most
sider the disorder of the local moments using the DLMlikely due to the fact that LDA is not adequate for describing
framework?324 the experimentally reported correlated nature ofdtghase.

For they phase, treated ferromagnetically, out of the threeln fact, the LDA calculations correspond strictly to the high-
possible localized states listed in Table |, the state with theressurea’ phase, which is purely tetravalent and has a
Ay, symmetry gives the lowest energy solution. This local-smaller lattice constant than the observeghase. However,
ized state is also associated with the highest volume amoras already mentioned, in our calculations we have treated Ce
the possible localized configurations. Only 0.8 mRy separatas a trivalent systerfone localized electror) in the y phase,
the minima of thea and y phases, giving rise to the transi- and a tetravalent systefall f electrons are treated as delo-
tion pressure at the absolute zero of about —2.3 kbar. This isalized in the @ phase. Experimental data seems to suggest,
in good agreement with the experimental value of =7 kbarthat a-Ce has a noninteger valence of 3.67. One could argue

TABLE II. Comparison of the computed equilibrium volumes and bulk moduli with those of other
calculations and experiment. The bulk moduli have been calculated at the theoretical equilibrium volumes.
Note that unlike in the present, SIC-LSBKR) implementation, the results based on the LMTO refer to the
full SIC-LSD scheme, involving repeated transformations between real and reciprocal spaces, and Bloch and
Wannier representations. The two different sets of LMTO calculations refer to different basis sets and to
different ways of solving the SIC-LSD eigenvalue problem. In the reported LDA and GGA calculations the
v phase was modelled by constraining thelectrons to the core.

a-Ce v-Ce
Method V (A3 B (kban V (A3 B (kban
SIC-LSD (KKR)? 23.4 701 29.9 355
SIC-LSD (LMTO)P 24.7 484 32.6 310
SIC-LSD (LMTO)® 25.9 443 34.0 340
LDAM 24.5 477 33.7 312
GGAY 27.7 391 37.3 288
Expt 28.2 270 34.7 239

aThis work.
bReference 31.
‘Reference 32.
dReference 33.
€Taken from Ref. 33.
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10 . I8 ! I6 ! '4 3 FIG. 5. (Color online Spin- and symmetry-resolved DO
Einery (5V) states/eY for the states originating froms(Ayg), p(Ty,), and

d(T,g andEg) channels. As in Fig. 4, the SIC-LSD calculation re-

FIG. 4. (Color onlin@ Spin-resolved density of states of Ce in fers to the ferromagnetic arrangement of the local moments.

the « (a) and y phase(b) with ferromagnetic arrangement of local .
moments. states hardly differs between thephase and ther phase.

This noninteger value of 1.35 in both cases is a consequence
of the hybridization of the states with thes, p, andd states
HReen in Figs. 5 and 6. The number foklectrons remains
gonstant between the LDA and the SIC-LSD, which might
seem rather surprising. What happens is thelectrons that
participate in bonding in the phase get transferred to local-
ized electrons in thes phase. At the same time some of the
C. Densities of states of Car and y phases bondingd electrons are transferred to the repulsigechan-

. nel. These effects conspire to give the larger lattice constant
The densities of states of Ce from the LDA and ferromag+,, the y phase.

netic SIC-LSD calculations are shown in Fig. 4. The LDA  1hag p, andd spin-resolved densities of states of Fig. 5

DOS shows all the states hybridized into the, p, andd  ghoyy remarkably rigid band behavior between the LDA and

states. However, in the SIC-LSD panel of the figure, onegc ith the Fermi energy moving down with respect to the
clearly sees the split-off localizedstate at about -8 eV. O

course, this does not agree with the spectroscopic position of

that this intermediate valence character of tliestate could
be represented in terms of a pseudoalloy composed of t
trivalent and tetravalent Ce atoms. We shall elaborate on thi
point in one of the following sections.

this state. To accomplish the latter, one would have to take ‘2{ 3 Az LDA E ‘2‘ 3 f 551 E
into account the self-energy, which could be evaluated from oE 1 oF ]
the total energy difference corresponding to systems with 2F 41 2F T
constrained occupations® The localizedf state apart, one 4P ]ad fFRraaa]ad
can clearly see the exchange splitting of the remaining states 4 F T LDA 4 aF TaSIC -
in the SIC-LSD calculations. The unoccupiédtates in the % 2 E g 2 E
SIC-LSD density of states are pushed up by 1 eV or so. 2 F 4 2F W =
These unoccupietl states are furthermore exchange split by A b 3 R L
1eV. 4 F T, LDA 4 4F TwSIC -

From Table Ill we note that the number of occupiéd 2E 4 43 £

2F 3 2F E

TABLE Ill. Angular momentum decomposed charges from ol WTTITITN IN: Bad AT T I i
LDA and SIC-LSD calculations. Note that thechannel includes 108-6-4202 4 -10-8-6-4-202 4
the 5 semicore states. Energy (eV) Energy (eV)

s p d f FIG. 6. (Color online Spin- and symmetry-resolved DO&
states/eV for the states originating frorh channels. Note the dif-

LDA 0.40 6.06 2.19 1.35 ferent scale of the plot with respect to Fig. 5. As in Fig. 4, the
sIC 0.51 6.16 1.99 1.35 SIC-LSD calculation refers to the ferromagnetic arrangement of the

local moments.
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-0.63 T I state ofa-Ce atT=0 K. These calculations are consistent
" o.65 8.25 ] with the earlier results by Svane who performed supercell
-0.64 m calculations to model 25%, 50%, and 75% ®@fy admix-
- 8.45 7 tures, but treating the phase ferromagnetically and not as a
T -0.65 =9.45 — DLM phase®? There too, no total energy minimum was
o - - found for intermediate concentrations between 0 and 1, and
066 B2 8.65 4 also a mainly convexfrom above curvature for the total
L .y energy, as a function of concentration, was obtained. This
o6 E suggests that to describe the intermediate valence state of the
| | | | a phase one would need to consider a dynamical generaliza-
0 02 04 06 08 1 tion of the CPAZ2® which would involve dynamical fluctua-

tions between the trivalent and tetravalent states. Other pos-
sible mechanisms to favor intermediate valence will be

FIG. 7. Total energie$T=0 K) of the Cea-vy pseudoalloy as a commented about in Sec. VIII.
function of the concentration of localized states. The curves corre-
spond to the lattice constants, indicated in the figure. The labels of
8.85 and 9.05, corresponding to the remaining curves, have been
omitted for readability. In this section we discuss the spectral functions along the

I'-X line, calculated for the pseudoalloy consisting of 50%

SIC-LSDd partial density of states. We also note that in Fig. y-admixture into thex phase, i.e., 50%y, 25% y spin-up

6 the unoccupied states are well separated from the Fermiand 25%y spin-down, in comparison with the spectral func-
level, because the Fermi energy is lowered, and the hybridions of the pure phases, all at the same volume, as shown in
ization with the occupied, p, andd states has been substan- Fig. 8. The purey phase has been represented by a 50%
tially reduced. These changes in thep, andd densities of ~ Spin-up and 50% spin-down alloy. The putephase{panel
states are also reflected in Table Ill where we see a reductid@®] shows a well-defined band structut@he minor smear-

of 0.2 electrons in the channel of the localized phase and aing of the bands is due to a small imaginary part added to the
corresponding increase of 0.1 electrons in bothgledp  energy) Of course, the LDA leads trivially to a non-spin-
channels of the localized phase. Even though the Fermi erpolarized band structure, but the absence of an exchange
ergy moves down in the localized phase, we see from Fig. 5plitting in panels(b) and (c) is due to the use of DLM,

that the number of occupied states in thand p channels Wwhich defines an effective medium in which the local mo-
has increased. ments are averaged out. In the pan@lsand(c) the broad-

ening of the spectral functions is apparent. The actual line-
width of the spectral function can clearly be seen in Fig. 9,
showing the spectral functions at thepoint. Here, similarly

In order to improve on the LDA representation of corre-to the smearing effect seen in Fig. 8, the residual linewidth
lations in thea phase of Ce, in the present approach, in theseen in panela) is purely due to the small imaginary part of
spirit of the Hubbard 11l approximatiot’, one can model the the energy, necessary to obtain well behavedatrices.
experimentally implied noninteger valence of the Ce ions by The spectral functions reveal some features of the current
a pseudoalloy consisting of the trivalei@IC-LSD) Ce ions  approach. First, it can be seen that snandd-derived states
with concentratiore, and the tetravalerit DA) Ce ions with  at thel” point are hardly affected by the CPA. These states
the concentratioril —c). In addition, taking into account the have no hybridization with the SlI-correctédtate. Symme-
disordered local moments of the trivalent Ce ions in the try analysis of the spectral function, shown in pati@l of
phase, one can assume that their up and down orientatiofég. 9, reveals that thé,, f state appears twicghe peak at
occur with equal probabilities. Supposing homogeneous ran-8 eV and the sharp shoulder just above the Fermi energy
domness, such a ternary pseudoalloy can be described by tbiice we are in the split-band regime. Due to the DLM treat-
coherent potential approximati¢g@PA). The respective con- ment of they phase, this feature is also seen in pafog)
centrations of the trivalent and tetravalent Ce ions in thewvhere the upper of the split-band peaks merges with the
pseudoalloy are then determined by minimizing the total entower triplet f peak. The two tripletgT;, and T,,) show
ergy for each volume with respect to the concentration common band behavior. The corresponding broadenings are

In Fig. 7 we show the total energies for they pseudoal-  very different between panel®) and (c). Moreover, panel
loy at T=0 K, in which they phase occurs with the concen- (c), as compared to pan), also shows that the unoccupied
trationc (c/2 for each spin orientationand thea phase with  f states have been pushed up in energy, because the localized
the concentratioril —c), for several lattice constants. It can f electron is more effective in screening the nuclear charge.
be seen that all shown total energy curves have their minim&his results in an energy splitting of theand y unoccupied
either atc=0 (pure« phase¢ or c=1 (purey phas¢. Hence a triplets which leads to a broadening of the unoccupied trip-
fractional occupation of thef4dstate appears to be energeti- lets, as seen in panéb). The shoulder at about 1 eV is an
cally unfavorable for all lattice constants. From these calcuindication that the splitting is noticeable on the scale of the
lations we can conclude that a static, single-site approximadispersion of the bands. The broadening of the triplets is
tion is not sufficient to describe the intermediate valencaeduced in paneglc) where noa phase is admixed and where

concentration of y atoms

E. Ce a-vy spectral functions

D. Ce a-y pseudoalloy
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FIG. 8. Spectral functions alorig X, relative to the Fermi level,
for the y-phase concentration 0 in parte), 0.5 in(b), and Lin(c),  FIG. 9. (Color onling Spectral functions at thE point for the
respectively. The spectral functions were calculated at the latticg-phase concentrations(8), 0.5(b), and 1(c). The character of the
constanta=8.65 a.u. respective peaks is marked above the upper horizontal line of each

panel.

the broadening of the lower triplet state is a consequence %fem eratures as a pseudoallovefand v-Ce atoms was first
merging with the upper split-band peak of the singlet state, P P Yoo Y

33 2 Qi
Note that thef states at the Fermi level have a finite lifetime put forward by Johanssoet al** and by Svané? Since at

which might indicate a shortcoming of the static CPA for theflnlte temperatures the thermallassical fluctuations are of

L . . . jor i tance, the static approximation should suffice. In
description of an intermediate valence, a coherent mixture of jor impor ’
P the work by Johanssoet al. the pseudoalloy was treated by

g:;éor%?gﬁ?%eagdmd;f;a;;%%risé?éejelgc:iegt?;i_Of wave fur]Ct_he CPA implemented WiFhin th_e LMTO methqd, where the

phase was modeled by including thé gtates into the core,
while in the @ phase thd states were treated as band states.
Due to the different treatment of both phases, their total en-
In this section we concentrate on the finite temperatureergies could not be compared and the energies of thiease

phase diagram of Ce. The idea of describing Ce at finitdhad to be adjusted by hand to yield the correey transition

F. Phase diagram
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FIG. 11. (Color) Gibbs free energies for=0, 800, and 1600 K.
In order to enhance the readability of the plots the energies have
been calibrated by a linear term, proportional to pressure.

FIG. 10. (Color) Calculated free energies for the temperatures

T=0, 800, and 1600 K. The plots represent fits to the calculations t ¢ t s the other hand. d
which have been performed for concentrations frofedrrespond- pressure at zero temperature. Svane, on the other hand, de-

ing to the purex phasgto 1 (corresponding to the purgphasg, in scribed th_ey phase as a ferromagnet “5"_19 the LMT_Q'_SIC’
steps of 0.1, and for lattice constants from 8.25 a.u. to 9.65 a.u., iﬁhus treating both phases on equal footing, and utilizing a

steps of 0.2 a.u. A constant of 17717 Ry has been added to afuPercell to mimic the pseudoalloy at only a few accessible
energies. concentrations. From these calculations he concluded that a
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linear interpolation of ther and y energies to arbitrary con- -0.66 T T T T T T T 1
centrations should be adequate enough. -0.665

Here we present calculations which combine both the 0.67
CPA and the SIC-LSD to describe thephase as a DLM =
system, treated as a ternary alloy, consisting of spin-up and & 0675
spin-down SIC sites with concentration& each, and LDA S -0.68
sites with the concentratiofil—c). In addition, we go be- & 0685
yond the scope of previous works by taking into account the =

> . . -0.69

effect of finite temperatures on the electronic total energies
and the electronic contribution to the entropy, as defined in -0.695
Sec. VI. However, the vibrational entrop®,,, is neglected -0.7
in the presented results. We shall briefly comment on its 140 150 160 170 180 190 200 210 220 230 240
effect on the calculated phase diagram in the next section V [awd
where we analyze in detail how different aspects of the
present calculations influence the final results. FIG. 12. (Color onling The free energies as function of the

Ideally, one would like to treat a pseudoalloy, which con-volume for the temperatures(@ighest curvi 200, 400, 600, 800,
sists of all possible states of a Ce ion, i.e., the LDA, and alll0o00, 1200, 1400, and 1600 Kowest curve. A constant of
possible Sl-corrected states. This would give rise to a 17 717 Ry has been added to all energies.
pseudoalloy consisting of 15 components, the LDA plus the
14 possiblef-SIC states(including the spin multiplicity.  gram. In order to determine the fypt T phase diagram, it is
Since this would be quite a formidable task, we use a simnecessary to calculate the Gibbs free energy,
plified approach. Figure 3 indicates that crystal-field splitting
gives rise to nearly degeneralg, (singley andT,, (triplet) G(T,c,p) = F(T,c,V(T,c,p)) + pV(T,c,p). (27)
states, while thd,, triplet lies 20 mRy higher in energy. At
the temperatures considered here, Thestates are thermally The Gibbs free energies are displayed in Fig. 11. From them,
not accessible. Thus treating the remaining eight states ag each given pressure and temperature, we can determine the
degenerate, leaves us with a nine component pseudoalloyoncentration of the trivalent Ce, by minimizing the Gibbs
with the constraint that the concentrations of the considere¢tee energy with respect @ At zero temperature one finds
eight SIC states are equal and can be sef/® Itis easy to  (for low pressurestwo local minima, associated witb=0
show that in this case, in addition to the mixing entropyandc=1. By increasing the pressure, the order of the minima
defined in Sec. VI one has to take into account a term  changes and the minimizing concentration jumps from 1 to

0. At higher temperatures the minima start moving towards
SnadC) =kgCIn 8, (26) intermediate concentrations. Only above the critical tempera-
ture, one finds the minimum smoothly changing from low to
arising from this eightfold multiplicity. Note that in previous high concentrations.
studies, where the CF splitting has not been taken into ac- We can obtain the free energy of the physical system at a
count, the magnetic entropy was assumed to be that of given volume by evaluating the concentration dependent free
spin-orbit (SO) coupledJ=5/2 state, i.e..SpadC)=ksgcIN6.  energy at the minimizing concentratiag,,,
In the next section we shall comment on how the two differ-
ent magnetic entropy terms influence the critical characteris- F(T,V) =F(T,Cnin, V) - (28)
tics of the calculated phase diagram.

We performed calculations for several lattice constantsThese free energies are displayed in Fig. 12, which clearly
embracing the equilibrium lattice constants of both phasesshows the double-well behavior for low temperatures, which
and concentrations from 0 to 1, in steps of 0.1. The result§s gradually smoothened out with increasing temperatures.
for the free energies of the three selected temperatures aFé]rthermore one finds that, at elevated temperatures, the free
shown in Fig. 10. In théf=0 K panel one clearly sees the €nergy is mainly lowered at large lattice constants, corre-
two minima, corresponding to the putephase(LDA) and ~ sponding to they phase, with its larger entropy.
the pure y-phase(SIC-LSD) calculations. The equilibrium Inserting the minimizing concentratiowy, into the
lattice constant for a given concentratiorinterpolates be- ~Pressure-volume relation
tween the two extremes, and it is apparent that an interme- 5
diate valence state, even if not energetically favorable, would _ IRV T _
correct the underestimated lattice constant ofdtphase. As P(TV) = P(T, Cins V) = aVF(T' i V) (29
the temperature is increased, the free energy surface gets
strongly tilted towards the SIC-LSD side and now showsallows to calculate the isotherms of Ce, which are displayed
only one broad minimum. This is mainly due to the magneticin Fig. 13. It can be seen that the average valence, close to
entropy. the coexistence line, gradually changes with increasing tem-

Although the concentration-dependent free energies arperature. Above the critical temperature, the valence changes
the quantities directly accessible from the calculations, theygontinuously with increasing pressure from trivalent to tet-
do not easily reveal the full information on the phase dia-ravalent.
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the discontinuities for the various ingredients of the Gibbs
free energy. As expected, all contributions vanish at the criti-
cal temperature, above which there is a continuous crossover
between thex and they phase. It also can be seen from this
figure that the entropy discontinuity is by far the largest con-
tribution. The phase transition is therefore driven by entropy,
rather than by energetics. The entropy discontinuity itself is
mainly determined by the magnetic entropy.

G. Analysis of results

v [3-5-83? 190 210 In order to investigate the_ importance of the d_iffe_rent as-
pects of the present calculatioti®., the DLM description of
FIG. 13. (Colorn Calculated isotherms for the temperatures they phase, the inclusion of finite temperature effects in the
T=0 (lowest curve, 200, 400, 600, 800, 1000, 1200, 1400, and €lectronic free energy, and the CPA it3glis compared to
1600 K (highest curvi The color indicates the fraction of localized €arlier studies, we have also performed a set of calculations
electrons, blue is all localizetly phasg, and red is all delocalized Where, selectively, we neglect some of these effects and look
(a phase. at the consequences. In particular, we study the influence of
these effects on the critical temperature and the slope of the
In Fig. 14 we present phase diagram, obtained from thghase separation line. The results of these calculations are
free energies of ther-y pseudoalloy, with they phase de-  symmarized in Table IV, in comparison with the results of
scribed by the DLM approach. It can clearly be seen in the,gjier theoretical, as well as, experimental studies.
figure how the transition becomes continuous above the criti- £t we focus on the importance of the disordered local

cal temperature. The experimentally observed critical poin}noments re : :
presentation of thephase. By comparing the
(600 K, 20 kbay falls on top of the calculated phase separa-p i results in Table IV with those marked by Ferfterro-

tion line, which starts at the zero temperature transition pres- : . .
sure of —7.4 kbar. This means that the slope of the phasmagnetlc calculations for thy phasg, one finds that the

separation line is in very good agreement with experiments.BLM calculations lead to a moderate lowering of the critical

The critical temperature overestimates the experimental on@mperature,_and amore negative zero temperature transition
by roughly a factor of 2, which is still reasonable consideringP'€SSure. This can easily be understood, since at zero tem-
that the critical temperature is very sensitive to various smalPerature, the ferromagnetically ordered phase has a lower
details of the calculations and in particular the theoreticafn€rgy as compared to the disordered phase. Experimentally

lattice parameters of both the Ce phases. Note thaT tra such a magnetic order is not observed, since at low tempera-

zero pressure of 169 Ksee Table IV compares well with ~ tures (and positive pressureLe is in its nonmagnetier
the experimental value of 141+10 K. phase. The lowering of the critical temperature cannot be

Finally we examine in more detail the discontinuity across€aSily identified with a specific aspect of the DLM calcula-

the phase separation line. Figure 15 shows the magnitude §PnS, since many effects, such as the curvature of the free
energies with respect to the concentration, but also the an-
2000

harmonic terms in the total energy as a function of volume,
conspire to determine the phase diagram.
The second point is the effect of finite temperature on the

1
0.9
1500 8% total energy and the electronic entropy. In earlier studies of
8? the phase diagraft;334%the electronic structure calculations
. 0.4 were performed at zero temperature, and the finite tempera-
= 1000 8% ture effect entered only via the mixing entropy, the magnetic
~ 0.1 entropy and in Ref. 33 also the vibrational entropy. This
0 means thaky(T,c,V) was replaced b¥,(0,c,V) and the
500 electronic entropys, was neglected. In Fig. 16, we analyze
the difference between the electronic free energy
Fo(T,c,V)=E(T,c,V)-TS(T,c,V) and the total energy at
T=0. The differencd(T,c,V)-F(0,c,V) exhibits a mod-
0 erate dependence on the concentration. The larger effect for
0 20 40 60 80 100 the a phase is easily explained using a low temperature ex-
p [kbar] pansion. The main effect of the finite temperatures is the

broadening of the Fermi function. To lowest order in tem-
FIG. 14. (Color) Phase diagram obtained for the pseudoalloy,Perature, the change of the free energy is proportional to the
composed ofr- and y-Ce. The crosses indicate the calculated anddensity of states at the Fermi level. The effect on the phase
experimental critical points. The color indicates the fraction of lo- diagram can be seen in Table IV by comparing the columns
calized electrons, blue is all localizég phasg, and red is all de- | and Il. Neglecting these finite temperature effects gives rise
localized(a phasg. to an increase of the critical temperature by roughly 200 K,
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TABLE IV. The critical temperature and pressure, as well as, the zero temperature and room temperature transition pressures and the zero
pressure transition temperature for different calculations: DLM and Ferro refer to the disordered or ferromagnetic alignment of the local
moments in they phase, CF and SO indicate the crystal field or spin-orbit scenario, as discussed in the text. The index | denotes calculations
with finite temperature effects included in the band structure and the CPA, Il refers to the neglect of these finite temperature effects, and Il
represents calculations, where in addition the concentration dependence was approximated by a linear interpolation. The main results, which
are also shown in the figures, are the DLM-QJFcalculations, printed as bold in the table.

DLM-CF DLM-SO Ferro-CF Ferro-SO
| 1] 1 | 1] 1 | 1] 1] | 1] 1] Svané Johanssdh KVC¢ Pronf Expt.
Te 1377 1528 1129 1407 1568 1157 1444 1660 1139 1471 1689 1166 1300 980 520 600 600
p(Te) 56 62 51 47 52 43 64 74 58 53 61 49 47 39 39 18 20
p(T=0 K) -74 -74 -74 -74 -74 -74 -23 -23 -23 -22 -23 -23 -1.0 -6 -6 -7
p(T=300K) 6.1 6.2 62 41 42 42 110 114 114 9.0 95 095 10 7 8 6 6
T(p=0) 169 167 167 196 194 194 52 52 52 61 61 61 135 14010

aReference 32.

bReference 33.

®Kondo volume collapse model, Ref. 38.
dpromotion model, Ref. 39.

while the slope of the phase separation line remains unahanssoret al,* the critical temperature is to a large extent
tered. determined by the mixing entropy. Without the mixing en-
Next is the effect of the CPA. In the study by Svafet, tropy one would at all temperatures find a sudden transition
was suggested that the weak departure from linearity of théwith a finite volume collapsebetween the low- and high-
total energy curves as a function of concentratieig. 7) did ~ Pressure phases. The mixing entropy will, if the temperature
not play an important role. Thus, we recalculated the phast$ high enough, lead to a minimum of the free energy for an

diagram, replacing the full concentration dependence of thétermediate concentration of thephase, eventually result-
total energy by the linear interpolation ing in a continuous crossover between the low-pressure and

the high-pressure phases. As seen in Fig. 7, the CPA gives

Ejin(c,V) =(1 -c)E(0,V) + cE(1,V). (30) rise to a convexfrom above curvature of the total energies.

_ o ) It effectively reduces the mixing entropy and increases the

The effect of this approximation can be seen in Table IV byyitical temperature. It can also be seen that within this linear
comparing the columns Il and Ill, respectively. Both sets ofsnhroximation, the difference between the DLM and the
calculations use th&=0 K total energies only. The transi- Ferrg calculations is strongly reduced, which means that the
tion temperature obtained from the linear interpolation ismgain effect of DLM is not only the energy lowering of the
sfmlgngly reduced, in comparison to the CPA palculatlon, a”%hase, but more importantly a different shape of the energy
similar to the one reported by Svane. As pointed out by JOyersus concentration curves.
Last, we discuss the effect of the degeneracy of the

12 | | phase ground state. As described above, in the CF calcula-
10 L — tions a degeneracy of 8 was used, corresponding to almost
g /I,:;/ ————— \:\\_\ - degenerated,, and T,, states, arising from a crystal field
5 1
4 2 B
0 =
(=]
2 \Er-:
) | | L | | | | I
0 200 400 600 800 1000 1200 1400 1600 E,
T [K]
FIG. 15. Discontinuities of the total energiick solid ling, the
total entropyTS (thick dashed ling and thepV term (thick dashed- 0 200 400 600 800 1000 1200 1400 1600
dotted ling over the phase separation line as function of the tem- T [K]
perature. The entropy term is further decomposed into the electronic
(thin solid ling, the mixing (thin dashed ling and the magnetic FIG. 16. Temperature dependence of the electronic free energy,
(thin dashed-dotted linecontribution. as defined in the text.
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splitting. The results to be compared here are shown in the
columns CF and SO of Table IV. In the SO scenario, the
term proportional to In 6, corresponding toJa5/2 state,
was used for the magnetic entropy, instead of In 8, as in the
CF scenario. One can see that the magnetic entropy, being
linear inc, determines mostly the slope of the phase separa-
tion line and has only a minor effect on the magnitude of the
critical temperature. The results obtained with the DLM and
the magnetic entropy due to the CF splitting show better
agreement of the calculated transition pressures with experi-
ment. This, however, may be due to a cancellation of errors.
The slope of the phase separation line is mainly given by the
ratio (S,-S,)/(V,-V,), whereS,,, andV,,,, are theT=0

T [K]

2000

1500
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500
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values of the entropy and the volume of théy) phase.
Due to the larger underestimation of the volume of the

phase, the volume collapse is slightly overestimated in our FiG. 17. Critical points of the phase transition, obtained when

approach. Therefore the higher value of the entropy differthe concentration of trivalent Ce atoms in thghase is artificially

ence in the CF scenario, as opposed to the SO scenario, lea@@d at a finitec,. The points are marked by their corresponding

to a better agreement with the experimental slope. It shouldalue ofc,, wherec,=0 represents purely tetravalent Ce.

be noted though that these calculations do not include the

vibrational entropy. To estimate the effect of this vibrationalmixture of trivalent Ce in ther phase. In this calculation, the

entropy, we recalculate the phase diagram using a simplg|IC-LSD energies have been uniformly calibrated to keep

model for the vibrational entropy, namely the zero temperature transition pressure at its original value

Sn(©) = — keCASS®, (31) of —7.4 kbar. It can be seen in the figure that the best value

for critical temperature is obtained foy~ 0.4, which corre-
with the value ofAS);'~0.75, as suggested by Jeostgal #

p [kbar]

sponds to an intermediate valence of 3.6.

In doing so, the critical temperature is only slightly reduced The intermediate valence scenario for thehase, as dis-

to 1292 K, while the critical pressure increases to 69 kbar. Irtussed above, could result from dynamical fluctuations.
view of the above discussion, it is not surprising that a con-These fluctuations could be realized by describing Ce as a
tribution, which is purely linear irc, basically affects only two level system(TLS). We will elaborate on this idea in
the critical pressure. We conclude from this result that thisSec. IX. A mechanism, based on the dynamical interaction of
simplified model for the vibrational entropy is too crude andtwo states will, quite generally, be more effective if the two
a more sophisticated one should be put in place. One shouRfates are close in energy. Looking at the total energy as a
add here that Johanssem al33 have employed a Debye- function of the lattice spacing and the concentrati&ig.

Griineisen model, while Svatfehas completely neglected 10), one finds that the pure and y solutions(LDA and
the vibrational entropy. SIC-LSD, respectivelyare degenerate closeds 8.9 atomic

Finally, we would like to comment on the finding of Ni- units. The interaction of these two states will lower the total
klassonet al? that the disordered local moments can giveenergy at these lattice constants, and eventually might estab-
rise to a localization off-electrons. From our DLM only lish them as the global minimum. The increased lattice con-
calculation, without applying SIC, we found that it is not stant would be closer to experimental values. Clearly such a
possible to stabilize a local moment in Ce, except at verystate would be neither described by full localization nor de-
large volumes, where even the LSD yields a magnetic solulocalization of thef electron, but would be better character-
tion. ized as an intermediate valence state. In the following sec-
tion we will outline how we envision this two-level system
to work.

The next point we want to discuss is the effect of lattice
As already mentioned, experiments indicate that &he relaxations. In the intermediate valence regi@e described
phase is not composed of tetravalent Ce atoms, but is rathel the static CPAthere is a rather large size mismatch be-

described by an intermediate valence of 36From Fig.  tween thex and they atoms, which may give rise to strong
10, we see that an intermediate valence, i.e., a fractionahternal strains. Allowing for lattice relaxations, which are
concentratiof0<<c<1), would lead to an increased equilib- not considered here, would give rise to an energy lowering
rium lattice constant. One can simulate the effect of the infor intermediate concentrations and could lead to intermedi-
termediate valence for the phase by simply rescaling the ate valence, even in the static limit, and hence to the reduc-
concentrations when evaluating the phase diagram. In Figion of the critical temperature.

17 we present the critical points of the phase transition ob- Another factor that might have a significant influence on
tained when we represent tlephase by a nonzero concen- the phase diagram and its characteristics is associated with
tration, ¢, of the trivalent Ce atoms, added into the host ofthe single-site aspect of the CPA. Being a single-site theory,
tetravalent Ce atoms. As can be seen in the figure, the criticahe CPA cannot deal with order in disorder, namely with
temperature quickly decreases with the increase of the adhort range ordefSRO in the distribution of the alloy con-

VIIl. DISCUSSION
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figurations. However, even in the disordered phase it must beemperature pseudoalloy phase gives way, at a characteristic
important to distinguish situations where the nearest neightemperaturd ¢ to a ground state which is an orbital analogue
bors are preferentially like atoms from those where they ar@f Kondo singlets of magnetic impurities in metals. In the
unlike atoms. Such short range order is expected to lower thease of the LDA/SIC-LSD TLS, this means, that at high
free energy of the disordered state and hence Idwef the  temperatures, we would find the pseudoalloy, as described
a-y phase transition. In addition, it should influence the en-above, while at low temperatures, the system would be nei-
ergetically favorable relative concentration of the two differ-ther in the LDA, nor in the SIC-LSD state, but would be in
ent components of the alloy. Thus by taking SRO into ac-an intermediate valence ground state. Clearly, such dynami-
count one might be able to move beyond the primitive alloycal fluctuations may also help to reduce the critical tempera-
analogy and improve on the present LSIC-KKR-CPA ap-ture if the generalized Kondo temperature, associated with
proach. The way it could be accomplished is by implementthe TLS, is not too small.
ing the nonlocal extention of the KKR-CP&;*’ which As a final remark concerning the dynamical generaliza-
would allow to treat possible correlated valence fluctuationgion of our disordered local valence calculations we note that
near thea-y phase transition in Ce. the above model is an analogue of Yuval and Anderson’s
Finally, the phase diagram of Ce suggests that at negativikondo Hamiltonian approach to the magnetic impurity prob-
pressure there could exist a quantum critical pd@CBP), lem, as opposed to the full dynamical calculation based on
i.e., a localization-delocalization transition at zero temperathe Anderson model, deployed for the same problem by
ture, driven by pressure. The vicinity of this QCP, although itHamanr®5° The relevant point to stress is that these two
is not accessible experimentally, could still influence thecalculations vyield, in the appropriately asymptotic, namely
physics of the material in the accessible positive pressurecaling, regime the same results. Thus, they lend credit to the
range. The quantum fluctuations, which are responsible foabove proposed short-cut to a first principles DMFT treat-
the transition, should also be visible in its vicinity and could ment of our fluctuating valence problem.
explain the correlated nature of thephase.

IX. OUTLOOK X. CONCLUSIONS
Several times in this article we have referred to the pos- We have presented a multiple scattering, implementation
sibility of going beyond the theory outlined above by allow- of the SIC-LSD formalism for solids within KKR band struc-
ing for dynamical valence and spin fluctuations. In short, theure method, combined with the CPA description of interme-
suggestion is that, as above, we regard the self-interactiodiate valences. The method has been illustrated on the appli-
corrected and the not so corrected version of the local potercation to the Cex-y phase transition. The results have been
tial at a site, as corresponding to two states of the atom andiscussed in detail, highlighting the functionality and poten-
allow for such atom to tunnel between the two staé@sand tial of this approach owing to a better static description of
|b), which would form a two-level system. Electrons inter- spin and valence fluctuations. The importance of all the dif-
acting with such TLS were already thoroughly studied in theferent aspects of the formalism has been analyzed in detail.
context of metallic glass€S.In the present scenario such a This method is not to be looked at as an alternative to the
procedure would address the valence fluctuations. On thearlier implementations within the LMTO-ASA band struc-
other hand, identifying the possible spin states of the Slture method. Its great potential, and in some way superiority,
corrected system with the two levelswould constitute a arises from the local and multiple scattering aspects through
possible dynamical generalization of the DLM formalism, which the method lends itself easily to various generaliza-
taking into account dynamical spin fluctuations. This mighttions and extensions on the account of the straightforward
describe the Kondo screening of the local moments at lovdetermination of the one-electron Green’s function. Of par-
temperatures. ticular interest here is an inclusion of dynamical fluctuations,
Many of the consequences of such interactions are bfor which a roadmap has been briefly outlined in the preced-
now well known?* In such studies the TLS is an atom tun- ing section. The results of the present paper constitute the
neling between two nearly degenerate positions in a metallicrucial steps on this road towards dynamics.
environment* The physics is particularly interesting in the  Finally, there is one more aspect of the present results
case of assisted tunneling where the TLS changes its state ahich warrants further comment. As we have reported in
an electron scatters from it. However, it should be stresse&ec. VII G, in our DLM calculations local moment formed
that in the cases where the atom changes its position in thenly when the local electronic structure was described by
tunneling process, the TLS is external to the electron systerBIC-LSD, while it iterated to zero when LDA was used in
while in the proposed model it is designed to capture theecalculating the spin polarized crystal potential. This is pre-
physics of a slowly changing collective degree of freedom ofcisely the behavior one would have expected on the basis of
the electrons themselves. In this sense our TLS is very mucthe numerous successes of SIC in predicting moment forma-
like the DLM in paramagnetic metals. tion, and no moment formation in applications to extended
From the point of view of the present perspective the mossystems132 Clearly, the fact that our local implementation
directly relevant work on external TLS’s is that of Vladetr  of SIC, namely LSIC, behaves in this way lends strong sup-
al.*8 They show that, if the TLS couples two or more angularport to our contention that self-interaction correction formal-
momentum states, as the temperature is lowered the higbm can be, and perhaps should be, applied at the local level.
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