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Transmission, reflection, and resonance formation in one-dimensional systems
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A method is developed that treats on equal footing bound states, resonance formation, and scattering prob-
lems in one-dimensional systems. The approach allows one to deal with nonlocal, energy-dependent potentials
and is conceptually analogous to the variable phase method where the role of the scattering phase and the
amplitude functions is played by nonlocal reflection and transmission functions. The formal results are illus-
trated and analyzed by simple examples and the physical significance of these examples is pointed out.
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I. INTRODUCTION Il. GENERAL DEFINITIONS AND OUTLINE

The question of how a quantum particle penetrates, being \we consider the time-independent, nonrelativistic scatter-
trapped or ejected from a potential barrier, has been the sulyg of a particle with the energi? impinging on a 1D non-
ject of intensive research since the early days of quantunycq| notential from the left to the right. We use units in
physics. The interest in this problem is rooted in its ubiqui-\ynich am=1=#4. Z=1. wherem andZ are the mass and the

tous occurrence in various physical, chemical, and biologicai 5 e of the particle. The nonlocal potential is introduced as
processes1-4]. To name just but few examples, the key =

ingredient of scanning tunneling spectroscopy of surface@n integral operatov acting along the entirg axis (V may
deposited molecules is the tunneling of the tip electrons tavell have alocal componeni.e., the particle wave function
the conduction band of the surface through the molecula satisfies

(tunneling region where the electrons can be back reflected, " +o0

res_onantly transmi;ted or captu_reﬁa]. Furthermo_re, con- {—+k2} w(x):f/wzj V(XX ) (X" )dx’ . (1)
strictions in a quasi-one-dimensional quantum wire, that act dx? —»

as tunneling barriers, can nowadays be engineered with an o ) ) ) ) )
impressive accuraci]. The transmittance through the con- The derivation given below is valid as it stands in case the
strictions governs the transport properties of the wire; hencBotentialV(x,x’) is energy-dependent. To simplify notation
the central question to be addressed by theory is how th&e Wwill suppress however this energy dependence in the
barrier characteristics affect the transmission and reflectiogduations. The key idea of the present work, pointed out by
coefficients. Having this kind of problems in mind we set outCalogero and Babikoy6,7] for the general case, is to re-
to reconsider the quantum tunneling from nonlocal energy€xpress the wave functiog in terms of observable quanti-
dependent potentials. The nonlocality can be brought abotites- To do that one converts the second-order differential
by various factors; perhaps the most widely known case ocSchrédinger equation into tw@oupled first-order differen-
curs when an electronic system is described within a mearfial equations. This is achieved by castifigas a superposi--
field approach such as the Hartree-Fock theory. Due to thdon of transmitted and reflected plane waves weighted with
exchangeFock term the single particle potentials are inher- the position dependent amplitud@éx) and R(x),

ently nonlocal. The aim of the present work is to treat on the _ ikx _ikx

samye footing bound, scatterinz, and resonant states in one- ¥ —T(x)[e *Re ] 2
dimensional systems in the presence of a nonlocal energyn addition, for a unique representation we make furthermore
dependent potential. The method is the one-dimensional the ansatz

(1D) analogue to the variable phase meth&PA) [6,7],

which is well-known in the three-dimensional case. Recently Ew(x) =T(x) Eeikx+ R(X)Ee—ikx

we have generalized the VPA as to include nonlocal interac- dx dx dx

tions [8]. The method relies on introducing, instead of the . i i
wave function, the so-called transmissrﬁfx)gand reflection - 'kT(X)[elkx_ R(e Ikx]' )
functionsR(x) that depend on the distangeThe asymptotic Instead of solving fory(x) one determines the amplitudes
(x— ) values of these functions tend to the physical transT(x) andR(x). The advantage of doing this becomes obvious
mission and reflection coefficients for the potentalAt the by inspecting the properties of these functions, in particular
finite distancex the transmission and the reflection functionsthose of the functiorR. To this end we derive at first the
can also be interpreted as the transmission and the reflectigfifferential equations governing(x) and R(x) and inspect
coefficientsfor the potentialVy (x) obtained by appropri- the mathematical structure and the symmetry properties of
ately cutting-offV(x) at X, As demonstrated below, the re- these equations. We then illustrate the various features of the
flection functionR(x) thus contains the essential information reflection and transmission amplituddé®,and T, by some
pertinent to bound, scattering, and resonant states for a whoteimerical examples. We start our analysis by an interpreta-
class of potentialy/y_, DXyt € (=00, +0). tion of the physical sense d®(x) and T(x) and show how
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these functions are connected to the reflection and transmis- In caseT(x) (or the wave functiony) is required, one
sion coefficients. As shown below, the knowledge of the spaevaluates at first the functidR(x), inserts it into Eq(5) and

tial behavior ofR(x) and T(x) may be exploited as a guide then performs the integration

for the construction of one-dimensional structures with de- «

sired reflection properties. We will also explore the para- T(x)=exp<lJ dx/[l+R(X/)e—2ikx’:|v(xl)>_ (7)
metrical dependence &i(x;k) on the complex wave vector ikJ_.

k with the following results: the dependence oreal posi- . )

tive wave vector R&)=k>0 allows one to address ques- The case _of a local potential can t_Je ret,rleved Ifrom the
tions arising in scattering problems such as the energetiéb?ve equations upon the assumptivifx,x’)=V(x’)
conditions for the resonant penetration of a particle through a X) Which leads to the following relations:

potential barrier. These conditions are extracted from the ze-

ros of R(k). The eigenvalue problem is formulated and re- ER(X) = —@[e"‘X+ R(x)e ]2, (8)
solved by considering the reflection functiBx;k) that de- dx 2ik

pends on apure imaginary wave vectork=ix. Finally,

operating in the whole complék plane we utilize the reflec- 1dr S @[1 + R(X)e—zikx]_ (9)
tion amplitude for the description of quantum decay or fu- T(x) dx 2ik

ls_]ion of compound systems via quasibound states with a finite We note that fomonlocal potentials the equations fdR
ifetime.

andT fulfill the particle conservation law at the asymptotical
spatial pointsx— o only. In contrast, for local potentials
the probability flux density

- . , 00 = 2T 1 - RO (10

To illustrate the physical properties of the complex func-
tionsT(x) andR(x) we consider a particle that impinges from is conserved at each poirtbecauséd/dx)j(x)=0 provided
X— —% t0 X— +% onto a localized potential. At— -« the the potential is real. In the case of a complex potential
function T(x) is determined by the normalization of the flux U(x)=V(x)+iW(x) the change of the flux is determined by
of the incident particles and can thus be normalized to unitghe imaginary part\(x) only. A positive (negative sign of
T(x——»)=1[16]. The absence of the reflection behind thethis part describes the gafloss of particles when scattering
potential atx— +« is signaled by the conditioR(x— +c«)  off the potential. This is evident by casting the gradient of
=0. the flux density in the form

To obtain the determining equations fbix) and R(x) we d W) _
transform by means of Eqs$2) and (3) the second-order —j(x) = ——{1+|RX)|?+ 2RdRX)e ]} (12
Schrédinger equatiofi) for the wave function to an equiva- dx k

lent set of two COUpIEd first-order differential equations forand noting that the expression in the Cur|y braces is non-
the functionsT(x) and R(x) (details of the derivation are negative[17].

Ill. DETERMINING EQUATIONS FOR THE REFLECTION
TRANSMISSION FUNCTIONS

given in the Appendix The results are In the derivation of the reflection-transmission equations
d 1 we introduced the wave vect@ras an arbitrary free param-
d—R(x) =- in(x)V(x), (4) eter. For dealing with continuum state problems the wave
X i

vector is real. For the description of bound systems such as
the solution of eigenvalue problems and the treatment of the
decay or fusion of composite systems, we analytically con-
tinue the reflection amplitude to the complex plane of the
) o wave vectork=k+ik; k,k€R. To do that we consider at
The functionV(x) is given by first the symmetry properties of the functi®nas dictated by

+o0 X G(X") Eq. (4) for complex wave vectors. The general solution of

V(X):f V(x,Xx')cos ikf ——dx’ tdx'.  (6) this equation possesses two symmetry properties: First, the

X x FX") replacement of the parameteby —k leads to the following

relation for the inverse reflection function R(k), i.e.,

1 dT_

- - i —ikx
T dx + ikF(X)e V(X). (5)

As stated above the initial integration conditions Bfe—

+0)=0, T(x—-o)=1. Here we introduced the auxiliary d 1 12 _d 1
functions xRk == —_ik[e "+ ROV = dx\R(x,k) /"
F(x) = €+ Rx)e™  G(x) = & - R(x)e™ . (12

A key element of the above relations is the independencéherefore, we conclude that
of the determining equation foR(x) on the transmission R
functionT. This property is important insofar as a number of R, ~k) =R k). (13
physical quantities follow solely fromR (for example, The origin of this property is the quadratic dependence of the
eigenenergigs without the need to calculafe This reduces Schrddinger equation on the wave vector. The second prop-
substantially the computational efforts. erty of the general solution is
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IR(a)I"-""""--n... ' 1 from the left onto a Gaussian potential barrkiéfx):e‘x2
0l incoming los localized atx=0. We assume that at some poiatandb the
) i ) potential becomes negligible and its tails play no role. The
reflected

complex functionR(x) is to be calculated opposite to the

— o6 «—— Jos 5 omp e . aret .

) & direction of incidence, i.e., from the right side of tkaxis to

& = the left side. In the spatial regions where the potential van-
>

1
»

Z R ———————
04 ishes the particle is not reflected and hef{g) is zero or
o2l ! i constant, i.e.,R(x)=0, x&[b,+») and R(x)=const, X
! € (-0,a]. In the region where the potential is localized the
llm influence on the impinging particle can be viewed as the
cumulative action of a set of infinitely thin slices of the po-
tential. Each slicéthe black area on Fig.)is defined by the
FIG. 1. The spatial variation of the modulus of the reflection d0Mains[x;,x;+x]. The potential pari/(x;) contributes to
function R(x) (dashed curvedescribing the scattering of a particle the reflection by the amourdR~ V(x)ox [cf. Egs.(4) and
impinging on the Gaussian barrisf(x)=e™ (black curvé. The  (9)]. Thus, the reflection amplitude at a given poigtis an
particle has the positive real wave vector0.3 a.u. The zeros integral sum over these slices lying to the right side frgm
value |R(b)|=0 indicates the absence of reflection of the incident(shaded argaAt the very left pointa, when the potential
wave “behind” the barrier. The squared valueRk) at the pointa ~ becomes negligible, or where its influence is marginal, the
“pbefore” potential hill coincides with the reflection coefficient reflection functionR(a) and the amplitude of the outgoing
|R(@)[>=R; for the whole barrier. The valuR(xo)|? yields the co-  wave coincide, i.e.|¢(a)|*>=|R(a)|> (and from Eq.(2) fol-
efficient of the reflection from the cut-off potential padashed |ows T(a)=1). Thus,|R(a)|2 is the physically observable re-
area, see the text for detgilNote thatR(x) is a dimensionless flection coefficient R For a potential with infinitely ex-
quantity, whereas the potential is plotted in atomic hartree units. tanded tails the pointa andb tend to = and +°. We find
then that

e
[

x 3 0
a =2 0 X, X x+x2 |
x [au]

R (x,k") = R(x,k) (14)

and it follows from the Hermiticity of the potential*=V
which dictates that

R(==)]*=R;; R(+%)=0.

The transmission coefficierit, can be found from the con-
servation conditionT,.=1-R..

.. (d o\ Figure 1 represents the spatial behavior of the function
&R (xk) = (&R(X’k )) IR(x)|, which characterizes the reflection of a particle inci-

dent with a wave vectok=0.3 a.u.. For real wave vector

—_ _1* *[e—i(k*)*x_'_R(X)ei(k*)*x]z\?(x) values kER the modulus of the reflection amplitude is

—-i(k) bound to the intervalR|€[0,1] and is a measure for the

d 1 potential reflectivity(or opacity. When it is about unity the
= —( ) potential reflects the incident particle almost completely. If
dx\R(x,k) IR ~0, the wave is fully transmitted through the barrier. We

The initial conditionR(+e,k)=0 for the integration and remark thatin Fig. 1 thg ppt_gntial is ;ymmetri.cally located at
the two properties stated by Eq&3) and (14) require a  X=0. Due to the specific initial conditions, this symmetry is
mirror symmetry of the amplitudB(x, k) with respect to the ~however not reflected in the potential influence on the func-
imaginary axis in the complex wave vector plane, i.e., t|qn R(x): half of the r'eflectllon function magmtuc!e is deter-

mined by the small right-side part of the potential, whereas

R,k +ix) =R(x,—k+ix). (15)  the second half is due to the large left-side.

The above analysis makes clear that the present method
dealing with tunneling problems allows an insight into
the influence of various parts of the potential on the reflec-
tion coefficients. Such a knowledge is valuable when dealing
with more complex potentials in which cag¥x) is not a
uniform function ofx. An example is shown in Fig. 2 where
the function|R(x)| (dashed curveshas been calculated for
four different potentials, as shown in the figures. From the
right to the left we add successiveh~1,2,3,4Gaussian
barriers(solid curve$ located at the positions inferred from

To elucidate the physical meaning of the amplitud®es the figures. The physical situation we have in mind is the
and T we discuss numerical results for some simple ex-following. The situation depicted in Fig(& corresponds to
amples; we note however that the interpretation given belova system of independent electrons a 1D wire with one con-
does not depend on the shape of the barrier or whether thariction (cf. Ref. [9] for an experimental realization
potential is local or not. The results depicted in Fig. 1 are fowhereas in(b), (c), and (d) the wire contains, respectively,

a particle with apositive realwave vector which impinges two, three, or four constrictions. These act as tunneling bar-

It is important to note that these arguments are valid for any

. . . or
value of the spacial variabbe Furthermore, the mirror sym-
metry restricts the calculations to only one half of tke
plane.

IV. PHYSICAL SIGNIFICANCE OF THE REFLECTION
AMPLITUDE AND SPATIALLY MANIPULATED
RESONANT TUNNELING
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FIG. 2. The behavior of the reflection functiédashed curvesplotted for a series ofi spatially separated Gaussian potential barriers.
The solid curve on each plot shows the potentials. The dashed curve stands for the modulus of the reflectiofRGotfmrthe respective
potential. The full dots at the left side of each graph indicate the asymptotic valjigé-of)| which also dictate the reflection coefficients
valuesR.=|R(-=)|2. The particle energy oE=0.34 a.u.(hartre¢ is chosen to be below the top of the Gaussi@fjg,, =1 a.u).

riers and are located at the positions of the peak value of theuch as the energetic conditions for the resonant penetration
potentials. Furthermore, we assume that a small voltage biasf the particles through the potential barriers. These condi-
is applied to the wirgsmall with respect to the Fermi en- tions are set by the zeros Bf Now we turn to the analytical
ergy) which drives the electrons from the left to the right. In continuation ofR to the complex plane of wave vectkr In

the regime of a linear respongknear with respect to the  the three-dimension4BD) case the scattering amplitude as a
applied biagthe conductance of the wire is governed by thefynction of the complex wave vector gives not only the mag-
transmission functiorfwhich can be retrieved from the re- pityde of the cross section but also describes the stationary or
flection function (see, e.g., Refs|10,11, and references g asistationary(quasibouny states. In particular, the posi-
therein. The black dots on the vertical axis of each of thetions of the poles of the scattering amplitude on the imagi-

F"O_ts in Fig. 2 mark the asymptotic values|62(>§—>—oo)|. I_t_ nary wave vector axis mark the values of the eigenenergies
is interesting to note that, in fact, the reflection coeff|C|entOf the Hamiltonian{1]
R°:|R(X_>_OO)|2 oscﬂla_ltes with the number of constrictions the 1D case the asymptotic value of the reflection func-
in the system. In particular, the reflection from the fourfold 4, R(x— —o,K) is the analogue of the 3D-scattering ampli-
barrier potential is several times smaller than the reflection de[6]. Therefore, the transmission-reflection equations can
even from the fspénglg GaujﬁlaanurthSrmﬁre, the phys'caa“so be utilized for solving the eigenvalue problem, when the
interpretation ofR(x) is readily observed when comparing paicle energy is negative and the wave vector is pure imagi-
Figs. 2a)-2(d). The reflection coefficient ife) is 0.8. There- 1y k=i, «€ R*. While for real wave vectors the modulus
fore, in (b) the reflection function rise to the V‘_""“e 0.8t o the reflection functiodR(k)| never exceeds unity, for cer-
ES_adug 1€, _aftebr passing Ithe;lrst_ Gaussian; mea_rll_lrr:g thakin complex wave vector values it can be arbitrary large. In
(x=0.5a.u) in (b) is equal toR(x=-= a.u) in (@. The (04 4t eachicomplen wave vector that corresponds to a
same observation is also made by considering analogously, nd state of the systeR(x— —,k) has a simple pole
(c) and(d). From Fig. 2 it is also clear that any value of the ; o “the modulus oR tends to infinity. From these imaginary

reflection coefficien_ts which is_ b(_etween approximately 0_'8wave vectork =i« we infer the energies of the bound states.
and 0.1 can be realized by designing one of the cut potentlallgOr complexk the determining equation fd(x,k— ix) has

Xeut' ) L . the form
A further interesting issue concerns the question of how

the conductance of the wire is modified when the distance
between the constrictions is varied. This situation is shown in

Fig. 3. At a certain separatidifor a fixed particle energythe I “”" A hYe ‘\l / 1
reflection drops to zero and the constrictions become trans o8 ! / \ H :: —Hos
parent to the traversing particle. The oscillations occurringin= 4 l \ i :: 1 5
the reflection coefficients in Figs. 2 and 3 are of a ubiquitous\v_{”“'s_' vl \\ ! :' 1°¢ <
nature and appear due to the formation of resonant states ig§ o, / ‘.‘. ' —-0.4’5?
the tunneling structure, a fact which is well documented in 0 " \ { 5
the literature [12]. The useful aspect about the present  o0.2f ! / A ' do.2
method is that it provides direct information on which part of I)'/ . } \ I . 1

the potential yields a desired reflecti@or transmissionco- -10 -5 0 °

'@X a.u. )‘
efficients. Such information is highly useful for controlling s[ ]

the conduqtance o_f the quantum wire. We npte in this context FIG. 3. The dependence of the reflection coefficiggion the
'Egalt ;ﬂunnelmg barrier can nowadays be engineered accurategéparaﬂon distance,

between two Gaussian barriers. The solid
curve shows the fixed potential part whereas the dashed curve
stands for the “variable” part of the potential. The coordinate
refers to the relative distance between the positions of the peak
values of the Gaussian potentials. The dotted curve shows to reflec-
tion coefficient|R | calculated as a function of the separation dis-
tancexs. The particle energy is smalE=0.17 a.usVy,,=1 a.u).

V. BOUND STATES

The dependence on theal positivewave vectok allows
one to address questions arising in scattering prob[ddis
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dixR(x, K) = %([e-'“ +R(x, k) €*]PV(x). (16) )

The potential functiorV(x) possesses the structure

+0 NG e—KX” —R(X" e+;<x" §
V(X) = f V(x,x")cosh — k f % "rdx’. I IR| ‘oo/
« x e £ R(X")eH~ 0940 N
i . : . 10
The initial condition for the integration ar&(e,«)=0, 0
whereas the condition for the occurrence of the eigenvalue:-‘lg
E, is for E,=(ix,)?<0 the relation |R(x— —%, k,)|— o 2®

holds. Each pole oR(x— —«) on the positive semiaxis of
marks the existence of bound states. It is interesting to note %«”
that, althoughR is generally a complex function, the real
right-hand side of Eq(16) together with the initial integra-
tion condition require that the solution is real for any nega-
tive energy of the particle. Moreover, for a strictly attractive FIG. 4. The logarithm of the modulus of the reflection function
(repulsive potential the solution is monotonously decreasing|og|R(k+iK)| as a function of the real and the imaginary part of the

(increasing with x.

wave vector. The calculations are done for a Morse potential. The

In case the eigenfunctions need to be determined, in adnaxima on the imaginary wave vector axis indicate the positions of

dition to the eigenenergies one has to solveTor) by car-
rying out the integral

T(X, k) = exp{— f dx’zi[l + R(x’,Kn)e‘z"nx']\A/(x’)} .
o Kn

(17)

Having calculated both amplitud€¥x, «,) andT(Xx, x,,) one
substitutes in Eq(2) and obtains the wave function.

For a numerical realization, the equation Rx) has to

the bound(on the positive imaginary semiaxis>0) and antibound
states(on the negative imaginary semiaki€Other peakgpoles
mark the positions of the quasibound states that have a finite life-
time. The zerogminima) located symmetrically with respect to real

k axis) are the signature of resonant transmission through the
potential.

tanp(k — ©) —tanp(k =0) = w(N - 1/2).

An example of the behavior of the amplitude of the reflection
function R(—,k) in the complex-plane is shown in Fig. 4.

be regularized. This can be done, for example, by introducThe function is evaluated numerically for the symmetric

ing the tangent of the reflection function, i.e.,

R(X, k) =tanp(x, «),

1
ip(x, K) = ——[ €7 cosp(x, k) + & sin p(x, k) ]2V(X),
dx 2K

p(+,k) =0. (18)

The eigenvalue conditions and the potential functidix)
attain then the form

1

p(—OO,Kn)=(n+§)7T, n=0,1,...,

V(x):f mV(x,x’)

x' AKX — kX oj
Xcosr{—xf € cosp(x, k) — e SInp(X,K)dx,}

« €7'%cosp(x, k) +e*sinp(x, k)

xdx’ . (19

Morse potentiaV(x)=-V,/cosH(ax). The logarithm of the
modulus of R(-=,k) is depicted in Fig. 4. The finite ex-
tremal values ofR| at the eigenenergies are due to the finite
difference smoothing. We recall that the enerdigsof the
states associated with the Morse potential are known in
closed analytical form, namely

o2 [ av, 2
E,=—— 1+—-(1+2n
=T, 2 ( )

[15]. For the parameter valu&=3 a.u. andx=2 a.u. there

is a single eigenenergy,=-1 a.u. The wave vector is then
imaginary positive and has the valug=1 a.u) The pole on

the negative imaginary axis appears due to the so-called an-
tibound state; it is not permitted physically but it may change
the observable spectfa].

VI. QUASIBOUND STATES

As previously mentioned, the poles of the amplituR{e
— -, k=k+ik); k, k€ R for wave vectorgor energiescor-
respond to the stationary or quasistationary states of the sys-
tem. The conventional understanding of such a statés

Note that according to the Levinson theorem the differ-that the real part of the enerdg =g, +il'\/2=k?- «?+2ikk

ence between the tangent values calculatedkfo® and «
—oo can be used to evaluate the total numbkeof bound
states in the system, i.e.,

describes the position of the resonance in the spdtta
observable energy of the statehereas the imaginary part is
related to the resonance half-widih/2 or to the lifetime
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7.=2IT' of the state. A vanishing value of the imaginary part of the Schrddinger equation into the form
energyl’, =0 occurs for bound states and corresponds to an &y dT drR

infinite lifetime of the states. We note that in the literature the — + K= ik—[e+ikx - Re-ikX] - ikT—e ™, (AB)
term “quasibound” is used to refer only to those states which dx? dx dx

satisfy the conditiod’,/2<eg,, i.e., for states with a lifetime oW we evaluate the derivative of the wave functidzy.

large enough for a unique experimental identification of the(Az)] and compare with EA3). By doing so we conclude
resonance. The example shown in Fig. 4 illustrates how quapnai the quantitdT/dx is expressible as

sibound states appear as peaks located in the coniplex
plane. There are no poles on the real axis which indicates the dT _ —Td—R
absence of bound, square integrable states embedded in the dx  dxe'k<4 Rgikx
continuum. There are poles on the lower halkgflane. The
positions of these poles mark the resonance enesgiesth

—ikx
° (A6)

Upon substitution into the kinetic energy te#5) we con-

£q=K;~ 5. The inverse lifetimes of the states afg/2 clude that
=kqkq The zeros of the reflection functioR(k) are posi- d?y drR _ikx[e+ikx_ Re ] dr

. . . ay - e TRC 12 ik
tioned symmetrically with respect to the real wave-vector 2 +Ky=—ikT—e ik Tio ~IKT——e™

X T ) ) . d dx [e™+ Re™ dx
axis, which is consistent with the spatial symmetry of the

Morse potential. With increasing values of the real part of the _ 2ik dR
o = T—. (A7)
wave vector the positions of the zeros approach the keal [etk<+ Re™™] " dx
axis. Note that both the poles and the zeros have to be lo- ) o )
cated symmetrically with respect to imaginary axis The potential part of the Schrédinger equation possesses
the form
+o0 +o0
VIl. CONCLUSIONS V(XX ) (X )dx' = j V(x,x")T(X')

In this work we presented a method capable of dealing - -

with scattering, bound and resonant problems in one- ><[e+“<><' + R(x’)e‘ikx']dx’_

dimensional systems involving energy-dependent, nonlocal (A8)
potentials. We illustrated how the contributions to reflection

coefficient of various parts of the potentials can be visualize@ombining the potential and the kinetic energy pdis)
and how bound and quasibound states are manifested in tladd (A8) leads to the desired determining equation for the

present approach. reflection function which reads
E - i Fikx —ikx
APPENDIX xR = 2ik[e +Re™]
This appendix provides a detailed account on the deriva- e T i ik
tion of the determining equations fdk(x) and T(x). The X V(XX )[e +R(X')e ]
method relies on converting the second-order differential -
Schrédinger equation X' g ikx’ dR(X"
Xex —f — — R(X,)d)(’ dx'.
|: d? 2:| J+oc . « etk 4 R(Xn)e—lkx dx
— +k X) = V(x,X")(x")dx’ Al
0l $(x) 3 (X" )(x") (A1) (A9)
into two (coupled first-order differential equations. This is An important point is thal(x) does not depend dR(x), i.e.,
achieved by making the ansatz for the calculations of the reflection coefficients and the re-
Tk i lated physical quantities only the integration of a first-order
¥=TO[e™ + R(x)e™], (A2)  (differential equation is required. Using the identé#y*dR

=d(e"*+eR(x)) —ik(e™-eR(x))dx, Eq. (A9) can be
dy

YW ikToo[ e - Ry 4. (A3) recast in the form
dxF d

1 ) ) +o0
_XR(X) - _ T e+|kx+ R(x)e"kx Zf V(X,X/)

The aim is then to determine the functiom$x) and R(x) d 2ik
chosen appropriate for the problems under study. From the
X
Xexp) ik J
X

—c0

condition (A3) it follows that

eikx” + R(Xn)e—ikx”

' eikx” _ R(X") e—ikx” X/}dx’
[ - Re™] + (ik)?T[ e+ Re ] (A10)

dy_, a7
d@  dx
) o Finally we recall that the transmission-reflection problem
- lkT&e : (Ad4) s formulated as a Cauchy problem on the differential equa-
_ _ tions with the initial conditions in the spatial regionse+
Noting thatk?y=k?>T[e"**+Re™] we can recast the kinetic This means that the numerical integration of the equation for
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the reflection functiorR(x) has to be performed starting from If we are dealing with an eigenvalue problem we replace
the right side of thex axis and propagating to the left side. the real wave vectok>0 by a pure imaginary onk=i«x.
The opposite applies for the transmission funcfldr). Now  Then, the equation for the eigenvalues follows as

we assume for simplicity that the nonlocal potential is Her-

mitian [18]. Upon symmetrizing the exponential term in the

integrand occurring in EqA10) the integration region can

be restricted tdx, +o) [instead of(—co, +0)]. This is be-
cause, for an arbitrary symmetric functi@x,x’)=S(x’,x)
the rule [2S(x,x)dx =2fPS(x,x")dx =2[*S(x,x")dx ap-
plies. Thus, for a Hermitian potential the equation RiK)
can be recast as

+coo

%(R(x) =- %[eﬂkx + R(X)e_ikX]ZJX

X' eikx" _ R(X//)e—ikx"
xcosh ik f — 0 dX’
e|kx + R(Xn)e—lkx

V(x,X")

dx’

(A11)

with the initial conditionR(k; +)=0.

400

%(R(x) = %[e"‘x + R(x)e*"x]zf V(x,Xx')

X

x' e—KX" _ R(Xl/)eﬂcx”
xXcosn — KJ md)(' dx’
x € +R(X")e

(A12)

with the same initial condition as in E¢A11).

The differential equation for the functiof(x) is retrieved
upon substitution of the derivativéR/dx, as given by Eq.
(A11) or (A12) into Eq. (A6).
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