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Abstract

This article gives an overview on recent
achievements in the theoretical description of
electronic excitations in correlated many-body finite
and extended systems. Using the random phase
approximation we provide quantitative results for the
electron-removal probability from fullerenes and
small metal clusters. For extended systems, like solids
and surfaces, it is shown how the random phase
approximation can be implemented in ab-initio
schemes for the calculation of the electronic and
optical properties of materials.

I. Introduction

In his fundamental work on normal Fermi liquids,
Landau' underlined the crucial role played by the
quasi-particle (qp) and the quasi-hole (gh) excitations.
In an interacting system these excitations are closely
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related to excitations around the Fermi level of a non-interacting system with one
particle more or less. The qp and gh can be considered as the remnants of bare (non-
interacting) particles. This relation brings about considerable simplifications and a clear
understanding of the physics of low-lying excitations in correlated many-fermion
systems. For example, qp and gh excitations are the basis for the description of collective
modes, like zero-sound in liquid 3He, the plasmon modes in the interacting electron gas
and the giant resonances in nuclei and clusters. The universality and the power of
Landau’s theory is, however, limited by the need for introducing certain
(phenomenological) parameters that determine the character of the interaction between
the quasi-particles. The extension of Landau’s theory to the treatment of finite Fermi
systems has been put forward by Migdal®, In addition to the restriction of the Landau’s
theory for extended systems, in a finite system further assumptions has to be made, such
as the density dependence of the qp interaction.

For normal Fermi liquids with a sharp Fermi surface, a qp excitation is a well-
defined excitation with momentum 4y and is characterized by a strength parameter zz,
the so-called the strength at the qp poles. This strength parameter can be interpreted as
the probability for the addition to or for the removal from the correlated ground state a
bare particle with momentum ks, while ending up in the ground state of the system with
one particle more or less. Both these states are characterized by the Fermi energy Ef for
infinite particle number, In this limit the quasi-particle and the quasi-hole have a well-
defined energy (Er) and therefore correspond to excitations with an infinite lifetime.
This qp picture is expected to be less viable for momenta far from kg, where the peak in
the sp strength distribution develops a width that increases with large deviations of the sp
momentum k from kg. Therefore, for these momenta k, the qp and gh excitations have in
general a finite lifetime describing thus damped excitations.

In finite systems with shell structure, such as spherical metal clusters treated in the
next section, the relevant sp quantum numbers for the qp excitations, correspond to those
of sp shell model states with energies close to the Fermi energy. These quantum numbers
play a role equivalent to that of the sp momentum in the infinite Fermi liquid which
equals & for the gp excitations.

Recent progress in the electron addition and removal spectroscopies, such as single
photoemission and fully resolved inelastic electron knock-out collisions (also called the
(e,2e) process, one electron in two electron out) produced reliable information on the
momentum distributions of gh excitations. In particular the (e,2e) experiments yield the
values of the removal probabilities providing thus the strength of the gh excitations.
Furthermore, these experiments offer a possibility to investigate excitations which carry
a very large fraction of sp removal strength concentrated at a single energy (sharply
defined quasi-holes) in contrast to strength distributions displaying strong fragmentation
in energy (strongly damped excitations).

This work deals with the realistic (parameter free) calculations of the various
quantities needed for the description of excitation processes in finite and extended Fermi
systems. In particular, we calculate the electron removal probabilities from spherical
metal clusters and from the Cs molecule. The calculations are based on self-consistent
Hartree-Fock approximation for the single-particle orbitals and on the random-phase
approximation (RPA) for the treatment of the particle-hole excitations. In the second part
of this work we address the treatment of electronic excitations in extended systems using
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the Green’s function theory. More precisely we employ the Hedin equations within the
GW-approximation and show how the quasi-particle properties can be evaluated in a
tractable and parameter free manner.

I1. Excitations of clusters: The random-phase approximation

In a series of experiments™® 3 the probability for the removal of one electron from
the valence band of the carbon fullerenes (Cgo) has been measured. The excitation of this
valence electron has been induced by an approaching projectile electron. Density
functional calculations with the local density approximation as well as Hartree-Fock
calculations failed to reproduce the excitation probability as function of the excitation
energy™”°, As shown below the reason for this shortcoming of the effective single
particle theory is the neglect of collective effects build out of particle-hole
de(excitations).

Let us consider the dynamics of the electrons in a cluster of atoms under the
influence of an external time-dependent perturbation SU(r, £). The perturbation may be
induced by an impinging electron (that acts as a test charge) or by an electromagnetic
pulse. The response of the system is measured in terms of electron removal probabilities
from the valence shell.

In presence of the external source the dynamic of the electrons in the cluster is
determined by the Hamiltonian

H(r,t) = Hox) + 6U(r, t), (1)

where H; is the self-consistent mean field Hamiltonian in absence of the perturbation.
To determine the solution of the time-dependent Schrodinger equation (atomic units are
used throughout)

[z-a. + Hir, t)] U(r,8) =0

we write the total wave function as an antisymmetrized product of single-electron wave
functions, i.e.

U(r,t) = e~Fot det [z, O]l (2)

where E; is the Hartree-Fock energy of the system's ground state and is determined as
the following expectation value

Bo= 3 (i~ % = Vina i) + 5 3 (Kl — ki)
i ik

The bare (Coulomb) interaction between the electrons is 4 = h‘Tll"l

Each of the time dependent single particle orbitals #(r, f) can be expanded over a
set of time-independent Hartree-Fock orbitals
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Yile,t) = Ai |4i(r) + D Cos(B)pm(r) | - ©)

Here m denotes states above Fermi level Ep (particle states) whereas i labels the states
below Ep (hole states). The factor A is a normalization coefficient. From the meaning of
the indices ¢ and m one concludes that the expansion coefficients C,(f) are the
probability amplitudes for the creation of the mn-i electron-hole pair. The sum in Eq.(3)
implies a summation of the discrete states and an integration of the continuum (particle)
states, The admixture of particle-hole excitation amplitudes C,(t) are determined by
inserting Eq.(3) into Eq.(2) and requiring

(W(r, )| B — i% %(r, 2)) = 0. @

Expanding in terms of the coefficients C,{f) # 0 and accounting for the first non-
vanishing terms one obtains the relation

iy Cmi H=> {(sm— &) [Comi(t)1” -+ Cona(8) (8] 8U ) + Cr(t) (m| 6U i) +

iSep<m i<ep<m

+E[ Crs(OC5(t) {mk| w i — 7i) + 5 Cm.(l)CLJ(t)(IJJ [mk — km) + Cry(#)Cj(t) (mi] u VU"'J)]}

jEep<k

The variation with respect to Cyy,;(t) gives

1—% Crni(t) = (em— &) Ca(t) + (m)| 8U i) + Y [Ciy(2) {mbk| u |if — ig) + Ciz(2) (mil w|ik — k3)] . (5)

jler<k
The solution of the equation has the form
Co(£) = Xonse ™5+ Vel ©)

Here & is the energy carried by the external perturbation (the incoming projectile). With
the ansatz (6) we obtain from Eq.(5) two coupled equations for the determination of the

coefficients X,,; and Y,;, namely

(Em— & €0) Xmi +{m| SU i)+ Y [(mjlulki - ik) Xi; + (mklulji — i) Yig) =0,  (7)

J<er<k

(em— et £0) Yot + (36U m) + E [(@g] u lkm — mk) Xi; + (ik|u |jm — mj) Yi;] = 0. (8)

j<er<k

Introducing the notation
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'_(em_ €i— E(]))(rm' = (ml Fﬂ}'] |"') ’ 9
—(Em_‘ei+ E:())},mi = (le:ff |m) ) (10)
where F, sy stands for the effective external perturbation we conclude from Eqgs. (7, 8) the

central equation that determines the excitation amplitude of the system in response to an
external perturbation (the exchange effects)

(m] Py i) = (mloULs) +9

j<lep<k

[(kl Fugg 13} (i = ) | Gl Py IB) k] w1  5)
€0 — Ex +.€; +iv Egt&r — 85— i )

The approximations leading to this equation are called the random-phase approximation
with exchange. Relation (11) implies that excitations in the clusters due to an external
perturbation are determined not only by the nature of U but also by the all behaviour of
the system. The latter is constructed as a coherent superposition of excitation and de-
excitation amplitudes between hole to particle states and vice versa. The collective
behaviour of the system can be viewed as a dressing of the external perturbation to result
in the effective interaction F, ;5. In the above considerations we employed a test charge
(the approaching projectile electron) to assess the correlation in the system. The same
above arguments apply as well to the two-particle Coulomb interaction u present in the
system. Similarly to Eq. (11) the interaction u is modified by the surrounding medium.
As in Eq. (11) the modied (screened) interaction w can be expressed in the algebraic
operator form

W =U+UnW, (12)

where I1 is the so-called polarization function that describes the particle-hole creation
and annihilation. The screening of u in metallic extended systems is significant. For a
small system with a discrete spectrum it is however not clear how the dressing of the
interaction u will be manifested. Fig. (1) shows the cross section for the removal of an
electron from the valence band of the Cg molecule induced by the impact of an electron
with energy Eo. As clear from Fig. (1) density-functional calculations (within the local-
density approximation) or HF calculations fail to describe the experimental electron
removal probabilities, unless the correlated excitations and de-excitations of the ph-pairs
is taken into account, meaning that even in small systems the dressing of the bare
interaction plays a decisive role.

The importance of the charge-density fluctuations on the excitation processes in Ceg
raises the question of the system size dependence of the excitation and the de-excitation
amplitudes. To address this question we considered within the spherical jellium model
the electron-removal amplitudes from Li clusters with varying sizes. For a judicious
conclusions we normalized the cross sections to the number of electrons in the various
clusters. The influence of the ph-excitation amplitudes is elucidated by comparing the
results within the RPAE and without any account for the ph-excitations (cf. Figs. (2)).
As clear from Figs. (2), for small clusters there is hardly an influence of the ph-
(de)excitations. On Lhe other hand, with increasing system size one observes a striking
influence of charge density fluctuation on the cross section in particular at low energies.
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Figure 1. The absolute total cross section for the removal of one electron from Cg; upon the
inelastic collision of electrons with the impact energy displayed on the axis. The experimental data
(full squares) are taken from Refs.*¥. The solid curve with crosses is the result of DFT
calculations® whereas the dotted curve shows the present theory without RPAE. Theoretical
results based on RPEA are shown by the solid curve.
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Figure 2. The electron-impact total ionization cross section for spherical L; clusters with varying
radius size Ry;. (a) shows the RPAE calculations. (b) shows the results when the particle-hole
(de)excitation is neglected.

II1. Green’s function method
A. General consideration

The Green’s function method is a powerful tool for studying ground state and
excited state properties of condensed matter materials. The basic idea of the Green's
function has its origin in the theory of differential equations. Any inhomogeneous
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differential equation with a Hermitian differential operator H, complex parameter 2, and
a given source function u(r) of the form

[z - ﬂ’] ¥(r) = u(r) (13)

can be represented as an integral equation
1/1(]‘) = <p(1‘) +fG(I‘, r';z)u(r']. (14)

Here the so-called Green’s function G(r, r’; 2) is a coordinate representation of the

resolvent of the differential operator H , obeying the differential equation
[z = H(r)] G(r,r';2) = 8(r — 1), ' (15)

and the function ¢(r) is a general solution of the homogeneous equation associated with
Eq. (13). This method is in many cases very convenient and widely used in many-body
physics. In this review we shall consider the formalism of the Green’s function method in
condensed matter physics at the absolute zero temperature. This case can be generalised
to finite temperatures but will not be considered here.

The evolution of an N-body system can be obtained from the time-dependent
Schrédinger equation

L
ih ;i = HY(t), (16)

where ¥(t) = ¥(ry,ra,...,ra;t) is a wave function of the system and H is the many-
body Hamiltonian, which includes the kinetic energy and interactions between particles.
Knowing the wave function U(f), an average value of any operatorﬁ can be obtained
from the equation:

A(t) = (T*(8) AT(t)) . (17)

The many-body wave function can be expanded in a complete set of time-independent
single-particle states ¢(r):

U(ry,re,..IN3t) = Z Clirig,.in}(8) &4, (r1)di (ra)... iy (*n). (18)
{i14i2,...in}

The basis set can be arbitrary, but in practice one uses functions which are adequate for
the particlar problem. For example, the plane wave basis is appropriate for description of
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a system with free or nearly free electrons. For systems with localised electrons one
usually takes atomic-like functions. For systems with a large number of particles solving
Eq. (16) using the basis expansion (18) is very difficult. To describe a system with N-
particles one can use second quantisation, in which instead of giving a complete wave
function one specifies the numbers of particles to be found in the states ¢i(r), ¢(r),...,
¢(r). As a result the many-body wave function is defined by the occupation numbers
and Hamiltonian, and any other operator can be expressed in terms of the so-called
creation and annihilation operator & and ¢, obeying certain commutation or anti-
commutation relations according to the statistical properties of particles (fermions or
bosons). The creation operator éf increases the number of particles by one, while the
annihilation operators ¢(#) decreases the occupation number of particles by one. Any
observable can be represented as some combination of those operators. For example, the
one-particle operator (17) can be expressed as follows:

A=Y Auéter, (19)
ik

where A are matrix elements of the operator A . Sometimes it is convenient to use field
operators

gHr) = Do ou)
P(r) = z:qsi(r)é.- !

(20)

which can be interpreted as creation and annihilation operators of a particle at a given
point r. In this representation a single particle operator is given as

Ay = [ drit () Ad(x). (21)

Suppose we have a system with N particles in the ground state, which is defined by the
exact wave function Uy. If at time f, = 0 a particle with momentum ky will be added into

the system, this can be described by ¢, |¥o). The evolution of the system in time will
now proceeded according to e“"m‘““)”‘ctolllfo). The probability amplitude for the
existence of the added particle in the momentum state k, is a scalar product of
—iH(t—to) /N .+ . F g . |
g~ t=t)Rel |Wo) with the function describing the ground state at time ¢ plus a particle
added in the state k at time £ cfe *7(~%)/A| Ty} Then the resulling probability
amplitude is given by (Wo|etA(t—to}/hey g=iH(t~to}/ Ak |Wo). Analogously, the existence of
an empty state can be described with the function :!:(\Il(,le‘m“"O)/“cf[oe”;’“"*')f"ck|\Ilo),
where plus sign applies to Bose statistics and minus sign to Fermi statistics. Both
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processes contribute in the following definition of the one-particle causal Green's
function:

Gk, t; ko, to) = —i(Wo|T' [&x(t)&F, (to)] [Wo)- (22)
Here we have used Heisenberg representation of the operators & and Eji':

ék(tJ = eu'ltcke-uivt : 23)

The symbol T is Wick’s time-ordering operator which rearranges a product of two time-
dependent operators so that the operator referring to the later time appears always on the
left:

ék(t)é:o(tu) (t > to)

T [&(t)ef (to)] = v
0% )] = ) Lot oyt (t <to) e

The physical meaning of the Green’s function in the momentum space is that for £ > ¢,
G(ko, to; k, #) describes the propagation of a particle in the state k; created at time ¢, and
detected in the state k at time ¢. For t < 4, the Green's function describes the propagation
of a hole with wave vector k emitted at time ¢ into the state kp at time #,. Analogously to
the above, one can write down the Green’s function in the real-space representation:

G(ro,toiv,) = ~i( ol [{(xo, to)* (5, 1) W), (25)

where 1}:(r,t) and §*(r, ) are particle annihilation and creation operators (23).

The one-particle Green's function has some significant properties which make the
use of the Green’s function method in condensed matter physics attractive. The main
advantage of the Green’s function is, that it contains great deal of information about the
system in a considered time interval. Knowing the single-particle Green's function, one
can calculate the expectation value of any single-particle operator in the ground state:

ll [ :I:z'f L‘_]_l’ltl_}o l!'l_lzlr A(r)G(r, r’,t')] dr. (26)

As a consequence, the charge density and total energy can also be found for any system
in the ground state at the absolute zero temperature. Another important property of the
Green’s function is that it can describe single-particle excitations. In that follows, we
shall discuss the latter in more detail.

We start from the definition of the Green’s function in the momentum representation
(22). For simplicity, we can consider only diagonal elements of the Green’s function (k =
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ko). The chronological operator T can be mathematically expressed via Heaviside
function &2), which leads to the following equation for the Green's function

iGu(t — 1) = 6(t ~t') Y e BBy 4 q|gh V)P
n

' ; Fie (27
+0(t' - 1) Y e B BTNy o NP

Here EX*1 and EN-! are all the exact eigenvalues of the N + 1 and N - | particle

systems respectively, n is all quantum numbers necessary to specify the state completely,
and EY is the exact ground state energy for the system with N particles (n = 0). Using the

oy
integral formula of the 8(t) = — hn% 53 {0:::;, the Green'’s function of the above
form can be easily Fourier transformed into the energy representation:
(N + 1]k IN) — e N}
G
k) = l;:—-o ;w— [ENH — EN] 44Ty ¥ ; [FN EN-1 4T, (28)

The equation (28) provides an insight into the analytical properties of the single-particle
Green’s function. The frequency w appears only in the denominator of the sum of the
above equation. The Green’s function is a meromorphic function of a complex variable w
and all its singularities are simple poles, which are infinitesimally shifted into the upper
half-plane of wwhen w> 0 and into the lower one if w< 0. Each pole corresponds to an
excitation energy. If we set now

Byt~ By = (BYY - BT + (B - BY) =wn -
B B = (BY - By + (B - BY) = - 4, (29

then w, and w; denote excitation energies in the (N + 1)-and (N — 1)-particle systems

respectively and 4 and £/, known -as the chemical potentials, are changes of the ground
state energy when a particle is added to the N-particle system or otherwise is removed
from the N-particle system. In the thermodynamic limit (N — o0,V — o0, N/V = const)

one can assume, with an error N™', that
#
we R, pra,

where u is now the chemical potential of the N-particle system, Another simple property
of the Green’s function that follows from the Eq. (28) is that for |w| very large:

Gule) ~ = (30)
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It is convenient to introduce the spectral densities:

A (W)

il

> (N + 1|6 IN)*6(w — wn)

A @) = SUN = UadN) 6w - wa),

which are real and positive functions, and whose physical interpretation is simple. The
spectral density function Ajf(w) gives the probability that the original N-particle, system
and a particle added into the state k will be found in an exact eigenstate of the (N + 1)-
particle system. The spectral function A} (w) counts the number of states with excitation
energy « and momentum k which are connected to the ground state through the addition
of an extra particle. In a system with non-interacting particles, Ajf (w) is just the density
of states, which shows that a particle with momentum k definitely has the energy w
Similarly, the function Ay (w) is the probability that the original N-particle system and a
hole will be found at an exact eigenstate of the (N — 1)-particle system. Using the
spectral density functions (31), we may write the causal Green's function (28) in the
Lehmann representation:

m iy £ A} (w) )
Gﬂw)—r‘:ﬂ.‘oof [w—(wnwmm*Zw—wn—u—m : GD

n

In addition, the spectral density functions (31) may by expressed via the causal Green’s
function (28):

Il

Af(w — )

Ap(w—p)

1
—;r-lm Gy(w), w>p

:I:;lr-lm Cxlw), w<u.

B. Quasi-particles
From the Lehmann representation of the Green’s function (31), it easy to see that the
special features of the Green’s function come from the denominator whose zeros can be

interpreted as single-particle excitations. If the Green’s function has a pole wy in the

momentum state k, then the spectral function Ajf (w) will have a strong maximum at this
energy wi = w — . If the 65| N) were an eigenstate, the peak would be a &-function. In
the presence of an interaction, the ct|N) will not be, in general, an eigenstate, because

the system will have many other states with the same momentum and energy, and an
exact eigenstate will be a linear combination of the respective single-particle states with

energies spread out by the interaction. The shape of the function A (w) will be strongly
dependent on the interaction, and the stronger the interaction the greater the spread of

energies and so the greater the width of the function A (w). One can expect that if a pole
is infinitesimally displaced from the real axis, the Green’s function can be written as
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2k
Gk(w) = m a7 ¢k(w)v w > U, (32)

where z is the residue of Gy(w) at the pole, and ¢(w) is a smooth function. This yields
for the spectral function

Re 2 + Im 23 (w — wy)
- +TE | &

Ag (w) ~

One can see from the last equation that the shape of Af(w) is determined by the pole in
the complex plane, and in the limiting case, Im # = 0, it has the symmetric Lorentzian
form. In general, the spectral function has the asymmetric Breit-Wigner shape as
illustrated in Fig. 3. The peak in Af(w) is associated with a quasi-particle state or

elementary excitation, The physical meaning of I'y is clearly seen from the Fourier
transformation of Eq. (32):

iGy(t) ~ et Tt Ty 50, t>0. (34)

This shows that I'y is the inverse lifetime of the particle. For negative I'y there are only
contributions from the poles to the Green’s function if ¢ < 0. In this case, the Green’s
function describes quasi-holes rather than quasi-particles.

h

A’ @

7
g N

o, (]

Figure 3. Spectral function Aff (w) with a quasi-particle peak of energy wj, > g with lifetime I';".
C. Self-energy ]

The exact explicit expression for the single-particle Green's function or its spectral
function is only known for a few systems. In practical applications one usually takes
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some approximations for the Green’s function, which can be afforded by specific
properties of a particular problem. Many approximations start usually from the equation
of motion. Without any loss of generality, we shall consider this approach for systems
with translationally invariant symmetry, where all equations can be easily manipulated in

the momentum space representation, since all entering functions are diagonal in A-space.
One usually starts with the Heisenberg equation of motion for the annihilation field

operator 1y (t)

i = [d(0), 4], (35)

and with a similar equation for the creation field operator i:(t) The Hamiltonian
operator

H=H+V (36)
can be split into a non-interacting part Hy and an interaction V. The non-interacting part

includes the kinetic energy, the Coulomb potential from the nuclei and the Coulomb
potential from the electron charge density. The Green’s function, G%(w), of the non-

interacting part H, and the dispersion law w@ are known, and by using Eq'. (22), the
equation of motion for the Green’s function can be written as

i3~ ut] 6wt - [atma—t)6u) = 00 | @

Here Ly (¢ — ) is a mass operator which contains all exchange and correlation eftects.

In the energy representation this equation has more simple form:

[w — W] Gie(w) = Tie(w)Cr(w) = 0. (38)

If GY(w) is the Green’s function corresponding to ¥x(w) = 0 then we have the Dyson
equation:

Gr(w) = Gh(w) + G (w) Bi(w) Gre (w) (39)
with the formal solution

1

Gd) = T Sy (40)
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To solve the Dyson equation we have to evaluate the self-energy, which is completely
defined by the interaction V. in the Hamiltonian (36). The simplest approach for the self-
energy, as can be seen from the equation (36), is the Hartree approximation:

£ =Ty =0 (41)

corresponding to the case of ¥ = 0. The Hartree potential is already included in Hp of
Eq.(36).

Straightforwardly, the self-energy can be evaluated by using Wick's theorem,
Feynman diagram technique or by Schwinger functional derivative method. When
dynamical interaction effects are taken into account, the self-energy is a functional of the
full Green's function and can be expressed as a series expansion in a dynamically
screened interaction W. In turn, the screened Coulomb interaction can be expressed via
the polarisation function P which is also a functional derivate of the full Green's
function. One can also show that all functions appearing in the evaluation of the full
Green’s function and the self-energy, form a set of coupled integral equations which are
well known as the Hedin equations, Here we present this set of equations, as it common
in literature, in the real-space - time representation (the symbol " means lim 7 - 0
(t + 1) where 7 is a positive real number)

G(1,2) = Co(1,2) + f d(3,4)Co(1, 3)2(3, 4)G(4,2), 42)
£(1,2) = i f d(3, W (1,3%)G(1, 9A(3,2,4), @3)
W(L,2) = u(1,2) + [ d(3, 9P, HW(4,2), 4
P,2) = —i / d(3, G, A(3,4,2)G(4, 1), (5)
A(1,2,3) = 6(1— 2)8(2 - 3) + [ d(4,5,6, 7)228 ﬁ;c:(:;, 6)G(7,5)A(6,7,3), 46)

where we have used an abbreviated notation (1) = (ry, ;). Here v(1,2) = v(r,r')8(t; —t2) s

the bare Coulomb potential, and A(1, 2, 3) is the vertex function containing fluctuations
of the charge density. The Hedin set of equations should be solved self-consistently: one
sets Z = 0 in the Eq. (46), then one calculates the polarisation function (45) with some
starting Green’s function, the screened Coulomb function (44), the self-energy (43), and
the new Green’s function with the Dyson equation (42), which should be used with the
self-energy for evaluation of the vertex function (46). This process should be repeated
untill the resulting Green's function coincides with the starting one. For real materials
such calculations are very difficult, mainly because of the complicity of the vertex
function (46). In practice one usually approximates one or more functions, appearing in
the Hedin set of equations (42)-(46).
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Before we turn to practical approaches for the self energy, we shall consider its
characteristic features following from quite general considerations’, The singularities of
the exact Green’s function G,(w), considered as a function of w, determine both the
excitation energies wy of the system and their damping I'y. From the Lehman
representation (31) and the Dyson equation (40) it follows that the excitation energy wy
is given by

wk = wy + Re Ty (wi). 4n

Analogously, the damping I'y is defined by the imaginary part of the self-energy:
ORe &
Iy=[1- fiT"[W")}“IIm Zrewne). (48)

Since from (30) the Green'’s function for large |¢f is

[G’k(w]]" =w+ax + &/w+ ..., 49)

it follows from (40) that the self-energy at infinity

De(w) = —(w® + ax + bi/w+) (50)

is regular function. Further, since the imaginary part of the Green’s function never
vanishes unless on the real axis, the Green’s function Gy(«) has no complex zeros. From
the analyticity of Gy(w) it then follows that Z,(w) is analytic everywhere in the complex
plane with the possible exception of the real axis. The self-energy has a spectral
representation similar to that of the Green function:

1 Im Xy (o’

c

Another important property of the self-energy when w approaches z':
[Im Ey(w)| ~ (w — p)*. (52)

This relation is not valid in general because one of its consequences is the existence of a
sharp Fermi surface, which is certainly not present in some systems of fermions with
attractive forces between particles.



582 Oleg Kidun et al.

D. Kohn-Sham approximation for the self-energy

In the last section we have discussed the general properties of the Green’s function
method and how the Green’s function is related to quasi-particle excitations. Now we
shall consider some practical approaches for the self-energy, with that we can solve the
Dyson equation (39) on the first-principle (or ab-initio) level. One of the most powerful
and widely used ab-initio methods is the density functional theory (DFT), based on the
Hohenberg and Kohn theorem, which implies, that all ground state properties of an
inhomogeneous electron gas can be described by a functional of the electron density.
This theorem provides a background to obtain self-consistent equations for the
description of ground state properties. Further development of the density functional
theory was done by Kohn and Sham®, which used the total energy functional to obtain
self-consistent equations for the charge density. The total energy, which is a functional
of an external potential, yields from

E*™] = roin { / v**(r)p(r)dr + % / f |rp Erz_,ldr +Tlo] + E“[p]} ; (53)

ext

Here the first term is the potential energy of the external field v™(r), the second one is
the Hartree energy, T1p] is the Kinetic energy, and the exchange-correlation energy E, [p]
entails all interactions, which are not included into the Hartree term. The charge density
p (r) can be expressed through the orthonormal functions ¢(r) as

oce.

plr) = Z les(x[*. (54)

Varying the function ¢(r) one obtains a set of equations, which has to be solved self-
consistently to provide the minimum of the functional (53). This scheme corresponds to
the single-particle approach, in which electrons move in an effective potential

v (r) = 0™ (r) + v (r) + veg(r). (55)

Here vy(r) is the Hartree potential and v,,(r) = 5—‘!?;—;%%;—]1 is the exchange-correlation

potential. The one-electron wave function ¢(r) satisfies the Kohn-Sham equation, which
is a single-particle Schrodinder equation

2
[_%— + '"c”(r)] @ilr) = expu(r). B

The functional (53) provides in principle the exact ground state energy if the exchange-
correlation energy E. [p] is known exactly. For real systems this functional is difficult to
find and this remains the main problem of the density-functional theory. For applications
the exchange-correlation energy E.[p] is usually approximated by some known
functionals obtained for some more simpler systems. One of the most popular
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approaches is the local-density approximation (LDA), in which the exchange-correlation
energy E,[p] of an inhomogeneous system is approximated by the exchange-correlation
energy of a homogeneous electron gas, Thereby all many-body effects are included in
the local exchange-correlation potential, which depends on the electronic density and
some parameters obtained from many-body calculations for a the homogeneous electron
gas®'% In the case of a slow varying electronic density the LDA works well and is
widely used for many systems in the last three decades (see review by R. O. Jones and
O. Gunnarsson''), The simplicity of the local density approximation makes possible to
solve the Kohn-Sham equation (56) with different basis sets and for different symmetry
cases. When the on-site Coulomb interaction dominates the behaviour of electrons
(strongly correlated systems), the local-density does not work well, and another
approximation of E, [p] is needed.

As was already mentioned above, the density functional theory is designed for study
of ground state properties. It is intuitively reasonable to interpret the eigenvalues & in the
one-particle equation (56) as excitation energies, but as it was pointed out by Sham and
Kohn'?, there is no real justification for such an interpretation. However, according the
Hohenberg-Kohn theorem, also the Green’s function and thus the self-energy are
funictionals of the electronic density. In this way one can use the theorem for a discussion
how to calculate the excitation spectrum. For the self-energy one can use the local
density appro;(imation'2 :

B(r, r'jw) & Zo(r — r',w — V(r)), (57)

where ¥, is the electron gas self-energy, evaluated for zero Hartree potential, which
explains the appearance of the potential V(r) in the argument, The potential 2 is still not
local in the space. When the electronic density is slowly varying, the self-energy can be
used in the form

5 A Bo(w), (58)

where «j is the quasi-particle energy. Further approximation can be done when X g(wx)
depends weakly on k, that corresponds to not too highly excited states (w S 2u). In this
case the self-energy can be replaced by the exchange-correlation potential:

y— Ve (59)

This assumption makes possible using the density functional theory for quasi-particle
calculations. The single-particle Green’s function, obtained from the Kohn-Sham
equation (56), may be used for spectroscopy calculations if energies are not too high.
This fact led to the development of variety of methods on the first-principle level, which
are successfully applied for many spectroscopy phenomena (see recent reviews in'>'!)
An example, how the density functional theory within the LDA does work, is illustrated
in Fig. 4. Here we present calculated by a self-consistent LMTO method"” and
experimental'® magneto-optical spectra for iron. Because the magneto-optics belongs to
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Figure 4. Calculated" and experimental ® magneto-optical spectra of Fe

the low-energy spectroscopy, one can expect, that the use of the LDA is reasonable.
Indeed, the calculated polar Kerr rotation and Kerr ellipticity agree very well with the
experimental curve. The theoretical curve reproduces all main features of the
experimental result. With increasing the energy the agreement with experiment is getting
worse, that can be explained by deterioration of the LDA approximation for high excited
states. The theory could not represent also the magnitude of the experimental curve for
whole energy range, and this is related to the damping of the quasi-particle states. The
main failure of the LDA in the description of spectroscopic phenomena is inability to
reproduce the damping of single-particle excitation, which is defined by the imaginary
part of the self-energy (48). This part is not present in the approximation (59). In practice
the spectrum is usually smeared by Lorentzian broadening with some constant width I,
but it is not sufficient approximation, because in reality the damping has more
complicated behaviour. An evident case when the LDA does not work is shown in the
Fig. 5. Here we present photoemission spectra for silver at a photon energy of 26 eV.
The solid line shows a theoretical spectra calculated by authors using a self-consistent
Green's function method'™® within the LDA. The dashed line reproduces the
experiment'’, The low part of the spectra (up to 5.5 eV below the Fermi level) is adequately
represented by theory. At the energy 5.1 eV below the Fermi level the experiment shows
a peak corresponding to an 4d-state, which is predicted by theory at 3.6 eV below the
Fermi level The discrepancies are related to the inadequacy of the local approximation of
#(r) and to the failure of correlating single-particle eigenvalues with excitation energies
in the photoemission experiment. Below we point some serious faults of the DFT and the
LDA in the description of ground state and quasi-particle state properties:
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Figure 5. Photoemission spectra of silver at a photon energy of 26 eV: theory (solid line) and
experiment (dashed line)'®

e Approximation of the exchange-correlation energy is crucial point of DFT
calculations. Existing approximations are usually applicable for systems with low
varying electronic densities. In presence of strong-correlated electrons the LDA does
not provide reasonable results.

o The LDA is not self-interaction free. The unphysical interaction of an electron with
itself can be subtracted if the electron is sufficiently localized”. This remarkably
improves the total energy and other ground state properties, but excited states are
still described badly because the Kohn-Sham approximation (59) is not appropriate
for strong localized electrons. Applying the SIC method for extended systems is
difficult since electron states may be not localized in such systems.

e The band gaps in sp-semiconductors like Si, GaAs, Ge, etc. are by 70-100%
systematically underestimated.

e The damping of excitation states can not be conceptually described within the
density functional theory.

The main reason for all those discrepancies of the DFT is a fact, that the density
functional theory is not naturally designed for excited states. The approximation (59) is
conceptually right only for specific materials and for a limited range of energies.

E. GW approximation

Here we shall consider more natural way for the self-energy approximation using
the Hedin’s set of equations (43)-(46). Most difficult part of those equations is the
evaluation of the vertex function (46). The vertex function entails correlation effects and
is defined implicitly through the Bethe-Salpeter equation, which involves a two-particle
Green’s function. The functional derivative 82/5G is not trivial to obtain, because the
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Green’s function is not explicitly contained in % but only calculated from it by mean of
the Dyson equation (42). If electrons interact not too strongly, this functional derivative
is close to zero, and the vertex function is given then by the following simple

- 2
equation®®?%;

A(1,2,3) ~ 6(1 — 2)5(2 — 3). (60)

This yields a simplified version of Hedins set of equations (in real-space/time
representation):

(1,2) = iW(1,2)C(1,2), (61)
W(1,2) = v(1,2) + f d(3, )W (1,3)P(3, )v(4,2), (62)
P(1,2) = ~iG(1,2)G(2, 1). (63)

In this approximation the self-energy is expressed as a product of the self-consistent
single-particle propagator G and the self-consistent dynamically screened interaction W,
that gives the name for the approximation: GW. The GWA is consistent in the sense that
it is a particle- and energy-conserving approximation in the Baym-Kadanoff sense™2,
The GWA corresponds to the first iteration of the Hedin’s equations and can be
interpreted as the first order term of an expansion of the self-energy in terms of the
screened interaction. The equations (42), (61)-(63) can be solved self-consistently but in
practice, such a determination is computationally very expensive. Moreover, the
experience with self-consistent GW implementations (see the review by F. Aryasetiawan
and O. Gunnarson® and references therein) shows that in many cases the self-
consistency even worsen results as non-self-consistent calculations. The main reason for
it is the neglecting the vertex correction that to say correlations. Most existing GWA
calculations do not attempt self-consistent calculations but determine good
approximations for the single-particle propagator G and the screened interaction
separately, i.e., these calculations adopt a “best G, best W”philosophy. The common
choice for the single-particle propagator is usually the LDA or Hartree-Fock Green's
function. Using this Green's function the linear response function is obtained via the
equation (63), and afterward it is used for the calculation of the screened Coulomb in-
teraction (62). The self-energy is then determined without further iteration. Nevertheless,

with the first iteration of the GW approximation encouraging results have been achieved.

In Fig. (6) we show a typical result for the energy bands of MgO within the GWA
(dotted line) compared to the conventional LDA calculation. As clear from this plot the
GWA gap is in much better agreement with the experimental value that the LDA
calculations. :

Below we consider briefly some existing implementations of the GW method. More
detail can be found in the original papers and in the reviews™>%, The integral GWA
equations (42),(61)-(63) can be represented in some basis and solved by matrix inversion
in the real or reciprocal space. The basis should be appropriate to the symmetry of the
particular problem and be able as accurate as possible to represent quite distinctive
behavior of the GW operators.
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Energy (eV)

Figure 6. Energy bands of MgO from KKR-LDA (solid) and GWA (dots) calculations. The LDA
band gap is found to be 5.2 eV, the GWA band gap is 7.7 eV which is in good agreement with the
experimental gap of 7.83 V.

¢ Plane wave methods

Pseudo-potentials in conjunction with a plane wave basis set are widely used in
computational condensed matter theory due to their ease of use and systematic
convergence properties. Because of simplicity of the GW equations in the plane wave
basis, the implementation of the GWA is easy, and many pseudo-potential codes entail
a GW part. Conventionally a pseudo-potential method can be applied for electronic
structure study of systems with delocalised sp-electrons for which the plane wave basis
converges rapidly. But due to recent development of the pseudo-potential technique new
ultra-soft pseudo-potential methods can be also applied to materials with localized d- and
f-electrons. Most of existing pseudo-potential programs are well optimised and
successfully used not only for bulk-systems but also for surfaces, interfaces, defects, and
clusters. A disadvantage of the plane wave basis is bad convergence for systems with
localised electrons. For transitions metals or f-electron systems one needs more thousand
plane waves. Also the number of basis functions needed for convergence is increasin
with the volume of the system. Typically a plane wave GW calculation scales with N,
that makes expensive calculations of extended systems.

¢ The Gaussian basis method

Rohlfing, Kriiger, and Pollman®’ have developed a GW method which combinates a
pseudo-potential basis and localised Gaussian orbitals. In this approach the LDA Green
function is obtained by a conventional pseudo-potential method. Afterwards the Green
function and all GW equations are represented in the localised Gaussian orbitals. This
lets essentially reduce the size of the problem. Typically one needs 40-60 Gaussian
functions. Another advantage of the method is that many of integrals can be calculated
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analytically. Because the pseudo-potential part is restricted for sp-electron compounds,
the method can not be used for systems with localised electrons. A serious problem of
the approach is the convergence of the Gaussian basis: while a Gaussian basis can
systematically converge, the number of the basis functions needed for convergence can
be quite various for different materials.

¢  The spacetime method
Most of existing implementations of the GWA are realized in the real energy-reciprocal
space representation. In this approach the evaluation of the linear response function

Pylw) = /ds [ dkGEP4 ()G e — w) (64)

and the self-energy

Bo®) = 731 ),f f AW (GEZA(e ~ ) (65)

—o00

involves very expensive convolutions. In the real-space/time representation both
functions are simple products (63) and (61), which eliminate two convolutions in
reciprocal and energy space. The idea to chose dlfferenl representations to minimise the
computations is realized in the spacetime method”® . According to this scheme the LDA
wave functions @, (r) are calculated with a pseudo-potential method. Then the non-
interacting Green’s function is analytically continuated from real to imaginary energy
and Fourier transformed into the imaginary time:

oce.
i3 Cuie(r) D0 (), 7> 0
GEPA(e, ¥'5ir) = . .
~i 3 O (r)® (e, T <0 (66)

nk

Here r denotes a point in the irreducible part of the real space unit cell while r denotes a
point in the “interaction cell” outside of which G*™ is set to zero. The linear response
function is calculated in the real-space and for imaginary time with the formula (63) and
afterwards Fourier transformed from i7 to iw and from real space to reciprocal one. The
screened Coulomb interaction is evaluated as in a conventional plane wave method, and,
in turn, is transformed into the real-space/imaginary time representation to obtain the
self-energy according the equation (61). Further, the self-energy can be transformed into
the imaginary energy axis and reciprocal space, and analytically continuated to real
energies. The spacetime method decreases essentially computational time and makes the
calculation of large systems accessible. A main computational problem of the spacetime
method is the storage of evaluated functions (G, P, W, and X)) in both representations
that can trouble calculations of large systems,
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¢ The linearised augmented plane waves (LAPW) method

The LAPW method is one of the most popular methods for the electronic structure
study. The basis consists of local functions, obtained from the Schrodinger equation for
atomic-like potential in a muffin-tin sphere on some radial mesh, and plane waves,
which describe the interstitial region. The local functions are matched on the sphere to
plane waves. Such combination of two different kinds of basis functions makes the
LAPW method extremely accurate for systems with localised or delocalised electrons.
Also the plane waves describe better high energy states, which are usually badly
represented by a conventional tight-binding method. All this makes the LAPW method
attractive for the GWA implementation. Hamada and coworker developed a GW method
with the LAPW? and applied it to Si. 45 basis functions per Si atom are needed which
corresponds to a reduction by factor of five compered to plane wave calculations. But
the computational afford is comparable with the pseudo-potential calculations because of
the expensive evaluation of malnx elements. Although a GW-LAPW realization was
successfully used also in Ni*’, the method did not become popular because of this
computational problem. With development of computer technology this method may be
very promising, as it was showed recently by Usuda and coworkers3 ! in the GW-LAPW
study in wurtzite ZnO.

o The linearised muffin-tin orbitals (LM TO) method
The LMTO is an all-electron method®>* in which the wave functions are expanded
as follows,

Yok = Y xre (1 K)bui(RL), (67)
RL

where  is the LMTO basis given in the atomic sphere approximation by

xee(r k) = pri(r) + Y ¢rr(r)Hapme (k). (68)
R

Here @ri(r) = ¢reYe(f) is a solution to the Schrodinger equation inside a sphere
centred on an atom at site R for a certain energy ¢,, ¢p/1/(r) is the energy derivative of

opu(r) at the energy ¢, , and Hruris(k) are the LMTO structure constants. An advantage

of the LMTO is that the basis functions do not depend on k-vector. The LMTO method

is characterised by high computational speed, requirement of a minimal basis set

(typically 9-16 orbitals per an atom), and good accuracy in the low energy range.
Aryasetiawan and Gunnarsson suggested to use a combination of the LMTO basis

functions for solving the GW equatmns They showed that a set of products ¢¢, ¢¢,

and ¢ forms a complete basis for the polarisation function (63) and the self-energy (61).
They introduced an optimised basis set which consists of product functions

Briy = ¢ro(r)gre(r). (69)
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This scheme allows accurate description of systems with any kinds of electrons typically
with 60-100 product functions. A disadvantage of the approach is a bad representation of
high energy states in the LMTO method, which are important for calculations of the
polarisation function and the self-energy. Recently, Kotani and van Schilfgaarde
developed a full-potential version of the LMTO product basis method™, which accuracy
is substantially better as the conventional GW-LMTO implementation.

IV. Summary

The aim of this paper is to provide a concise overview on the theoretical description
of electronic excitations in finite and extended systems using the random-phase
approximation. We discussed how this scheme can be implemented to describe the
electron removal probabilities from metal clusters and large molecules and to deal with
the electronic structure and optical properties of solids. From the derivation of the
random phase approximation it is clear however, that the RPA is the first step (first-order
perturbation approximation) towards a systematic treatment of electronic correlation. For
strongly correlated systems and/or highly excited states, higher-order terms in the
perturbation expansion may well be important.
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