10 One-photon two-electron transitions at surfaces
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10.1 Introduction

The theoretical description of the behaviour of N interacting electrons moving in an external
field implies the solution of a complicated many-body problem. An efficient, and in many
cases adequate approach to this problem of interacting fermions has been provided by the
effective field approach, i.e., by considering an individual particle to move independently
in an effective field created by the average interaction with other particles. The Hartree-Fock
scheme and the density functional theory within the local density approximation are prominent
representatives for effective field procedures [1-3], which in general yield accurate predictions
for a number of properties of materials. The limitations of these approaches become however
evident when strongly correlated systems are considered, e. g., transition-metal oxides and
heavy Fermion compounds [1].

In this work we focus on one of the tools to assess the effects of clectronic correlations
and the range of validity of effective field models. Generally speaking, one can expect the
effective field approximation to break down whenever the strong short-range components of
the electron-electron interaction are relevant. This is because in such an approach the electrons
move independently from each other. This implies that the wavefunction contains a large
portion of configurations, in which two electrons are so close to each other that they are
exposed to the strong repulsive electron-electron interaction. In this situation, the concept of
an effective, averaged field is clearly inadequate. In the realm of many-body theory a number
of methods have been proposed to deal with this kind of correlation effects. Here we mention
the Brueckner hole-line expansion [4-6], the ‘exponential S’ or coupled cluster method [7, 8],
quantum Monte-Carlo techniques [9, 10], and the Green’s function method which we shall
employ in the following. All these methods provide correlated many-body wavefunctions that
account for the details of the inter-particle interaction. At the same time, the question arises
which kind of experimental techniques are suitable to expose the effect of the short-distance
electron-electron interaction and to assess the range of validity of various theoretical models.

To show the effect of correlation in a heuristic way let us consider the case of an infinite,
homogeneous electron gas: The mean-field wavefunction is then a Slater determinant built out
of plane-wave states, labeled by wavevectors k;. All single-particle states with k; smaller than
the Fermi wavenumber ky are occupied. Including correlations in this uncorrelated state leads
to a partial depletion of some single-particle states with &; < kp and a nonvanishing occu-
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pation of some states with higher wavenumbers. This simple example illustrates that a study
of the high-momentum components in the single-particle wavefunctions has the potential to
uncover the effects of short-range correlations. A way to investigate experimentally the high-
momentum components is offered by measuring the coincident spectrum for the electron-pair
emission upon electron impact, i. e., the (e,2e) experiment (one electron in, two electrons out).
This kind of studies is reviewed by Feder and Gollisch in this book [11]. Another spectro-
scopic method for electronic correlation is the coincident, photon-induced electron-pair emis-
sion (7,2e). This technique is even more sensitive to the effects of correlations than (e,2e)
experiments. In fact, it can be shown that the cross section for (,2e) vanishes in absence of
correlations [12]. Experimentally, the realization of the (y,2e) process at surfaces has long
been a challenge due to the low count rates (compared to single electron emission) which is
inherent to coincidence studies. First experiments with a momentum resolution of the photo-
electrons have been reported in Refs. [13, 14]. For atomic, molecular and nuclear matter the
multi-particle coincidence technique is well established and has yielded a wealth of impor-
tant information on the many-particle excitation dynamics. This information has been used
to test various many-body theories (for recent reviews we refer to [15-20]). In this article
we extend this multi-particle spectroscopy to solids and surfaces. A brief account is given on
the theoretical and the experimental status of the photo-induced two-electron emission from
surfaces. The formal theory and the current numerical implementations will be discussed and
the results for the angular and the energy-correlation functions of the two photoelectrons will
be presented and compared with presently available experimental data.

10.2 General considerations

This section provides the formal theoretical foundations and the calculational ingredients
needed for a theoretical description of the (7y,2e) process. We also point out relation be-
tween the (7,2e) and the (e,2e) reactions. There are a number of theoretical tools to deal
properly with electronic correlations, however most of them, like the hole-line expansion and
the coupled-cluster methods [3,21], are restricted to deal with ground-state properties. An ap-
propriate framework for the treatment of (v,2e) and (e,2e), which involves correlated excited
states, is provided by the Green’s function approach. This method offers an access to dynamic
properties like, e. g., the single- and the two-particle spectral functions which are closely re-
lated to the cross section of single and two-particle emission [as produced by (e,2e) and (-y,2e)
processes]. A general description of the Green's function approach can be found in various
textbooks [21-25]. Here we focus on the aspects which are of immediate relevance to (-y,2e)
and (e,2e).

10.2.1 The single-particle Green’s function

The single-particle Green’s function g(at, 3t') can be considered as an expectation value
for the time-ordered product of two operators evaluated with respect to the correlated, exact
ground-state |¥g) of the N electron system (we assume |¥'q) to be properly normalized):
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In this equation, 'I»'%NH) and '-I'gN_” denote a complete set of eigenstates of the (N - 1)-
and the (N — 1)-particle system, respectively. The energies Ec(,N}, Ef,NH} ,and BV 7Y refer
to the exact energies for the correlated ground state of respectively the N-, the {Na»i- 1)-, and
the (.N = 1)-particle system. The exponential with the energies in Eq. (10.2) is due tl; the
Hanu]tqmans in the exponential functions in the definition of the Heisenberg operators
Noting that the step function has the integral representation .
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Relation (10.4) pc:»int.s out that the single-particle Green's function is representable in terms of
meas(lflvl;able quantities: The poles of g(k,w) correspond to the change in energy (with respect
to E ") if one particle is added (E.‘,N+ 2 —Egm) or one particle is removed (EC(,N) = fld= 1})
ﬁjom the reference ground state with N interacting particle. The residua of these po‘sles are
given by‘ the spectroscopic factors, i. e., the measurable probabilities of adding and removing
one particle with wavevector k to produce the specific state y (4) of the residual system.

. Clearly, the latter probability is of a direct relevance to the (e,2e) process. The infinitesimal
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quantity 7 in Eq. (10.4) shifts the poles below the Fermi energy [thc states of the (N — 1)
system] to slightly above the real axis and those above the Fermi energy [the states of the
(N + 1) system] to slightly below the real axis. ; F ‘

It is customary to write the spectral representation of the single-particle Green's function
in terms of the hole and particle spectral functions that are defined as

Snlk,w) = %Img(k,u), forw < ep (10.5)
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The single-particle Green's function is then written as
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The single-particle Green’s function is particularly important since it csl‘at_:lishcs a diref:l link
to experimental processes that study the effect of a removal or an addition of a particle to
the correlated system. As mentioned above, the (e,2e) process is related to the h?lc spec-
tral function. In addition, the Green’s function allows the evaluatio:;s of the expectation value
for any single-particle operator O (this is because (O0) = 3>, [_ dwSh(af,w){a|O|B)
where (|O|#) is the matrix representation of O in the basis |@)). This in turn highlights t!1e
importance of single-particle removal or addition spectroscopies, such as single photoem|§—
sion [27,28] and (e,2e) processes, which allow insight into the respective part of the Green.s
function. A further advantage of the Green’s function approach is that it offers a systematic
way for approximations using the diagram technique [23]. In the diagrammatic expansion
for g one introduces the concept of the self-energy ¥ [29]. The knowledge of ¥ allows the
evaluation of g according to the Dyson equation

g(ap;w) = go(aB;w) + ) _ go(ar;w) E(18;w) 9(66;w), (10.8)
&

where g is the Green’s function of a (noninteracting) reference system. The self—cncrg.y bH
accounts for all excitations due to the interaction of the particle with the surrounding medium
and acts as a nonlocal, energy-dependent, and complex single-particle potential.

10.2.2 The two-particle Green’s function

As discussed in detail in Ref. [23], the Dyson equation (10.8) can be derived algebraically n."d
the single particle propagator g(at, a't’) can be related to the two particle Green’s function
g (Bty1, B't}, yta, yth). This is a first cycle in a hierarchy that links the N-particle propagator
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to the (N -+ 1)-particle propagator [30,31]. Of direct relevance to this work is the two-particle
propagator g"!(8ty, 8t} yt2, v15).

Repeating the steps outlined above for the single particle case, one arrives at the Lehmann
representation of the two-particle Green’s function in terms of energies and states of the sys-

tems with V and NV = 2 particles [the (N — 2)-particle state of the system is achieved upon a
(y,2e) reaction]:
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Upon analogous considerations made for the one particle case to arrive at the single particle
spectral functions, Egs. (10.5) and (10.6), one can obtain from g"" the hole-hole spectral func-
tion as Syn(k1,k1,Q) = Img'(ky, k1,Q), Q < 2er /m which is intimately related to the
(y,2e) reaction.

The two-particle Green’s function involves two kinds of diagrams: The first type includes
two noninteracting single-particle propagators [cf. Eq. (10.8)] and is supplemented by similar
diagrams that include all possible self-energy insertions [21). The second defines the vertex
function I". The latter involves all generalization of the lowest-order correction to the two-
particle propagator in which two particles interact once. To visualize the role of I’ we write
g"in the form [21]
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From this equation it is clear that I" can be considered as the\effective interaction between
dressed particles. In addition, I" plays a decisive role in the deterinination of its single-particle
counterpart, the self-energy ¥ [21].

In energy-space, the result for the noninteracting (free) product of dressed propagators

including the exchange contribution, i. e., the zero-order term of Eq. (10.10) with respect to I",
reads
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The integration over w has been carried out by utilizing the Lehmann reprt?scntation for I}Ec
single-particle Green's functions. The ladder approximation to the two-particle propagator is

then given by:
i (@B, v6; Q) = gi' (B, 76; Q)

+ 23 g (B, en; Q) (enlV16) gt (8¢, 16 ),
4 enf¢

(10.12)

where V stands for the naked two-body interaction. This integral relation can now _be itera_ted
to yield a set of a ladder diagrams. The corresponding ladder sum for the effective interaction
I', as it appears in [cf. Eq. (10.10)] can be deduced from this result as
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The analogous operators to g and I',(£2) in absence of the surrounding mefﬁlum (e.g., as is
the case in a dilute gaseous system) are the Green function G' and the transition operator 7'
which have been utilized to study multiple ionization of gaseous atomic and molecular targets
upon photon and particle impact [32,33].

As noticed above, g! is of a direct relevance to the (y,2e) reaction. It shou](.:l be noted
however that the ladder approximation (10.12) for the two-particle Green’s ﬁlIIIBUOII can be
employed to define the self-energy ¥ [23, 31] which can then |E|l3 used to Dbt{l.ll"l the smg]f:-
particle Green’s function via Eq. (10.8). On the other hand, this Green’s function enters in
the definition of the two-particle Green’s function, as clear, e. g., from Egs. (10.11), (10‘12‘),
Thus in principle, the Dyson Egs. (10.8) and (10.12) for the one-body and two-body Green’s
functions have to be solved in a self-consistent manner.

As in the single particle case where we established the relevance of the spectral represen-
tation to the (e,2e) experiments, one can relate ' to the (y,2e) measuremenls‘ by means_ of
Eq. (10.9): g™ shows poles at energies (relative to the ground state) corresponding to adding
(B E‘(,N)] or removing [Eém - ELN_z}] two particles from the unl?erturbed ground
state. The residua of these poles are related to the measurable spectroscopic factors for the
addition or removal of the two particles, e. g., as done in a (-y,2e) experiment. From tI?e above
discussion we conclude thus that (y,2e) and (e,2e) provide quite different inforfnatmn. On
the other hand they are related in as much as the single-particle and the two-particle spectral
functions are related to each other.

10.3 Photo-induced double-electron emission
Before we implement the expressions in the preceding section into a calculational scheme for

the evaluation of the coincident (+,2e) signal, it is useful to discuss the experimental conditions
and limitations.

10.3  Photo-induced double-electron emission 301

Figure 10.1: The schematic view of the exper-
imental arrangement. The photon beam from
the synchrotron source impinges under normal
incidence onto the sample, and electron pairs
ejected from the sample are detected by two
channel-plate assemblies. The center axes of
the two detectors are at 40° to the light inci-
dence direction. The sample may be rotated
about an axis within its surface, normal to the
plane of light and detector axes.

10.3.1 Experimental details

Since double photoemission has a much smaller cross section than single photoemission, de-
tectors with a large acceptance are needed. The method of choice is a time-of-flight technique
which allows for a large acceptance both geometrically and in terms of electron energy [13].
By determining the electron energy from the time required by the electron to travel the dis-
tance from sample to detector, the large acceptance is achieved without compromising on the
energy resolution. In our experiment, we use two time-of-flight spectrometers to detect pairs
of electrons ejected from the sample by absorption of one photon (cf. Fig. 10.1). Each detec-
tor consists of a pair of 75 mm channel-plates with position sensitive detection via a resistive
anode. The detectors are at a distance of 160 mm from the sample, the two detector axes are at
+40° with the light axis. Position sensitive detection is necessary to avoid energy broadening
caused by different electron flight distances to the center or edge of the detectors.

Time-of-flight techniques require a pulsed photon source, Pulsed UV photon beams are
provided by synchrotron radiation sources, therefore the experiments shown here were per-
formed in the single bunch mode of the electron st age ring BESSY I in Berlin. The repe-
tition frequency of the storage ring in the single bunch mode is 5 Mhz, i.e. the time between
two light pulses is 200 ns, and their width is about 0.6 1, To keep the accidental coincidence
rate below or comparable to the real coincidence rate, th® mean beam intensity was adjusted
such that on average there was less than one photon per bunch.

To obtain the time-of-flight spectrum, the time difference between the photon bunch marker
signal delivered by the synchrotron and a fast timing signal provided any of the channel-
plate detectors was measured by time-to-amplitude conversion. The overall time resolution
achieved in both channels was about 1.2 ns. This yielded an energy resolution of the detected
electrons ranging from 0.1 eV for Ej;, = 5 eV to 3.15 eV for Eyin = 50 eV. The fast timing
signals from both detectors were passed to an electronic time-coincidence condition, ensuring
that only those events were registered in which two electrons reached the detectors within a
time window of 200 ns. As the number of photons per bunch is distributed according to Pois-
son statistics, a certain number of bunches contained more than one photon. Thus, in addition
to correlated electron pairs, one normally detects a background of uncorrelated electrons, i.e.,
electron pairs generated by two different photons within one bunch. In our experiments this
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background was about 15% of the true coincidence rate. For subtracting this contribution
from the coincidence spectra, we measured separate background runs by increasing the coin-
cidence window from 200 ns to 1 ms, such that essentially only uncorrelated electron pairs
generated by different photon bunches were detected. Before subtraction, the coincidence and
background runs were normalized on the integrated single photoemission yield of both runs.

Because of the small escape depth of low energy electrons, the probing depth in an ex-
periment involving the detection of two electrons may be expected to be below 5 monolayers
for the energies considered here. Samples are prepared in the usual way by sputtering and
annealing of bulk single crystals, sample cleanliness is determined by Auger spectroscopy.
The small probing depth allows to investigate materials in the form of thin films deposited on
a substrate, which can be considered as representative for the surface of a bulk crystal.

10.3.2 Pathways for the electron-pair emission

For the kind of photons specified in the experimental section, we can treat the electromagnetic
field classically and employ the dipole approximation, as shown in detail in Ref. [12]. The
electric dipole operator is a sum over single-particle operators. Hence, the photon can be
absorbed only by one electron. The other electrons which are emitted in the course of this
process have to interact in some way with the photo-excited electron. This is the underlying
reason why double photoelectron emission is so sensitive to electronic correlation. In Fig. 10.2
we show the leading Feynman diagrams for the DPE process: In Fig. 10.2(a-b) the two-
electron scattering takes place in the initial state (i. e., prior to the photon absorption) via the
effective particle-particle interaction. In addition, the photon can excite a collective mode of
the system which then decays into two electrons, as schematically shown in Fig. 10.2 (c).
Other types of correlations that induce a DPE signal are termed final-state interactions (FSI)
[Fig. 10.2(d,¢)]. As schematically shown in Fig. 10.2(d.e), one of the ground-state electrons
absorbs the photon and then scatters from a second electron. The latter scattering is mediated
also by the effective electron-electron interaction. A further important channel for DPE is
depicted in Fig. 10.2(f) where one electron absorbs the photon just like in single photoemission
(SPE) and undergoes a series of collisions with the crystal potential and with other electrons
until it has lost coherence with its initial phase. This photoelectron then scatters from another
electron into a two-electron vacuum state. Therefore, the process shown in Fig. 10.2(f) can be
considered as product of independent events (cross sections): a single photoemission process
followed by an (e,2e) scattering. There is a series of additional diagrams, in particular a
combination of the processes represented by Fig. 10.2(a,b) and Fig. 10.2(d.e), i.e., process
where the two electrons interact in the initial and the final states. In principle, a division
between initial and final state correlation is only a matter of semantics as far as the (v,2e)
process is concerned, as demonstrated by the diagrams in Fig. 10.2(a,b) and Fig. 10.2(d.e):
The difference between collisions taking place in the initial or final state is in the time ordering
of the electron-electron interaction and the absorption process. This ordering is however of no
relevance for the two-photoelectron current .7 whose derivation involves an integration over
time. In fact, as derived in Ref. [34] .7 has the form

T o (kv ka|g"™™ A SHL (K1, K5, E) AT g1k, ko), (10.14)
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Figure ll}.g: The lowest-order Feynman diagrams that contribute to the photo-induced generation of
electron-pairs with asymptotic wave vectors k; and ko. The crystal momenta of the two initially bound
electlrcns are denoted by ki and k5. The thick dotted line indicates an interaction between the electron
mediated by the effective electron-electron interaction in the medium whereas the wiggly line symbolize
the electron-electron final-state interaction. The photon is indicated by its energy fiw. In inset (c) the
photon cnfcilcs both the electron pair and collective modes of the system, The dotted line in () means
that the single photoemission process and the subsequent electron-electron scattering take place in two

- Steps and therefore these two processes are incoherent.
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Figure 10.3: Diagrammatic representation
of the photocurrent expression Eq. (10.14).
Wavy lines represent the photon, double
straight lines with arrows correspond to the
retarded and advanced two-particle Green’s
functions as indicated on the plots. The dou-
ble dashed line symbolizes the electrons emit-
ted into the vacuum.

where A is the dipole operator, SIL is the hole-hole spectral function, and g™ (g'"") is the
advanced (retarded) two-particle Green’s function.

Similar to the case of single photoemission, the photocurrent can be represented by the
two-particle Caroli diagram, as shown in Fig. 10.3, which explicitly shows no signature of
time ordering. On the other hand, one can tune to initial or final state correlation by choice
of the wave vectors that appear in the current expression Eq. (10.14): If k; and ko are very
large (compared to the Fermi wave vector), one can expect the final-state interactions to be
limited to a small region in phase space where the two electrons escape with almost the same
velocities. Apart from this regime, FSI become less important which allows to highlight the
effect of initial-state correlations. On the other hand, if the two electrons escape with very low
(vacuum) velocities, FSI become the determining factor. These statements will be illustrated
below with numerical examples.

10.4 Numerical realization and experimental results

As is clear from Eq. (10.14), the evaluation of g' is the key ingredient for the numerical
evaluation of the two-photoelectron current. On the other hand, we have seen in the preceding
section that the single-particle Green’s function g is needed to obtain g'', and in turn g'' goes
into the determination of g. Till now this self-consistent loop has been too complicated to be
realized numerically within a realistic description of the surface, i.e., for an inhomogeneous
electron gas. In fact, the exact evaluation of the generally valid Eq. (10.14) is still an open
question even for a system of few interacting charged particles, such as a few-electron atom.
This kind of systems is currently subject of active research, with DPE being the principle
tool to uncover the effect of particle-particle correlations and to test the validity of various
numerical suggestions for the evaluation of Eq. (10.14). For a recent reviews on this topic, we
refer to Refs. [15-19]. In the present case, we need to account for the few-particle scattering
in the presence of the surrounding inhomogeneous system of electrons.

10.4.1 Simple model calculations

The effect of the medium on the electron-electron interaction V' can be estimated for the case
of a semi-infinite homogeneous electron gas in the long-wavelength regime (Thomas-Fermi
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Figure 10.4: (v,2¢) energy-sharing distributions from Cu(001) (lefi-hand panel) and Ni(001) (right-
hand panel) du; a 45 eV photon incident normal to the surface. The experimental data ( [13 l4])garc
fnr‘cloctron pairs with sum energies Fy + E» between 33 eV and 35 eV. The two pholuclcc"trons are
emitted at 40° symmetrically to the left and to the right of the surface normal. The theoretical curves
show lhf: coherent contributions from the diagrams depicted in Fig. 10.2(d,e) (dashed lines) whereas the
dotted line indicate the results for the cross section obtained from the process shown in Fig. I(l.2(f)I (for
the C'u case the dotted curve has been scaled up by a factor of 4 for visibility). The solid line is the
summed cross section, i.e. the incoherent sum of the dotted and dashed lines.

limit). In this case, V" is well described by the modified, local potential " where [35]

e T mDl

BT (10.15)
Here, 71 — 73 is the relative distance between the two electrons. The screening length A is
related to density of states at the Fermi Jevel, With the electron-electron interaction potential
the first order term in the ladder approximation for g'! has been employed and the photocurren{
has been evaluated taking into account the diagrams shown in Fig. 10.2 (d,e,D) [cf. Eqs. (10.12)
ar!d !0. 14]. It should be stressed here that the diagrams Fig. (10.2) (d,e,f) should be calculated
within the same model, in which case thé relative contributions of each of these processes can
be determined.

Figure 10.4 shows measured and calculated two-electron energy correlation functions. The
two e]eclron.s have a fixed total energy of 35 eV this energy is chosen such that the two elec-
trons are emitted from the vicinity of the (two-particle) Fermi level. Results are shown for the
(001) surfsn_:es of Cu and Ni. The material properties within the theory enters via the density
of state which determines the screening length and via the characteristics of the surface po-
tentials, AS»ShOWn in Ref. [12], the present model predicts that the two-photoelectron current
can be cast into the form € - (k; + k) L, where L is a complicated function of the electrons’
Wwave vectors and energies. € is the polarization vector of the light. Hence, for ky = —k,
orforky L é L ky the cross section vanishes. This is the origin of the minima for equal
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energy sharing, as observed in Fig. 10.4. This figure also indicates that the diagrams shofvn i_n
Fig. 10.2(f) and Fig. 10.2(d,e) deliver comparable contributions to the total current, which is
comprehensible, as all of these diagrams involve the same order of the electron-electron and

electron-photon interactions.

10.4.2 Numerical scheme with a realistic single-particle band structure

To improve on the above two-particle interacting jellium model, while taking into account the
electron-electron interaction explicity and treating the two photoelectrons on equal footing, we
proceed as follows: If we assume the two photoelectrons to be indcpcnde[rI)t. thep, zlccordmlgl

to Eq. (10.12), the two-particle Green’s function g'! reduces to g = 9 - This means g
simplifies to an anti-symmetrized product of single-particle Green's functmn. gi(ki, By), i =
1,2, which can be used to generate the single-photoelectron states. Employing the one-step
model for photoemission we can then calculate the single-photoelectron current. Our approach
towards this single-particle problem is based on the layer Korringa-Kohn-Rostoker (L‘KKR)
method which utilizes a density-functional approach combined with an empirical fi unction for
the complex part of the self-energy. This single-particle part of the problem is essentlal_ly the
same as in the case of as in single photoemission [36,37] and (e,2e) which has been reviewed
in details in the chapter by Feder and Gollisch of this volume. Therefore we foFus here on how
the two independent photoelectron currents can be coupled to evaluate a finite two-electron

photocurrent 7 (we recall that 7 vanishes in absence of correlations]. i
For this purpose, we utilize the interaction potential U, defined by Eq. (10.15), as a starting

point and rewrite it in the following form:
U= 4 -+ 2 with Z; = u.;l exp(—g%rj}, i=1,2 (10.16)
1 T2

In these relations, we have introduced the functions a; = r1a/(2r;). Eguation_ (10.16) can
be interpreted in the following way: The effect of the electron-electron interaction potential
can be viewed as a modification Z; /r; to the single-particle potentials. This means that the
inter-electronic correlation is subsumed into a dynamic nonlocal screening interaction w; of
the electron with the lattice. The behaviour of this screening is dictated by the functions Zj,
and has the following features: When the two electrons are on top of each other (r13 — ﬂ)‘ the
potential w; turns repulsive as to simulate the strong, short-range electron-electron repulspn.
If the two electrons are far away from each other (r; > ry, ¢ # j € [1,2]), the screening
strengths Z; and Z» become negligible and we end up with two 'mdcpcndcn? particles. It
should be stressed that, within our model, the dynamic screening as introduced in Eq. (10.16)
is exact, since we merely performed rearrangements of the interactions involved in Eq. (10.15).
Hence, the evaluation of the two-photoelectron current will face the same problems as w?en
Eq. (10.15) is utilized. To circumvent Ihc numerical difficulties we approximate the dynamical
screening strengths Z; by Z; where Z; = a; ' exp(—2a;r;/A) and a; — kl?l{?kj}‘ .Hc_re
k12 = k1 — ks is the inter-electronic relative wave number. This upp.rummalmn is V&lllt.j, if,
e. g, r; x k;. In other words, the porential (10.15) is exactly diagona‘llzed whc.n the p'f]rllch?s‘
proceed along trajectories satisfying the relation r; oc kj, e.g., uniform C!l'blIS. WII..h this
screening being included, the modification Z; /r; to the original single-particle potential w;
can be taken into account and the single-particle Green’s function g; is generated. However,
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in contrast to g, each g; is dependent on the wave vectors of both electrons as well as on
the mutual, relative wave vector of the escaping electrons, The two-particle Green's function
is approximated by §'! which is the anti-symmetrized, direct product of the modified single-
particle Green’s functions §; (the first term in the ladder approximation, Eq. (10.12)). With
this model reasonable results have been obtained for the (e,2e) cross sections [11, 38, 39].

10.4.3 Numerical results for the angular pair correlation in Cu(001)

We discuss in this section pilot results for the correlated two-photoelectron current from a
clean Cu(001) surface. Only the diagrams shown in Fig. 10.2(d,e) have been evaluated.
The ground-state potentials have been calculated self-consistently with the scalar-relativistic
LMTO method. Life-time broadening of the spectra was simulated by employing a complex
optical potential. The photoelectrons’ current due to emission from the first 20 outermost lay-
ers was calculated. Convergence of the results with respect the maximum angular momentum,
number of reciprocal lattice vectors, and accuracy of the energy integration has been achieved.

To get an insight into the profound difference between single and double-photoelectron
emission, we compare in Fig. 10.5 the angular distribution of the photoelectron currents for
single photoemission (labeled SPE) and the double photoemission (indicated by DPE) for
an incoming s-polarized photon. The intensity variation is shown as function of the angular
position of one photoelectron with 9 eV kinetic energy. The photon energy is 15.5 eV in the
single photoemission case and 31 eV for double photoemission. We note that in the latter case
both photoelectrons escape with the same kinetic energy of 9 eV,

In single photoemission, the point group of the surface 4mm is reduced to 2mm, in the
angular distribution (as indicated by the horizontal and vertical lines in Fig. 10.5) because
the electric-field vector of the incident photon (which lies in a mirror plane of the surface) is
not invariant under the operations C and C;'. On the other hand in double photoelectron
emission, the group 2mm is reduced further to m (horizontal line in Fig. 10.5). This is due
to the presence of the second photoelectron whose emission direction is fixed in space and is
indicated on the plot by the small circle.

The influence of the correlation between the two photoelectrons is readily visible Fig. 10.5:
The repulsion between the two escaping photoelectrons leads to a vanishing photoelectron
current when the two electrons are close to each other. This is the ori gin of the correlation hole
surrounding the fixed detector position. On the other hand, if the two electrons are far from
each other, the electron-electron interaction diminishes in strength. Consequently, the two-
electron current drops dramatically, for this current must vanish in absence of correlation. The
interplay between these two effects leads to a ‘localization’ of the angular intensity distribution
of one of the photoelectrons around the position of the second one, as observed in Fig. 10.5.
It should be stressed that the two detected photoelectrons are not only coupled to each other
via the interaction (10.15) but also to the crystal potential. Therefore, the correlation hole is
not isotropic in space and depends sensitively on the photoelectrons’ energies.

To illustrate the dependence of the correlation hole on the short-range components of the
electron-electron interaction, we recall that the strength of the electron-electron scattering po-
tential (10.15) is primely determined by the screening length A, which depends on the density
of state. Therefore, for the sake of demonstration, we can regard A as a parameter and study
the correlation between the two-photoelectron current and the value of A. This is depicted
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SPE DPE

Figure 10.5: Angular distribution of the photoemission intensity from Cu(001) in single-electron (la-
beled SPE) and double-electron photoemission (labeled DPE). The kinetic energy of the photo-electrons
is 9 eV, the photon energy of the s-polarized light 15.5 eV in the SPE case whereas in DPE the photon
energy is increased to 31 eV as to compensate for the additional energy needed to emit two electrons
instead of one. For the DPE case, the small circle indicates the emission direction of one of the detectors
(polar angle with respect to the surface normal is @ = 40°). Low (high) intensities correspond to light
(dark) gray scale in the stereographic projection. Horizontal and vertical lines emphasize the symmetries
of the angular distributions.

in Fig. 10.6 which evidently shows that the correlation length X is intimately related to the
two-photoelectron current. In fact, an angular measurement of the kind shown in Fig. 10.6
can provide an estimate of the correlation length A in the material under study.

The difference between Fig. 10.6 and Fig. 10.5 is that the photoelectrons’ kinetic energies
are increased from 9 eV for each electron in Fig. 10.5 to 15 eV for each electron in Fig. 10.6.
As clear from the calculations shown in these figures the extent of the correlation hole shrinks
considerable when the electrons’ energies are increased. In fact, at extremely high energies,
the two electrons interact only in a very limited region when they are emitted in the same di-
rections and their velocities are comparable. This can be deduced directly from the interaction

potential (10.16).

10.4.4 Energy-correlation functions

In the preceding section we discussed the mutual angular correlation between the two photo-
electrons escaping with well-defined energies. Now, we study the energy electron-pair corre-
lations at a fixed angular position of the emitted electrons. This is done in Fig. 10.7 where
we present the two-photoelectron current from Cu(001) as a function of electrons’ energies
Ey, E, for a fixed photon energy (p-polarized light) and fixed angles of emission. Again, only

[
|
|

10.4  Numerical realization and experimental results 309

A=0.2au.

A=0.5au.

A= 1.0 a.u.

Figure 10.6: The effect of the correlation length A on the angular distribution of the two-photoelect
current ‘fror_n Cu(DQ]), The photon is s-polarized and has an energy of 45 eV. The phutoc[l]eclmenﬁgzz
equal kinetic energies of 15 eV. The angular arrangement of the detection geometry is as in Fig. 10.5
The stcreu'gmphlc images show angular distributions for A = 0.2 a.u. (left), 0.5 a.u (middle‘) : d
1.0 a. u. (right). The horizontal lines emphasize the mirror symmetry of the ang.',ul.ar di.sl;ibutiuns, o

E1
35

Figure 10.7: The two-photoelectron current as
a function of energies Ey, Ea of the two pho-
toelectrons. Black and white contrasts corre-
spond to low and high intensities, respectively.
The emission angles of the electrons are fixed
at f# = 30° symmetrically to the left and right
of the surface normal. The photon energy is
w = 45 eV. The shaded triangle indicates the re-
gion below the bottom of the conduction band.

(IS ) e ) A e =

the dlagrar.ns qepicted in Fig. 10.2 (d,e) have been taken into account. As in the case of the an-
gular distribution, we notice that the photoelectron current is appreciable in the region where
Fhe two electrons can interact efficiently. According to our interaction potential (10,16), this
is the case when the two electrons do not differ too much in their kinetic energies Tl;is is
reflected in .the behaviour of the photoelectrons current as observed in Fig. 10.7. ‘ ‘
ha.ﬁié?]m fl;;g. ]':].7 we also fmlice that the photoelectron current (white region) originates
o ;'f thm the e;ergy region Fy + Eg.= ,.E‘.= 25 ... 35 eV, where F is the total kinetic
s :pundse;.op::r.d rom energy conservation it is readily concluded that this energy interval
R e I-hand of copper (=3 eV band below the Fermi level) from which the initial

ectrons originate mostly; only a negligible fraction of electron pairs are emitted in the
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region E < 25 eV and in the narrow black band just below the line marked by the £ = 35 eV.
This is due to the low density of the initial states in these configurations. It should be noted
in this context that in Fig. 10.7 we basically scan the two-photoelectron current through the
conduction band starting at the Fermi level (correspond to E' = 35 eV) and ending at the
bottom of the conduction band (which is at E ~ 18 eV). In this case it is very important to
account (e.g. via a realistic self-energy function) for additional multiple elastic and inelastic
scattering processes of the electrons pairs [29]. In the calculations shown in Fig. 10.7 it has
not been yet possible to include this kind of additional processes. This limitation of theory
is however not applicable to the angular distribution results shown in Fig. 10.5, since in this
case the energy of the electrons can be chosen such that the photoelectrons are emitted from
the Fermi level where inelastic energy-loss processes can be deemed small.

10.5 Conclusions

The aim of the present work is to provide a general overview of the foundations and of the
numerical methods for describing the photo-induced two-electron emission from surfaces. A
brief account of the experimental techniques have been given and the experimental data have
been discussed in light of the numerical results, We have seen that the double photoelectron
emission is well suited for the study of particle-particle correlation in a very direct way, ie.,
in actually detecting the two particles at the same time. A general expression has been given
to evaluate the (v, 2€) current and some approximate calculation schemes have been outlined.
In particular, we employed a local but wave-vector dependent approximation of the electron-
electron interaction between the photo-electrons and established a multiple-scattering scheme
which is closely related to the well-studied one-step model of single photoemission. In par-
ticular, we can treat within the same numerical approach single and double-photoelectron
emission which allows for a reasonable comparison between the two processes. First numer-
ical results for the angular and the energy correlation functions of the photoelectrons emitted
from Cu(001) revealed the characteristics of the electronic correlation, as can be observed in
(7, 2€). Future improvements of the present approximate model include the implementation
of a realistic single-particle self energy in the one-particle part of the problem as well as taking
explicitly into account the non-local screened Coulomb interaction.
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