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13.1 Introduction

This chapter gives a brief overview on recent advances in the treatment of
nonrelativistic electronic collisions in finite and extended systems!. A proper
description of electronic collisions [1-4] is a prerequisite for the understanding
of a variety of material properties. Emphasis is put on analytical concepts that
unravel common features and differences between scattering events in finite
few-body (atomic) systems and large, extended systems (molecules, metal
clusters, and solid surfaces). The properties of few-body Coulomb scattering
states are discussed for two-, three-, four- and N- particle systems. For large,
finite systems the concept of Green’s function is utilized as a powerful tool for
the description of electronic excitations as well as for the study of collective
and thermodynamic properties. For the description of highly excited elec-
tronic states in solids and surfaces, the Green’s function method, developed
in field theory, is used. When available, the theoretical models are contrasted
with experimental findings.

13.2 Two Charged-Particle Scattering

For an introduction, we consider the nonrelativistic scattering of two charged
particles with charges z; and zs. The Schridinger equation for the wave

function describing the relative motion of the particles is?:

o Z;tzlzg

+ k| W(r) =0, (13.1)
where 7 is the two-particle relative coordinate and k is the momentum con-
jugate to 7. The energy of the relative motion is E = k?/2u and g is the
reduced mass of the particles. The effect of the Coulomb potential is ex-
posed by making the ansatz ¥ (r) = etk g, (r). The asymptotic behavior of
(13.1) is unravelled by neglecting terms that fall off at large r faster than the
Coulomb potential, which leads to

ik V- ’i‘:ﬂ] Fu(r) = 0. (13.2)

! This work is dedicated to John S. Briggs on the occasion of his sixtieth birthday.
? Atomic units are used unless otherwise stated.
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This equation admits a solution of the form ¥ = exp(i¢), where ¢i (r) =
=t Ink(rF k-7). The factor 2, zop/k = z122/v (v is the relative velocity)
is called the Sommerfeld parameter and is a measure for the strength of
the interaction potential. The key point is that the natural coordinate for
Coulomb scattering is the so-called parabolic coordinate £ = r F k- 1,
where the signs + or — corresponds to incoming- or outgoing-wave boundary
conditions, respectively.

13.3 Three-Particle Coulomb Continuum States

The three-body Coulomb-scattering problem is still receiving much attention
[5-15]. This is because, in contrast to the two-body problem, an exact deriva-
tion of the three-body quantum states is not possible. Only under certain
(asymptotic) assumptions can analytical solutions be obtained that contain
some general features of the two-body scattering, such as the characteristic
asymptotic phases. As in the preceding section the center-of-mass motion of
a three-body system can be factored out. The internal motion of the three
charged particles with masses m; and charges z;; i € 1,2,3 can be described
by one set of the three Jacobi coordinates (r;;, Ri); 1,5,k € {1,2,3}: €556 # 0;
J > i. Here, ry; is the relative internal separation of the pair ij, and Ry is
the position of the third particle (k) with respect to the center-of-mass of the
pair ij. The scalar product

(rij, Re) - (?{;)

is invariant for all three sets of Jacobi coordinates. The kinetic energy oper-
ator Hy is then diagonal and reads

Ho = -4y, /(2ui5) — Ar,./(Cp),  V(rij, Ry),

where pr = mp(m; + m;)/(my + ma + mg) and py; = mm;/(m; + my);
i,j € {1,2,3}; j > i are reduced masses. The eigenenergy of Hy is Ey =
kfj,’(Zp..-,-] + K2 /(2py), ¥(kij, Ki). Defining 2;; = 2,2; the time-independent
Schrodinger equation of the system reads

!
Ho+» =2 — B| (rit, Rm|¥hy k) = 0. (13.3)

3
2 Tij

i,
j>i
The relative coordinates r;; occurring in the Coulomb potentials have to be
expressed in terms of the appropriately chosen Jacobi-coordinate set (v,

Rp).
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13.3.1 Coulomb Three-Body Scattering in Parabolic Coordinates

Asymptotic scattering solutions of (13.3) for large interparticle distances r; 5
have been considered in [5,6,8,9,16]. The derivation of general scattering so-
lutions of the Schridinger equation is a delicate task. One approach is to
consider the three-body system as the subsum of three noninteracting two-
body subsystems [11]. Since we know the appropriate coordinates for each
of these two-body subsystems (the parabolic coordinates), we formulate the
three-body problem in a similar coordinate frame with

{&F =rythi-rig}, ap#0; j>i, (13.4)

where k; ; denote the directions of the momenta k;;. Since we are dealing with
a six-dimensional problem, three other independent coordinates are needed
in addition to (13.4). To make a reasonable choice for these remaining co-
ordinates we remark that, usually, the momenta k;; are determined experi-
mentally, i.e. they can be considered as the laboratory-fixed coordinates. In
fact it can be shown that the coordinates (13.4) are related to the Euler an-
gles. Thus, it is advantageous to choose body-fixed coordinates. Those are
conveniently chosen as

{6 =mi;}, e #0; J>i. (13.5)

Upon a mathematical analysis it can be shown that the coordinates (13.4),
(13.5) are linearly independent [11] except for some singular points where the
Jacobi determinant vanishes. The main task is now to rewrite the three-body
Hamiltonian in the coordinates (13.4) and (13.5). To this end, it is useful to
factor out the trivial plane-wave part by making the ansatz

'pkij‘Kk {'I"‘,_'j, Rk} - Nexp(ir,-j . k,‘j + iRk : Kk}ﬁk.-_,-,l(k (‘Pij, Rk} . (135)
Inserting the ansatz (13.6) into the Schrodinger equation (13.3) leads to

3

1 1 S 1 Zij
A A ) +2’£(—kg'-v ,+ —Ki:V )—2 S
Hij 3 Hk o Hij # HE ik § ihi T Tmn
n>m
x@(rij}Rk) =105 (137)
In terms of the coordinates (13.4) and (13.5), (13.7) casts
Hﬁk.-,,!ﬁ,(fl‘ sery EG)
= [ }'[pnr + Hin + Hmix] kaj.K!‘(El‘ v 156) =0. (138}

The operator Hp,, is differential in the parabolic coordinates & 23 only,
whereas Hjy,, acts on the internal degrees of freedom &, 6. The mixing term
H iy arises from the off-diagonal elements of the metric tensor and plays
the role of a rotational coupling in a hyperspherical treatment, The essential
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point is that the differential operators Hpa, and Hiy, are exactly separable in
the coordinates §;...3 and 4.6, respectively, for they can be written as [11]

3
Hpor = ZH% i [He, He]l=0; Vi,je{1,2,3}, and (13.9)
i=1

[
Huw =) He; [He He]l=0; Vij€{4,56}, where (13.10)

j=4
He, = —— (06,606, + ihin€se, — fimam] 3 €m £05 (1311)
He = ﬁ [é‘a{‘ﬁa&, + 2k ;5“‘ 64 g (13.12)
He, = % {éa&gﬁa& +i2k|3&§;&’ 6.55] : (13.13)
H ﬁ %a&i&% D 521:126“;“55“] . (13.14)

The operator Hy,ix = H — Hpar — Hjy, derives from the expression

6
Hoix = Z {(Vr,jfu) 5 (vr,-,Eu) ar (Vﬂk'su) Y (vﬂquj)} a{uaﬁu g
ui#Fv=1
(13.15)

Noting that He ,j = 1,2,3 is simply the Schridinger operator for the two-
body scattering rewritten in parabolic coordinates (after factoring out the
plane-wave part), one arrives immediately, as a consequence of (13.9), at an
expression for the three-body wave function as a product of three two-body
continuum waves (the so-called 3C-model or the W3¢ wave function) with the
correct boundary conditions at large interparticle separations. This result is
valid if the contributions of Hiy, and Hyy are negligible as compared to Hpa,,
which is, in fact, the case for large interparticle separations [11] or at high
particles’ energies. The above procedure can be performed within the Jacobi
coordinate system, however, the operators H, pary Hint, and Hy,;, have a much
more complex representation in the Jacobi coordinates (see [11]).

13.3.2 Remarks on the Structure of the Three-Body Hamiltonian

The structure of (13.9-13.15) and the mathematical properties of the opera-
tors Hpar, Hige, and Hy, deserve several remarks.

1. The total potential is contained in the operator H,,., as can be seen
from (13.11). Thus, the eigenstates of Hp,, treat the total potential in an
exact manner. This means, on the other hand, that the operators Hj,,
and H i, are parts of the kinetic energy operator. This situation is to be

o
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confrasted with other treatments of the three-body problem in regions of
the space where the potential is smooth, e.g., near a saddle point. In this
case one usually expands the potential around the fix point and accounts
for the kinetic energy in an exact manner.

- In (13.11) the total potential appears as a sum of three two-body po-

tentials. It should be stressed that this splitting is arbitrary, since the
dynamics is controlled by the total potential. Thus, any other splitting
that leaves the total potential invariant is equally justified. We will use
this factbelow for the construction of three-body states. For large inter-
particle separation the operators H, and Hpy, are negligible as com-
pared to Hpar and the splitting of the total potential as done in (13.11)
becomes unique. For large kijri;, Vij, i.e., at high interparticle relative
energies the three-body scattering dynamics is controlled by sequential
two-body collisions. This is of particular importance for the interpreta-
tions of the outcome of experiments that test the three-body continuum
problem (see the discussion of the theoretical and experimental results
given below).

. The momentum vectors k;; enter the Schrodinger equation via the asymp-

totic boundary conditions. Thus, their physical meaning, as two-body rel-
ative momenta, is restricted to the asymptotic region of large interparticle
distances. The consequence of this conclusion is that, in general, any com-
bination or functional form of the momenta k;; is legitimate, as long as
the total energy is conserved and the boundary conditions are fulfilled
(the energies and the wave vectors are linked via a parabolic dispersion
relation). This fact has been employed in [9] to construct three-body wave
functions with position-dependent momenta k;; and in [17] to account
for offshell transitions.

. The separability of the operators (13.12)-(13.14) may be used to deduce

representations of three-body states [18] that diagonalize simultaneously
Hyar and Hiye. It should be noted, however, that generally the operator
Hix, which has to be neglected in this case, falls off with distance as
fast as Hip,.

. As is well known, each separability of a system implies a related con-

served quantity. In the present case we can only speak of an approximate
separability and hence of approximate conserved quantum numbers. If we
discard Hipy and Hyy,py in favor of Hy,., which is justified for large k;;&y.,
ek # 0,k € [1,3] (i.e., for large £, or for high two-particle momenta k; 1)
the three-body good quantum numbers are related to those in a two-body
system in parabolic coordinates. The latter are the two-body energy, the
eigenvalue of the component of the Lenz—Runge operator along a quan-
tization axis z, and the eigenvalue of the component of the angular mo-
mentum operator along z. In our case the quantization axis z is given by
the linear momentum direction k;;. In [11] the three-body problem has
been formulated in hyperspherical-parabolic coordinates. In this case, the
operator Hiy,, takes on the form of the grand angular momentum opera-
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tor. This observation is useful to expose the relevant angular momentum
quantum numbers in case H,,;; can be neglected.

. In [8] the three-body system has been expressed in the coordinates n; =

:,-*‘, j=123andq; =¢&;, j=1,2,3. From a physical point of view this
choice is not quite suitable, for scattering states are sufficiently quan-
tified by outgoing- or incoming-wave boundary conditions (in contrast
to standing waves, such as bound states whose representation requires a
combination of incoming and outgoing waves). Therefore, to account for
the boundary conditions in scattering problems, either the coordinates 7
or 7j; are needed. The appropriate choice of the remaining three coordi-
nates should be made on the basis of the form of the forces governing the
three-body system. In the present case where external fields are absent
we have chosen & = 7, k = 4,5,6 as the natural coordinates adopted

to the potential energy operator.

. The approximate separability of the three-body Hamiltonian in the high

energy regime (see (13.12)-(13.14)) results in the commutation relation
of the two-body Hamiltonians [Hg,, He,], ¢,5 € {1,2,3}. This fact can
be expressed in terms of Green operators, which offers a connection to
well-established methods of many-body theories [19,20] (see below for
a brief summary of the Green'’s function method): let G["}(z) = (z —
H)~! be the Green operator of the system. In a three-body system we
consider, in a first step, two particles, say particle 1 and particle 2 to move
independently and on the two-body energy-shell in the field of particle
3. In this case we find G'3) = gy g2, where g;/» are the two-body Green
operators describing the independent motion of the respective particles.
At high interparticle relative energies we can write H = Hyor = i=1 He,
(see (13.8)). In Green’s function language this means

G[R) ~ Gg‘? =g (I + 12 "'-’12) g2, (]_316)

where v;2 is the interaction potential between the particles 1 and 2 and
g1z = Go + Govizgiz = Go + Govi2Go + GoviaGovi2Go + -+ - HGI‘{-J Go is
the Green's operafor in absence of interactions. Upon insertion of g5 in
(13.16) and noting that Go(z) = (z — Hy) ™' we obtain

G® = gigo + g1 K12 g2 + g1 K12 K12 g2 + g1 Kia Kig Kz g2+ -+ 5 (13.17)

where k12 is a dimensionless coupling parameter that measures the
strength of the interaction potential (v12) as compared to the kinetic
energy (Hp). From (13.17) the following picture emerges: particle 1 and 2
can be considered as quasiparticles that interact successively an infinite
number of times via #;2. This is the exact counterpart of what is known as
the ladder approvimation in many-body theory [19,20]. This means that
the approximation G'®) ~ G'EE amounts to an exact sum of all the ladder
diagrams. On the other hand, it is documented [19,20] that the ladder
approximation results upon disregarding a number of (crossed) diagrams
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that are as well not accounted for by G'gg for the three-body case. A way
to incorporate these “higher-order” many-hody effects is to consider them
as a renormalization of the single-particle properties (mass, charge, ete.)
and of the two-body interactions (v12). The renormalized single-particle
Green’s functions and the mutual interaction are labeled, respectively, by
G172 and ¥19. This procedure is outlined in the next section.

13.3.3 Dynamical Screening

In the realm of many-body theory it is well established that under certain
conditions (small perturbations, low excitations) interaction effects can be
accounted for by renormalizing the single-particle properties so that the one-
particle picture remains viable. In the context of the three-body problem
these ideas can be utilized and generalized as follows: correlations effects
whose description goes beyond the ladder approximation should be incor-
porated as a redefinition of the two-particle properties so that we can still
operate within the ladder approximation. In terms of wave functions this
means we seck three-body wave functions that are eigenfunctions not only
of Hpae, but also of parts of Hy, and Hyi. In addition, the structure of the
total Hamiltonian, in the sense of (13.9) and (13.11), should be maintained.

As it turned out this can be achieved by introducing renormalized two-
particle coupling strengths, namely, instead of zij for the bare two-body in-
teraction, we define a variable z; and determine its functional dependence
such that the structure of (13.9) and (13.11) is preserved. Using these Z;; one
can then write down the three-body Green's operator in terms of the dressed
one-particle Green’s operators /2, e.g., §1 = go1 + gou (z13/713) g1, where
go1 is the free Green’s operator of particle 1 and ry5 is the relative position
of particle 1 with respect to particle 3.

The actual derivation of z; is quite involved and is based on the fol-
lowing observations. (i) In a three-body system the form of the two-body
potentials zy;/r;; are generally irrelevant, as long as the total potential is
conserved. (ii) To keep the mathematical structure of the operators (13.9)
and (13.11) unchanged and to introduce a splitting of the total potential,
while maintaining the total potential's rotational invariance, one assumes
the strength of the individual two-body interactions, characterized by z, to
be dependent on & 5 g. This means we introduce position-dependent product

e = : 3 Eig 3 .
charges as Zi; = Z; (&4, &, &), with Xinim e il :—:f To obtain the

“re-normalized” many-body potentials Vij 1= Zij /ri; we write Vi, as a linear
combination of the isolated two-body interactions Vii = zij[rij, Le,,

Vo Vas
Vis |=A| W3 |, (13.18)
Viz Vi

where A(&4,85,86) is a 3 x 3 matrix. The matrix elements are then deter-
mined according to (1) the properties of the total potential surface, (2) to
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reproduce the correct asymptotic of the three-body states and (3) in a way
that minimizes H;,,, and Hyiy. It should be stressed that the procedure until
this stage is exact. It is merely a splitting of the total potential that leaves
this potential and hence the three-body Schrédinger equation unchanged.
For an electron pair moving in the field of a positive ion the determination
of Z; has been accomplished in [10,11,21]. The resulting wave function has
been termed the dynamically screened three-body continnum wave function

(DS3C) ¥nsac.-

13.4 Theory of Excited N-Particle Finite Systems

Unfortunately, the curvilinear coordinate system (13.4), (13.5) used for the
three-body problem does not have a straightforward generalization to the
N-body case. The speciality of the three-body problem is that the number
of interaction lines is equal to the number of particles. Therefore, the N-body
Coulomb scattering problem has to be approached differently. For large N
our system resembles that of the interacting electron gas (EG). In contrast to
the present case, however, conventional treatments of EG [1,3,19] are focused
on ground-state properties and (low-energy) excitations in the linear response
regime.

13.5 Continuum States of N-Charged Particles

The motion of N —1 charged particles (with charges z;, j € [1, N —1]) in the
field of a massive residual ion with charge z, at energies above the complete
fragmentation threshold, is described by the Schrodinger equation

N N
2z 2324 o) iy
HU+JE=1?+ ?i : - E|¥(ry,---,rn)=0, (13.19)
imi=1

where r; is the position of particle j with respect to the residual charge z
and r;; = r; — r; denotes the relative coordinate between particles i and j.
The kinetic energy operator Hy has the form (in the limit m/M — 0, where
M is the mass of the charge z and m is the mass of the continuum particles,
which are assumed to have equal masses) Hy = —Z:.\':l Ag/2m, where Ay
is the Laplacian with respect to the coordinate ry. We note here that for a
system of general masses the problem is complicated by an additional mass-
polarization term that arises in (13.19). Upon introduction of N-body Jacobi
coordinates, [y becomes diagonal, however, the potential terms acquire a
much more complex form. The continuum states are characterized by the
N — 1 asymptotic momentum vectors k;. The Sommerfeld parameters «;,

aij are given by iy = 3=, a; = 2L,
4
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Here,l'uj Is the velocity of the particle j and vij = Vi — vj. The total
energy of the system E is given by the asymptotic value of the kinetic energy.
16, 15 = AL B Al Seattering ei of
e, B = %" B, where E; = 35+ Scattering eigenstates ¥(ry, .-+, ry) of
(13.19) have been derived using the ansatz [15]

W(ry, e mN) = NBr(ry, -, rn)rr(r, - o) x(ry, -+ ), (13.20)

where @1, @y, are appropriately chosen funetions, A is a normalization con-
stant and x(ry,---,ry) is a function of an arbitrary form. The function &, is
chosen to describe the motion of N -independent Coulomb particles moving
in the field of the charge z at the total energy E, i.e., ¢; is determined by
the differential equation

i
22
Ho+3 T2 -E| (i, 7a) = 0. (13.21)
=l

'.The regular solution @y is Gy(ry,---,ry) = ]_[j\;l &i{ri)e;(r;), where & (r;)
is a plane wave dependent on the coordinate rj and characterized by the
wave vector k;. Furthermore, o;(r;) is a confluent-hypergeometric function
in the notation of [22] p;(r;) =, F} [ej, 1, =i(k;r; + k; - 7;)]. The function
@; describes the motion of the continuum particles in the extreme case of
very strong coupling to the residual ion, i.e., |2z;| > |zjzi]; ¥i,5 € [1, N —1].
In order to incorporate the other extreme case of strong correlations among
the continuum particles (|z;z| > |2z;]; Vi, j € [1, N —1]) we choose ®;; to
possess the form

Ar
Drr(ry, .- TN) = 3”(’-"1| TN HEJ’("J’L
j=1

N
Brr(ry,orw) = ] eulri), (13.22)

F»i=1

where @;;(ry;) 1= Fi[ay;, 1, —igc,-_.,-?'.-_,- +kijrij)]. It is straightforward to show
I;hap r.hr_f expression @;;(ri;) [T, &(r1) solves for the Schradinger equation
.(13. 19) in the case of extreme correlations between particle ¢ and particle 7,
ie., |z21| < |zi2i] > |zmzal, VI, m, n # i,j. In terms of differential equations
this means

! N
(HU i _"z;jJ E) wij(rij) H &(r;) =0. (13.23)
4 =1

It should be stressed, however, that the function (13.22) does not solve for
(13.19) in the case of weak coupling to the residual ion (z = 0), but otherwise
comparable strength of correlations between the contimum pafticles, because
the two-body subsystems formed by the continuum particles are coupled to
each other. This is the equivalent situation to the interacting electron £as,
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The determination of the properties of the function y that occurs in the
ansatz (13.20) is a lengthly procedure and has been discussed in full .det&i] in
[15]. Tt turned out that, at higher energies or at large interparticle distances,
x has the form of a product of plane waves. In general, however, no closed
analytical expression for x has been found yet.

13.6 Green Function Theory
of Finite Correlated Systems

With increasing number of particles the treatment of correlated systems .be—
comes more complex and new phenomena appear whose description requires
the knowledge of the collective behavior of the system. Thus, an approach
is needed that is different from the wave function treatment. The method of
choice for this purpose is the Green—function technique, which we will outline
in this section. ;

A principle task in many-body systems is to deal appropriately with the
correlations between the particles, for the independent-particle problem can
be solved is a standard way. Therefore, for a canonical ensemble, a non-
perturbative method has been developed [23] that allows dilution of the inter-
particle interaction strength to a level where the problem can be solved b.y
conventional methods (perturbation theory, mean-field approach, etc.). This
can be achieved by an incremental procedure in which the N correlated par-
ticle system is mapped exactly onto a set of systems in which only N — M
particles are interacting (M € [1, N — 2]), i.e., in which the strength of the

otential energy part is damped. :
j The total gpfntential is assumed to be of the class UN) = YN vy
without any further specification of the individual potentials v;;. The key
point is that the potential UY) satisfies the recurrence relations

N e

oM _ 1 LN=1) (V=) il Z w2 gokk,

— E i T, — 4 :
N_21=| 4 g Pl b=

(13.24)

where uﬂ‘\l_” is the total potential of a system of (N — 1) interacting particles

e T tex N- N . 7

in which the j particle is missing (uﬁ R 2om>n=1 Ymn, ™ # # ?i]i- :
As shown in [23] the decomposition (13.24) can be used to derive ﬁ1m1}1\{air
recurrence relations for the transition 7(™) and the Green’s operator GV,

namely T(V) = Z?{:IT;N'n,j € [1, N] and

r — N-1
TN\ D i
Té;\'—l} tgf\ -1} T
: - : + [KWN-1) : (13.25)
. A N-1)
Tr‘\?'\ 1” 5“\- 2 Trir-x

— N=1
N1 (V1) (N=1)
T tn Ty
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Here, tf,.‘\'*” is the transition operator of a system, in which only N — 1 par-
ticles are interacting. The kernel [K(¥=1)] is given in terms of t‘g.’v"l} only

[23]. From (13.24) it is clear that t_E-N_') can also be expressed in terms of the
transition operators of the system where only (N —2) particles are interacting
leading to a recursive scheme. From the relation G(V) = Go+GoT™ Gy sim-
ilar conclusions are made for the Green operator GWY) = Go+ Z?r: 1 G_EN_”.

The operators G_gN_” are related to the Green operators y_f-N_l) of the sys-

tems in which only (N — 1) particles are correlated.

13.6.1 Application to Four-Body Systems

For the four-body system, G} can be expressed in terms of three-body
Green's functions, namely, G4} = Zj=1 g}a) — 3Gy. Here, g__(jal is the Green
operator of the system where only three particles are interacting. In terms

of state vectors the above procedure amounts to [¥() = |y + [y +

w3 + W) - 3|52 ), where Iv_.-')ff,z} is the state vector of the system in
which the three particles i, j, and k are interacting, whereas |¢§i?e) is the
state vector of the noninteracting four-body system. Here, jgf;g‘i} is assumed
known.

13.6.2 Thermodynamics and Phase Transitions in Finite Systems

Strictly speaking, finite systems do not exhibit phase transitions [24]. How-
ever, one expects to observe the onset of a critical behavior when the Sy8-
tem approaches the thermodynamic limit. The traditional theory concerned
with these questions is finite-size scaling theory [26]. For interacting systems
the methods outlined above together with the ideas developed in [24,25],
can be utilized for the study of critical phenomena in finite correlated Sys-
tems: The canonical partition function is expressed in terms of the many-
body Green function as Z(8) = [dE Q(E) e~PE, Here, 2(E) is the den-
sity of states that is related to the imaginary part of the trace of G™) via
Q(E) = —-LTrIG™)(E). The recurrence relation outlined above for the N-
body Green function can be utilized to calculate f; 2(E), leading to a recursion
relation for the partition function

N
ZM) =3 z(N=D _ (N —1)2. (13.26)

j=1

Here, Zj is the partition function of the independent particle system (taken
as a reference), while Z__}N_ Y is the canonical partition function of a system in
which the interaction strength is diluted by cutting all interaction lines that
connect to particle j. Equation (13.26) allows the thermodynamic properties
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of finite systems to be studied on a microscopic level as well as investigation
of the inter-relation between the thermodynamics and the strength of correla-
tions. Critical phenomena can be studied using the idea put forward by Yang
and Lee [24,25]. For example, if one is interested in the onset of condensation
in a quantum Bose gas, the ground-state occupation number 1no(N, ) has to
be considered

18,2008)  1X810.2{" " = (N - 1)3xZ0

AR 25

(N, B) =
(13.27)

Here, ¢p is the ground-state energy. By means of this equation one can study
systematically the influence of the interaction on the onset of the critical
regime or one may chose to find the roots of (13.26) in the complex 3 plane.
Zero points of Z(V)(3) that approach systematically the real 3 axis signify
the presence of transition points in the thermodynamic limit.

13.7 Collective Response
Versus Short-Range Dynamics

In the thermodynamic limit (large volume V, large N, and finite number
density n = N/V) the characteristic response of the system will be dominated
by the cooperative behavior of all the electrons. For example, the fluctuations
of the electronic density are determined by the polarization operator IT (q,w),
which depends on the momentum transfer g and the frequency w. On the
other hand, the polarization of the medium modifies the properties of the
particle-particle interaction U(q,w). The modified potential Uy is related to
U and I(q,w) through the integral equation (2,3], i.e., Usg = U + UllUesi;
or Ueg = U/(1 — UIT). Thus, the screening is quantified by x(q,w) =1/(1—
UIT), which is called the generalized dielectric function [3]. To determine Ueg
and & one needs the polarization function I7 that describes the particle-hole
excitations. The lowest—order approximation [Ty is given by the random-phase
approximation (RPA) as illy(q,w) = TﬁT‘ [ dpdéGo(g + p,w + £)Golp,€).
Here Gy is the free, single particle Green function. The evaluation of ITy can
be performed analytically for a homogeneous system [3]. In the long wave-
length limit we have [Ty = —2N (pz), where N (p) is the density of states at the
Fermi level jt. This means that, in the presence of the medium, the electron—
electron interaction has the form Upp = 4m/[¢? + 87N (u)]. In configuration
space one obtains Ury = e~/ r,

Hence, in contrast to atomic systems where collisions with small momen-
tum transfer are predominant (I o< 1/¢?), in a polarizable medium scattering
events with small ¢ are cut out due to the finite range of the renormalized
scattering potential Ueg. The essential difference between the screening ef-
fects we are dealing with here and those introduced in the context of the
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DS3C theory is that in the DS3C screening is incorporated into an explicit
many-l:.:od_y theory to account for higher-order diagrams (beyond the ladder
approximation) whereas here the screening accounts for certain correlations
effects (linear response theory) within a mean-field theory.

Apart from the case of the extended, homogeneous electron gas the eval-
uations of Uy is generally a challenging task (plane waves are, in general
not the single-particle eigenstates of the system). For an inhomogeneous c]ec—,
tr.t.mic system, like solids and surfaces, the GW approximation [27] offers a
direct extension of the RPA (G stands for the Green’s function and W = Ug
for the screened interaction). In [28] this scheme has been discussed and
results for the dielectric functions of copper and nickel surfaces have been
presented.

13.7.1 Manifestations of Collective Response in Finite Systems

For finite systems the spectrum is generally discrete, which hinders fluctua-
tions around the ground state. However, on increasing the size and number
density n collective effects set in. The influence of the fluctuations is demon-
strated nicely when considering the ionization channel of large molecules or
metal clusters upon electron impact. Within the RPAE (RPA with exchange)
the screened interaction U between the electron and the target is

< kiko ¢'uku> = < kl"’z' U ¢’uku> (13.28)

5 ( oka| Ut | gun ) (onkea| U | ko )

it €g — (Ep = Ehi— 16}

Ep>n

3 < enky

Uer

Uer ¢v¢p > < kall U ’ k[N’h >
€0 + (ep — &n — i6)

¢p and ¢y, are, respectively, the intermediate particle’s and hole’s states with
the energies ¢, ), whereas § is a small positive real number and p is the
chemical potential. The first term of (13.29) on the RHS amounts to ne-
glecting the electron-hole (de)excitations, as done in [30]. In [29] (13.29) has
been evaluated self-consistently for the Cgy cluster and the ionization cross
section has been calculated. The results are shown in Fig. 13.1, which clearly
demonstrates the significance of screening in shrinking'the effective size of

the scattering region and thus leading to a suppression of the ionization cross
section.

13.8 The Quantum Field Approach: Basic Concepts

For strongly correlated systems or multiple excitations in extended systems
(such as one-electron or one-photon double-electron emission (7, 2¢) or (e,2e))
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Fig. 13.1. Total electron-impact ionization cross section of Cgp as a function of the
impact energy. The absolute experimental data (full squares) for the production of
stable Cif; [31,32] are shown. The solid line with crosses is the DFT results [33],
the dotted line (solid) is the result of the present caleulation without RPAE (with
RPAE)

methods that go beyond RPA are needed. There are a number of theories
available, however most of them, like the hole-line expansion or the coupled-
cluster methods [3,4,34], are restricted to the treatment of ground-state prop-
erties. For the treatment of correlated excited states the Green’s function ap-
proach is well suited, however, the method as introduced in previous sections,
becomes intractable with increasing N, since in this case one works within
first quantization, i.e., the states have to be (anti)symmetrized.

Applying methods of field theory, Migdal and Galitskii as well as Martin
and Schwinger [35,36] developed a theory that connects, by means of Feyn-
man diagrams, higher-order propagators to the single particle (sp) propa-
gator, The latter is then related to the free unperturbed propagator. The
system symmetry enters through (anti)commutation relations of the opera-
tors [3,19,20]. This (perturbative) route has found extensive applications in
various fields of physics. Here, we focus on the aspects that are of immediate
relevance to (v, 2e) and (e,2e) reactions.

13.8.1 The Single-Particle Green’s Function
for Extended Systems

The sp Green’s function g(at, ') can be considered as an expectation value
for the time-ordered product of two operators evaluated using the correlated,
exact (normalized) ground state [Wy) of the N electron system, i.e.,

ig(at, Bt') = (To| Tlana(t)al;5(t)]|%o) ,
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where T is the time-ordering operator. a{m{t’) and apq(t) stand, respectivel

for the fermionic creation and annihilation operators in the He,:isenberg pig’:
tm'.e represented in an appropriate basis, the members of which are charac-
terized by quantum numbers o and 8. For a translationally invariant system
t}‘m appropriate basis states are the momentum eigenstates, labelod by k‘
The effect of the chronological operator 7 can be described ‘in terms of tllf:
step function ©(t — '), in which case the Green's function is given by '

ig(k,t —t') = O(t — t') (Wolame (t)aly, (t')| %) (13.29)
=O(t' — t)(Wolajy (¢ ark (£) | o)

= 9(£ LY t"} Ze—i[.*::er-i DB (o ‘(W-(f\rﬂ}lﬂ-;ﬂf%}‘z
¥

' —i[EN) _ N1y e A 2
-0t —-3);f, i[BM — BN =) f.)‘(%(,v 1J|Qk|%)1 :

(N-+1) (N=1) _
vy and Wg ) stand for a complete set of eigenstates of the (N + 1)-
m}(.{, tllu)e (N —1) particle system, respectively. The energies E‘éN), EE,-N"'U‘ and
f‘é ] Irei’er to the exact energies for the correlated ground state of, respec-
ive y,. the NV, th(- {.N +1), and the (N — 1) particle system. The exponential
with .“m energies in (13.30) is due to the Hamiltonians in the exponential
funct-fuus in the definition of the Heisenberg operators. Noting that the step
function has the integral representation :

4 1 oo e—i:m!
O(t) = — lim ,——f dw —
n—+0 27ri —ea w+ i

3 ' ki i i
the CI;I'BLII s function in energy space can be obtained via Fourier transforming
the time difference ¢t — ¢’ to the energy variable w. This yields the spectral or
Lehmann representation of the sp Green’s function [37],

2
: (N af|20)|
glk,w) = lu% z = T ~
Tiane =8 - B"™] + in

e 2
oy | Pl ia0)|
El [Ef(jN) - E‘gN_l)] — in

(13.30)

This relation underlines that the sp Green’s function is expressible in terms
of measurable quantities: the poles of g(k,w) correspond to the change ixl.l
energy (with respect to EéN)) if one particle is added ( EE,N“) - E},N)) or one
Pm‘ticle is removed ( JDW) - E‘Jm_”J from the reference ground state with N
interacting particle. The residua of these poles are given by the spectroscopic
[factors, i.e., the measurable probabilities of adding and removing one particle
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with wave vector k to produce the specific state v (§) of the residual system.
Clearly, the latter probability is of direct relevance to the (e,2e) process. The
infinitesimal quantity 7 shifts the poles below the Fermi energy (the states of
the (N — 1) system) to slightly above the real axis and those above the‘ Fermi
energy [the states of the (N + 1) system] to slightly below the real axis.

It is useful to write the single-particle Green’s function in terms of the
hole and particle spectral functions, which are given for w < ep by

5 2 (N) _ pm(N-1)
Sa(k,) = ~Sg(k,w) = 3| @ Dlarlto)]| 6w - (B - BND)),
T

(13.31)
and for @ > ep
Sp(k,@) = ~Sg(k,3) = 2 |+ a0y 8@ — (BN — EV)).
(13.32)
The sp Green’s function is then written as

i ([ ar BB [0y SENY g,
9("f“"’=,‘,£‘b( e e | G ey T 010.58)

-0

The single-particle Green’s function is particularly important since it estab-
lishes a direct link to experimental processes that study the effect‘cnf a removal
or an addition of a particle to the correlated system. As mentlonf‘Jq above,
the (e, 2e) process is related to the hole spectral function. In a)ddltlol?,, the
Green’s function allows the evaluation oi: the expectai:ion value for any single-
particle operator O (this is because (Q) = Zap 38 duSh(a}31w)(a|(?|_€),
where (a|O|3) is the matrix representation of O in the basis [a?)‘. This in
turn highlights the importance of single-particle removal or addition spec-
troscopies, such as single photoemission [38,39] and (e,?e? processes, which
allow insight into the respective part of the Green's function. A fu.rt.h'er ad-
vantage of the Green’s function approach is that it offers a s.ys.temal:.lc way
for approximations using the diagram technique [20]. In the diagrammatic
expansion for g one introduces the concept of the se]f—energy. X [27]. The
knowledge of X' allows the evaluation of g via the Dyson equation

g(aB;w) = go(aB;w) + Y gola; w) E(15;w)g(86;w) (13.34)
bl

where gg is the Green’s function of a (noninteracting) referfence system. ’I"he
self-energy X accounts for all excitations due to the interaction of the particle
with the surrounding medium and acts as a nonlocal, energy-dependent, and
complex single-particle potential.
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13.8.2 Particle-Particle and Hole-Hole Spectral Functions

As discussed in detail in [20], the Dyson equation ( 13.34) can be derived alge-
braically and the single-particle propagator g(at, a't’) can be related to the
two-particle Green’s function g''(gt,, 3 t1,vt2,7t5). This is a first cycle in a
hierarchy that links the N-particle propagator to the (N +1)-particle propa-
gator [36,35]. Of direct relevance to this work is the two-particle propagator
9"(Bts, B't), vta, vEh).

Repeating the steps outlined above for the single-particle case, one arrives
at the Lehmann representation of the two-particle Green’s function in terms
of energies and states of the systems with N and N 42 particles (the (N —2)-
particle state of the system is achieved upon a (7, 2e) reaction):

75" lagaal 8" 2@V ot o2

9" (aB, v 2) =" {

. 0 [EVD _ B iy

{!Pém[33,a}]'Py(.fv_z’]}{ﬂ,g.N"z)ia,gaQ|!!/D(N}} &

T ) N—2) n (1330)
m 2- [EO‘ o Eﬂ"! J = IT]'

Upon analogous considerations made for the one-particle case to arrive at
the single-particle spectral functions, one can obtain from g" the hole-hole
spectral function as Sy (k1 ki, 2) = Sg'l(ky, ky, 2),02 < 2ep/m, which is
intimately related to the (v, 2¢) reaction.

The two-particle Green’s function involves two kinds of diagrams: the
first type includes two noninteracting single-particle propagators (see (13.34))
and is supplemented by similar diagrams that include all possible self-energy
insertions [3]. The second defines the vertex function I'. The latter involves all
generalization of the lowest-order correction to the two-particle propagator
in which two particles interact once. To visualize the role of I" we write g!!
in the form

g”(atl._a'a‘.'l,_ﬁth,.G"t;)
=ilg(af,tr — t2) g(a'F', t; — t5) — g(af', t1 — th) g(aB, ; — t)]

X /d!adthdicdtd zg(aa, t1 —ta) g(a'h, t —tp)
abed

X(@b|L (ta, to; te, ta)led)g(cB, te — ta)g(dB', tq — th) . (13.36)

From this equation it is clear that I" can be considered as the effective inter-
action between dressed particles. In addition, I" plays a decisive role in the
determination of its single-particle counterpart, the self-energy X' [3].

In energy-space, the result for the noninteracting (free) product of dressed
propagators including the exchange contribution, i.e., the zero-order term of
(13.36) with respect to I, reads
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The integration over w has been carried out by utilizing the Lehmann repre-
sentation for the single-particle Green’s functions. The ladder approximation
to the two-particle propagator is

gl (af, 78; 2) = g (aB,73; 12)

7 O gl (ap, e D enl V169! (0C. 76 2),  (13.38)
enf¢

where V stands for the naked two-body interaction. This integral relation can
now be iterated to yield a set of ladder diagrams. The corresponding ladder
sum for the effective interaction I', as it appears in (13.36) can be deduced
from this result as

(v, Bo| TL(2)|af, B) = (00 Ba|V e B2)
+}li z<mﬁz|Vﬁm}g§I(r 0,0 92)

entic

The aforementioned RPA for the particle-hole (polarization) propagator [T
means that only the term (13.37) is taken into account. The calculations of
higher-order (vertex) corrections entail an evaluation of the sum in (13.38).
It is also interesting to contrast (13.38) with the DS3C approach (13.16).
As noticed above, g is of direct relevance to the (v, 2e) reaction. It should
be noted, however, that the ladder approximation (13.38) for the two-particle
Creen’s function can be employed to define the self-energy £ [20,35], which
can then be used to obtain the single-particle Green’s function via (13.34).
On the other hand, this Green's function enters in the definition of the two-
particle Green’s function, as is clear, e.g., from (13.37) and (13.38). Thus,
in principle, the Dyson (13.34) and (13.38) for the one-body and two‘-body
Green’s functions have to be solved in a self-consistent manner. As in the
single-particle case where we established the relevance of the spectral repre-
sentation to the (e,2e) experiments, one can relate g™ to the (7, 2¢) measure-
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ments by means of (13.35): g'' shows poles at energies (relative to the ground
state) corresponding to adding [E,(."VH} - Et(,m] or removing [ESN] - E,E‘\'_Q]]
two particles from the unperturbed ground state. The residua of these poles
are related to the measurable spectroscopic factors for the addition or re-
moval of the two particles, e.g., as done in the (v, 2e) experiment [40]. From
the above discussion we conclude thus that (-y,2e) and (e,2e) provide quite
different information. On the other hand they are related in as much as
the single-particle and the two-particle spectral functions are related to each
other.

13.8.3 The Two-Particle Photocurrent

The (v, 2¢) experiments from surfaces have been conducted recently [40]. The
two-photoelectron current 7 is characterized by the wave vectors k; and ko
of the two photoelectrons. It has the form [41]

T o (k1 ka|g"" ASY, (K1, k5, B)Alg! |k, k) (13.40)

where A is the dipole operator, S[} is the hole-hole spectral function, and
g™ (g'"") is the advanced (retarded) two-particle Green’s function. As for the
single photoemission, the photocurrent can be represented by a two-particle
Caroli diagram [41], which explicitly shows no signature of time ordering.
This is due to the assumption that the experimental time resolution (typically
2001s) is much longer than any other timescale in the system and hence a
time integration has to be performed to arrive at (13.40). On the other hand,
one can tune to initial- or final-state interactions (FSI) by a suitable choice
of ko if k1 and k; are very large (compared to the Fermi wave vector), one
can expect FSI to be limited to a small region in phase space where the two
electrons escape with almost the same velocities. Apart from this regime, FSI
become less important, which allows the effect of initial-state correlations to
be highlighted. On the other hand, if the two electrons escape with very low
(vacuum) velocities, FSI become the determining factor.

Numerical Realization for Metal Surfaces. As is clear from (13.40),
the evaluation of ' is the key ingredient for the numerical evaluation of the
two-photoelectron current. On the other hand, we have seen in the preceding
section that the single-particle Green’s function g is needed to obtain g™, and
in turn g'' goes into the determination of £ and hence g. Until now this self-
consistent loop has been too complicated to be realized numerically within a
realistic description of the surface, i.e., for an inhomogeneous electron gas or
for a few-electron atomic system.

Incorporating the Single-Particle Band Structure. A possible ap-
proach to the evaluation of 7 is the following: assuming the two photoelec-
trons o be independent, then, according to (13.38), the two-particle Green’s
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function g reduces to g" = gf'. This means, as in the RPA case for 1T, g!
simplifies to an antisymmetrized produet of sp Green’s function g;(k;. E;),
i = 1,2 that can be used to generate the single-photoelectron states, e.g.,
by means of the layer Korringa—Kohn-Rostoker (LKKR) method [2]. This
method utilizes a density-functional approach [2] combined with a semi-
empirical function for the complex part of the self-energy. For the evaluation
of J from metal surfaces one can utilize the interaction potential Urg, with
N(p) being calculated by the (ab initio) LKKR method. Furthermore, we
can write

Upp = é -+ é with Z; = a;lexp(—g—%;r_.,—}, o=k (13.41)

™ T A

where a; = r12/(2r;). Equation (13.41) indicates that the effect of the electron—
electron interaction potential can be viewed as a modification Z;/r; to the
single-particle potentials. The interelectronic correlation is subsumed into a
dynamic nonlocal screening of the interaction w; of the electron with the
lattice. The behavior of this screening is dictated by the functions Z;, and
has the following features: when the two electrons are on top of each other
(r12 = 0) the potential w; turns repulsive so as to simulate the strong, short-
range electron-electron repulsion. If the two electrons are far away from each
other (r; > r;, i # j € [1,2]), the screening strengths Z, and Z; become
negligible and we end up with two independent particles. For the numerical
evaluation of the two-photoelectron current Z; have been approximated by
Z;, where Z; = ﬁ;l exp (—2a;r;/A) and d; = ki2/(2k;). Here, k12 = k1 — ko
is the interelectronic relative wave number. With this screening being in-
cluded, the modification Z;/r; to the original single-particle potential w;
can be taken into account and the single-particle Green's function g; is gen-
erated. However, in contrast to g, each g; is dependent on the wave vectors of
both electrons as well as on the mutnal, relative wave vector of the escaping
electrons. The two-particle Green's function is approximated by 7' which is
the antisymmetrized, direct product of the modified single-particle Green's
functions §; (the first term in the ladder approximation, (13.38)). This model
yielded useful results for the (e,2e) cross sections [42-44].

Angular Pair Correlation Functions for Cu(001). Here, the (v,2e)
calculation from Cu(001) are described. The ground-state potentials of the
Cu(001) surface are calculated self-consistently with the scalar-relativistic
LMTO method. Lifetime broadening of the spectra is simulated by employing
a complex optical potential and the photoelectrons’ enrrent due to emission
from the first 20 outermost layers is calculated. Convergence of the results
with respect the maximum angular momentum, number of reciprocal lattice
vectors, and accuracy of the energy integration is achieved.

Figure 13.2 shows the angular distributions of the current for single pho-
toemission (labeled SPE) and the double photoemission (indicated by DPE)
for an incoming s-polarized photon. The intensity variation is shown as a
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SPE

hFigx 13.2. The angular distribution of the photoemission intensity from Cu(001)
in single-clectron (labeled SPE) and double-electron photoemission (labeled DPE).
T‘he kinetic energy of the photoelectrons is 9 eV , the photon energy of the s-polarized
light is 15.5eV in the SPE case whereas in DPE the photon energy is increased to
.:'Il eV as to compensate for the additional energy needed to emit two electrons
instead of one. For the DPE case, the small circle indicates the emission direction
of one of the electrons (polar angle with respect to the surface normal is 9 — 40°)
Low (high) intensities correspond to light (dark) gray scale in the stcreographic'
projection. Horizontal and vertical lines emphasize the symmetries of the angular
distributions

function of the angular position of one photoelectron with 9eV kinetic en-
ergy. The photon energy is 15.5 eV in the single photoemission case and 31 eV
for double photoemission. We note that in the latter case both photoelectrons
escape with the same kinetic energy of 9eV. For SPE, the point group of the
surface 4 mm is reduced to 2mm in the angular distribution (as indicated by
the horizontal and vertical lines in Fig. 13.2) because the electric-field vee-
tor of the incident photon (which lies in a mirror plane of the surface) is
not, invariant under the operations C; and Cd_'. On the other hand in DPE,
the group 2mm is reduced further to m (horizontal line in Fig. 13.2), due
to the presence of the second photoelectron. From Fig.13.2 it is clear that
the repulsion between the two escaping photoelectrons leads to a vanishing
photoelectron current when the two electrons are close to each other. This
is the origin of the correlation hole surrounding the fixed detector position.
On the other hand, if the two electrons are far from each other, the electron—
electron interaction diminishes in strength. Consequently, the two-electron
current drops dramatically, for this current must vanish in the absence of
correlation. The interplay between these two effects leads to a localization
of the angular-intensity distribution of one of the photoelectrons around the
position of the second one, as observed in Fig. 13.2. It should be stressed that
the two detected photoclectrons are not only coupled to each other but also
to the erystal potential. Therefore, the correlation hole is not isotropic in
space and depends sensitively on the photoelectrons’ energies.
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13.9 Conclusion

This chapter gives a general overview on the foundations of many-body tech-
niques for the treatment of single and multiple excitations in few and many-
body systems. The author’s goal has been to emphasis common features
and differences when the system size and/or the number of interactions in-
crease. While the wave function approach is well suited for the treatment
of few interacting particles it becomes less valuable for large compounds. In
the thermodynamic limit the well-established Green's function technique is
a powerful tool for the deseription of correlated excitations in many-body
systems.
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