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Abstract. We present a method for the numerical investigation of the electron dynamics in small metallic
clusters in intense laser fields. We obtain information about collective excitations and relaxation processes
in the Na+

9 and Pt3 clusters analyzing the power spectrum of the dipole moment within a mean-field
approach. The power spectrum is computed for various laser pulse parameters as well as for the limit of
an infinitely short laser pulse. Due to the basis set expansion of the wave function our method is capable
to follow the dynamics not only of the whole electron cloud, but of any particular molecular orbital.

PACS. 78.47.+p Time-resolved optical spectroscopies and other ultrafast optical measurements in con-
densed matter – 36.40.Cg Electronic and magnetic properties of clusters – 36.40.Gk Plasma and collective
effects in clusters – 71.15.Ap Basis sets (plane-wave, APS, LCAO, etc.) and related methodology (scattering
methods, ASA, linearized methods)

1 Introduction

During the recent years considerable progress has been
achieved in the investigation of ultrafast electron dynam-
ics in different systems: semiconductors, molecules and
clusters, plasmas and magnetic materials [1–3]. At times
shorter than the characteristic time of interaction, the dy-
namical behavior of the electrons cannot be described in
terms of the relaxation time approximation, since scatter-
ing processes are not irreversible any more. This fact forms
the essence of coherent control experiments and quantum
computing, the general idea of which is switching the sys-
tem from one quantum state to another by applying an
external perturbation [4–6].

Lasers provide a unique excitation source for these pur-
poses supplying pulses of an extraordinarily wide range
of frequencies and intensities. Currently optical pulses as
short as 10 fs or even less are available yielding a time res-
olution of about 1 fs. Typically experiments comprise the
excitation of the system by a strong pump-pulse and the
subsequent detection of the time evolution by monitoring
its response to a second weaker pulse (probe) impinging
after a variable time delay (so-called pump-probe experi-
ments).

Besides electron-electron interaction, which is always
the dominant relaxation process on the femtosecond time
scale, there exists a variety of other relaxation mecha-
nisms, depending on the system, such as: electron-phonon
interaction, the role of which turned out to be very im-
portant in four-wave mixing experiments on semiconduc-
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tors [7] and infrared photon echo study of liquids [8] or
the generation of bulk and surface plasmons — collective
plasma excitations. The latter seems to be significant for
small metallic clusters and nanoparticles [9,10]. The possi-
bility of experimentally investigating the electron dynam-
ics in clusters [11] motivated us to develop a theoretical
method, that is capable on the one hand correctly describe
the energy level scheme and electron-electron interactions
(this means the necessity to go beyond the semiclassical
level of the Vlasov-LDA approach to the quantum me-
chanical description), and on the other hand to show this
in a way closest to experiment, i.e. resolved in time.

Although all scattering mechanisms differ greatly with
respect to the intensity, length scale and number of par-
ticles involved it is possible to classify them according to
the relaxation time peculiar to each of the processes. Then
at a given time stage one can pick up the dominating re-
laxation mechanism, neglecting other more slowly vary-
ing phenomena and build a correct approximation to the
theory. In contrast to the single-particle picture, where
changes of the quantum state can only be due to the in-
teraction with an environment, the many-body nature of
the electron gas also provides an internal clock mechanism.
There exists a hierarchy of relaxation times correspond-
ing to the equilibration of the one-, two-, three-particle
distributions, etc. For each of the periods it is possible to
build a quantum-kinetic theory [12,13] that takes into ac-
count the necessary number of correlation functions while
neglecting correlation functions of higher order. The sim-
plest approximation is to treat the electron dynamics on
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the Hartree-Fock level, i.e. to neglect two-particle corre-
lations.

The time-dependent Hartree-Fock equation is known
for a long time since the early 1930s [14]. In the 1980s
the formalism of time-dependent density functional the-
ory [15] was established. Since that time, due to the de-
velopment of enhanced computational equipment and effi-
cient numerical algorithms, the solution of these equations
was implemented for different systems such as particles in
nuclear physics, clusters or plasmas using two different
approaches: linear-response calculations [16,17] and full-
fledged solution of the time-dependent problem [18,19].
The common feature of the latter approach is the real-
space implementation. This means discretization of the
space, as well as time axes. The advantages of this method
are the possibility to study highly excited and unbound
states, as well as the obvious interpretation of the results.
On the other hand, static ab initio calculations in quan-
tum chemistry are done, expanding all operators, the elec-
tronic density and wave functions in basis sets: Slater or
Gaussian type. This treatment requires less computational
effort, allows to study dynamics of any particular molec-
ular orbital, describes electron transitions among states,
which is impossible in the real-space methods, but is in-
capable of treating ionization processes [20].

In this paper we explain a numerical implementation
of the time-dependent Hartree-Fock equation using a ba-
sis set expansion, show its advantage compared to the
adiabatic and matrix-Hamiltonian treatment of the time-
dependent problem. The method also has a more obvious
interpretation of the solutions in terms of many-body per-
turbation technique than TDDFT theory, because for the
limit of a weak deviation from the ground state analytical
results are known.

In Section 2 we explain the numerical implementation
of the method and the computation of the observables: the
power spectrum of the dipole moment, the time-dependent
populations of the molecular orbitals and the total energy.
The power spectrum provides information about plasmon
oscillations and excited states energies. In Section 3 we
study collective effects in the Na+

9 and Pt3 clusters —
systems with a larger number of the electrons, determine
the energy, estimate the lifetime of the plasmon peak, and
compare these results with other theoretical predictions
and experimental data.

2 Theoretical background

The time evolution of the many-electron system can be
reduced to the TDHF equation for the one-particle wave
function ψ(r, t):

i
∂ψ(r, t)
∂t

=

[
− 1

2
∆+

N∑
j=1

Zj

|r − Rj | + Ĥd(ρ) + Ĥex(ρ) + V̂ (t)
]
ψ(r, t).

(1)
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Fig. 1. Structures of Na+
9 and Pt3 clusters studied in this

work. The numbers indicate the bond lengths in units of Å.

Note that the fundamental physical constants drop out by
the use of atomic units. This equation describes the one-
electron wave function ψ(r, t) in the field of ions of charge
Zj at position Rj . The interaction with other electrons is
taken into account through the direct (Hd) and exchange
(Hex) energy functionals:

Hd(ρ)ψ(r, t) =
∫

d3r′
ρ(r′, r′, t)
|r − r′| ψ(r, t)

Hex(ρ)ψ(r, t) = −
∫

d3r′
ρ(r, r′, t)
|r − r′| ψ(r′, t). (2)

They depend self-consistently on the electronic density

ρ(r, r′, t) =
∑

i=occupied

ψ∗
i (r, t)ψi(r′, t). (3)

We employ the Born-Oppenheimer approximation thus
neglecting the motion of the atomic nuclei. In order to
obtain information about the position of the nuclei Rj for
the systems (Fig. 1) we have performed a geometry opti-
mization on the Hartree-Fock level with the Gaussian 98
package [21]. We take the perturbation operator V̂ (inter-
action with laser field) in the most general form:

V̂ (t) = A(t) · p̂ (4)

as a scalar product of the vector potential of the elec-
tromagnetic wave A(t) and the electron momentum op-
erator p̂. The temporal profile of the excitation source
contains some slowly time varying envelope function mul-
tiplied by fast oscillations with the photon frequency.
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This is more general than the commonly employed δ-
pulses, because in this way we can not only study the
response of the system to very short excitations, but also
follow the dynamics during the pulse. Typically systems
are excited by a laser pulse with temporal intensity distri-
bution [11]

I(t) = I0sech2

(
t− t0
σ

)
. (5)

The main quantity that distinguishes between regular and
chaotic time evolution of the system and also gives infor-
mation about excited states is the power spectrum of the
dipole moment of the molecule. A detailed analysis of the
properties of the power spectrum is given in reference [22].
The solution of the TDHF equation (1) yields the time
evolution of the quantum states, from which we compute
the time-dependent electron density (Eq. (3)) and subse-
quently — the expectation value of the dipole operator:

Di(t) =
∫

d3r rLYL,i

(r
r

)
ρ(r, t) (6)

with L = 1. The signal D(t) is then Fourier transformed
into the frequency domain, finally yielding the power spec-
trum:

P (ω) =
∫

dteiωtD(t). (7)

Further observables are the populations of the molecular
orbitals:

ni(t) =
∑

j=occupied

〈ψi(r, t = 0)|ψj(r, t)〉 (8)

and the total energy of the system:

E(t) =
1
2

∑
i=occupied

[
εi(t)

+

〈
ψi(r, t)| − 1

2
∆+

N∑
j=1

Zj

|r − Rj | + V̂ (t)|ψi(r, t)

〉 ]
(9)

where εi(t) are the instantaneous eigenvalues of the
Hamiltonian. Using a basis set expansion of the wave func-
tions makes the computation of these quantities a trivial
task as the space integration in the above formulas simply
reduces to the computation of the scalar product of two
vectors.

The general scheme for solving equation (1) is as fol-
lows: initially, we perform a stationary self-consistent field
(SCF) calculation in order to obtain the wave function of
the ground state. Then we use this as the initial condi-
tion for the system of ordinary differential equations to
which equation (1) reduces after expanding all operators
and functions in a given basis set. We propagate the solu-
tion in time by an adaptive Runge-Kutta or Bulirsch-Stoer
method [23]. The elementary time step, which strongly
depends on the system, is of the order of 10−3 fs. Thus,

typically 106 steps are needed in order to obtain the so-
lution for 200 fs. It is instructive to compare the perfor-
mance of our method with the standard version of the real
space TDLDA [19]. In the latter case the number of mesh
points must be taken much larger than the number of ba-
sis functions in our implementation in order to correctly
reproduce the electronic structure with the same accuracy
(27 609 points for the Na147 cluster compared to 72 (up-
scaling to 1 176 in the case of Na147) basis functions for
our Na+

9 cluster). The number of integration steps in the
case of TDLDA for the Na147 is reduced to only 5 000
using integrators with fixed step-size in reference [19].

The most time consuming computational step — the
evaluation of the matrix elements of the direct and ex-
change energy functionals (Eq. (2)) could be done effi-
ciently, using Raffenetti’s [24] format for the electron re-
pulsion integrals (ERIs)

〈αβ|γδ〉 =
∫

d3rd3r′
φα(r)φβ(r)φγ (r′)φδ(r′)

|r − r′| (10)

α, β, γ, δ = 1...Nbf . (11)

Nbf is the number of basis functions φα,β,γ,δ, which is
proportional to the number of atoms in the system and
the number of electrons. For the closed-shell calculation
one has:

Hd−ex = Hd +Hex

Re(Hd−ex
αβ) =

∑
γδ

γ>δ

Iαβ,γδRe(Dγδ) (12)

Im(Hαβ
d−ex) =

∑
γδ

γ>δ

Jαβ,γδIm(Dγδ)

Iαβ,γδ = 2〈αβ|γδ〉 − 0.5(〈αγ|βδ〉 + 〈αδ|βγ〉)
Jαβ,γδ = −0.5(〈αγ|βδ〉 − 〈αδ|βγ〉)

where the 〈αβ|γδ〉 are the ERIs and the Dαβ are the ma-
trix elements of electronic density (Eq. (3)):

ρ(r, r′, t) =
∑
α,β

Dαβ(t)φα(r)φβ(r′). (13)

Then the computation of the Hamiltonian matrix ele-
ments can be reduced to simple matrix-vector operations,
that can be implemented very efficiently. In this case, for
the closed-shell system, the numerical cost of the method
scales as

Nop = 2Nt(Nbf(Nbf + 1)/2)2 (14)

and for the open shell system it is approximately 1.5 times
larger. Nt is the number of time steps. From the numer-
ical point of view it is better to propagate only the wave
functions of the initially occupied states, rather than the
full density matrix (Eq. (3)).

For clusters with a large number of electrons the op-
timum choice of basis functions matters a lot, on the one
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hand restricting the precision of the wave function repre-
sentation and on the other hand limiting the maximum
number of time steps. In order to obtain solutions for the
longest possible time intervals, and thus, to get a high res-
olution for the Fourier transformed quantities we use an
effective core potential (ECP) together with lanl2dz basis
set for the Na+

9 and Pt3 clusters (Dunning-Huzinaga full
double zeta on the first row [25], Los Alamos ECP plus
DZ on Na-Bi [26]).

In the limit of linear response, i.e. when perturbations
are small, the TDHF equation could be linearized, and
thus reduces to the eigenvalue problem. For a long time,
linearized time-dependent Hartree-Fock (LTDHF) or DFT
methods have been the only possibilities to study excita-
tions in the realistic quantum systems on the ab initio
level (for a review on early applications of these meth-
ods to metallic clusters see Brack, reference [27], and the
references [16,17] for the thorough comparison of the dif-
ferent types of TDDFT linear response calculations, that
can be viewed as a low-fluence regime of the problem).
Detailed information about the system, i.e. excitation en-
ergies, plasmon dispersion, or polarizability, could be ob-
tained assuming a small deviation of the wave functions
from the stationary state. For the uniform electron gas,
results obtained in that way coincide with the diagram-
matic calculation within the random phase approximation
(RPA) [28]. The Lindhard dielectric function is obtained
from the RPA expression assuming an equilibrium elec-
tron distribution. In the case of finite temperature or an
electron distribution away from equilibrium (which was
studied in our case) the dielectric function must be evalu-
ated in the whole complex plane. The plasmon frequency
and decay can then be found at the intersection of the
Re(ε) = 0 and Im(ε) = 0 curves [29]. In our case we study
a situation close to the experiment (such as described in
Ref. [11]). The laser pulse interacts with the cluster and
part of the photon energy is absorbed. The electron dis-
tribution becomes different from a step function and can
be approximately treated introducing an effective non-
zero temperature. Thus, the analogy to the RPA result,
as well as recent results on the plasmon dispersion from
the adiabatic LDA [30] support our expectations, that a
full-fledged time-dependent treatment will yield reliable
information about one-particle and collective excitations,
plasmon life-times in metallic clusters, which, on the other
hand are experimentally accessible.

To better understand the general behavior of the so-
lutions of TDHF, we compare the anticipated dynamics
from this method with other one-particle methods for the
investigation of the time evolution of quantum systems
(see Fig. 2). In the TDHF scheme, shortly after the system
has been excited it exhibits oscillations with the plasmon
frequency (Fig. 2c), which is the zero of the longitudinal
dielectric function on the RPA level. For the electron gas
the dielectric function is given by the Lindhard formula,
and already on the LTDHF level it possesses an imagi-
nary part, i.e. this means a decay of the plasmon oscil-
lation in time. But, as scattering processes are not very
accurately described in the mean field approximation, the
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Fig. 2. Anticipated typical time evolution of the electron pop-
ulation within different approaches. (a) Adiabatic solution of
Hartree-Fock equation. (b) Evolution of matrix Hamiltonian,
Rabi oscillations. (c) Solution of the TDHF equation. (d) Full
quantum kinetic solution.

plasmon oscillation will last considerably longer in time,
compared to the higher level treatment of electronic cor-
relations (Fig. 2d). In the regime of a slowly varying ex-
ternal field we can expect the adiabatic approximation to
give a reasonable result. In that way, instead of solving
equation (1) we self-consistently solve the quasistationary
eigenvalue problem:

[ĤHF (ρ) + V̂ (t)]ψ(r, t) = E(t)ψ(r, t), (15)

which provides the instantaneous eigenvalues and eigen-
states. The main feature of this approach is that it is fully
reversible, and, after switching off the perturbation, the
systems returns to its initial state (Fig. 2a).

Another approach to study the time evolution is to find
excitation levels of the system, which in the many-body
picture do not coincide with the quasiparticle states of the
Hamiltonian and should be determined on a higher level,
e.g. by the CI method or as the poles of the two-particle
Green function. Then we can follow the electron dynamics
of the system in the basis of ground and excited states.
The Hamiltonian in that case could be represented in a
matrix form, with energies of the ground ε0 and excited
ε1, ..., εn states on the diagonal, and off-diagonal matrix
elements of the perturbation operator:


ε0 V01 · · · V0n

V10 ε1 · · · V1n

. . .
Vn0 Vn1 · · · εn






ψ0(r, t)
ψ1(r, t)

...
ψn(r, t)


 = i

∂

∂t



ψ0(r, t)
ψ1(r, t)

...
ψn(r, t)


 ·

(16)

Here the matrix elements of perturbation operator corre-
spond to the transitions between different states:

Vi,j(t) = 〈ψi(r)|V (r, t)|ψj(r)〉. (17)

The evolution of such a system has widely been studied
in the literature [31], but even in the simplest case of a
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Table 1. Parameters of the time-dependent calculation. As
all systems are closed-shell Ne means the number of electron
pairs. NECP is the number of electrons replaced by the effective
core potential.

System Fig. Nbf Ne I0 NECP basis

[1011W/m2] set Ref.

Na+
9 3 72 4 107.6 10 [25]

Pt 4 72 24 2.1 30 [26]

Pt 5 72 24 1.4–2.8 30 [26]

Pt 6 15–25 5–10 0.0 30 [26]

two level system this equation has no analytical solution.
In the rotating wave approximation (RWA) we have so
called Rabi oscillations [32] between levels, which accom-
pany transitions from one to another state. After termi-
nation of the external perturbation the system displays
no more oscillation, but, in contrast to the adiabatic ap-
proximation it remains in the last state it achieved. This
state could be different from the initial state, and, if no
further perturbation takes place, the system will remain
in that state forever (Fig. 2b). The evolutions of the quan-
tum system of the types (a), (b) and (c) although based
on the different approaches for the treatment of the time
dependence can be accessed on our level of theory by
properly defining the Hamiltonian matrix elements (with
self-consistent dependence on the density in cases (a) and
(c), or without self-consistency in case (b)). The case (d),
which is shown for the comparison describes the ideal situ-
ation, when the chain of quantum kinetic equations is not
broken at a certain level. From these considerations we
can see, that the time-dependent Hartree-Fock equation
is capable of explaining the gross features of the quan-
tum evolution of the system, such as reversibility vs. irre-
versibily, transitions between states, plasmon oscillations,
which cannot be achieved in the simpler theories. This ap-
proach has also the option of a systematic improvement
through the replacement of the exchange energy by the
exchange-correlation functional from the DFT.

3 Power spectra of metal clusters

In simple systems, such as Na4, the electronic density of
states is small. This leads to a power spectrum with well
separated peaks that correspond to one particle-hole (1ph)
excitations. Considering more complicated systems such
as Na+

9 and Pt3 (see Tab. 1 for the information about the
number of basis functions, electrons in the active space
and laser pulse parameters), with a larger number of elec-
trons, a new feature in their power spectra can be ob-
served. Because of the dense level scheme in these clusters
many 1ph states merge and form a collective excitation —
a plasmon — due to their constructive interference. In con-
trast to one-particle excitations, the oscillator strength of
the plasmon is very high and it manifests itself as a strong
peak in the power spectrum of the dipole moment.
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Fig. 3. Power spectra of the Na+
9 cluster, excited with laser

pulses of the same photon energy and different pulse width.
Dashed line shows the Fourier transform of the pulses of dif-
ferent duration: (a) σ = 4.56 fs, (b) σ = 3.04 fs, (c) σ = 1.06 fs.
Vertical lines denote energies, that correspond to the one-, two-
and three-photon processes.

In contrast to the response function, which only char-
acterizes the internal properties of the system, such as the
energies and the oscillator strengths of the excited states,
the power spectrum depends as well on the parameters
of the external excitation. To study intrinsic properties
of the system one has to minimize the role of the second
factor. This can be done by putting the system initially
in some nonequilibrium state and then following its relax-
ation [22] or one uses very short pulses, that embrace a
large frequency interval.

We performed a series of calculations on Na+
9 cluster

for pulses of the mean photon frequency ω∗ = 2.25 eV and
different durations (Fig. 3). The polarization of the elec-
tric field is taken to be along the axis of axial symmetry
of the cluster. When the frequency width of the pulse is
small predominantly states that correspond to the absorp-
tion of one, two, and three photons (denoted by vertical
lines) are well pronounced. The plasmon peak at 2.7 eV
is almost invisible (see Fig. 3a). Shorter pulses lead to a
broader region of energies in which absorption can take
place and thus excitations of the states that are further
away from the resonance, but of higher oscillator strength
become possible. Our value for the position of the plasmon
peak, determined as a excitation with the highest oscilla-
tor strength that can be excited off-resonantly (Fig. 3c)
(ωpl = 2.7 eV) of the Na+

9 cluster is in good agreement
with results obtained within the real-space implementa-
tion of TDLDA (Refs. [22,33–36]). In spite of this its os-
cillator strength is considerably lower in our approach.
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Fig. 4. Time-resolved density of states of the Pt3 cluster, ex-
cited by a laser pulse with ω∗ = 3.125 eV. Gaussian broadening
of width 0.27 eV has been used.

We think that this may be caused by the difference in the
excitation mechanisms used (initial dipole shift of the en-
tire electron cloud vs. excitation with certain frequency
and time profile) and the number of electrons, taken into
account. The plasmon, as a collective effect is very sensi-
tive to the density of virtual states in the system. Replac-
ing part of the inner electrons with an effective potential
may have small impact on the ground state properties, but
may imply a sophisticated analysis in the case of excited
states.

To better understand the possibility of the non res-
onant plasmon excitation and in order to estimate the
plasmon lifetime we apply our technique to the previously
experimentally studied cluster Pt3 (Eberhardt and
coworkers, [11]). It has been shown that the cluster pos-
sesses a very dense metallic like energy-level structure [37],
leading to the enhancement of electron-electron scattering
processes. The latter causes an effective energy transfer
from one 1ph state to another, thus considerably reducing
the plasmon lifetime in open-shell transition metal clus-
ters compared to noble or alkali metal clusters. In calcu-
lations we use pulses of the same duration σ = 0.76 fs and
different photon energy in a range from ω∗ = 2.625 eV
to ω∗ = 3.625 eV that is in either case below the plas-
mon energy (Fig. 5). Polarization of the electric field is
perpendicular to the plane of Pt3 cluster. A typical time
evolution of the density of occupied states, computed as

ρ(ε, t) =
∑

i

ni(t)δ(ε− εi) (18)
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Fig. 5. Power spectra of the Pt3 cluster, excited with laser
pulses of the same width and different photon energies: dotted
line — ω∗ = 2.625 eV; dashed line — ω∗ = 3.125 eV; solid line
— ω∗ = 3.625 eV.

is shown in Figure 4 (ni(t) is computed according to
Eq. (8)). A transition of the part of electronic population
from the occupied states close to Fermi level to previously
unoccupied states occurs shortly after applying the laser
pulse and leads to complicated oscillations.

The use of very short pulses, although at present ex-
perimentally not feasible allows us to cover a very large
energy range and to study fast processes far from reso-
nance.

One can see (Fig. 5) redistribution of the spectral
weight of the peaks with the change of excitation energy.
The magnitude of the plasmon peak strongly depends on
the vicinity of the photon frequency to the plasmon pole.
The spectral weight of the shoulder in the region of ener-
gies 2–3.5 eV decreases when ω∗ approaches the plasmon
resonance at ωpl = 3.7 eV.

As mentioned above, the plasmon is a collective ef-
fect that originates from the strong enhancement of the
one-particle excitations due to the constructive interfer-
ence [22,38]. If a time-dependent calculation is performed
on very long time scales, it would be possible to resolve
plasmon peak as a very dense structure of individual 1ph
peaks of very small width. In the higher order correlation
treatment these peaks will be smeared out to form one en-
velope that will resemble the plasmon peak at the present
level of the theory (for the discussion of plasmon width as
a result of fragmentation of the resonance into nearby 1ph
states and comparison with another mechanism — broad-
ening due to the thermal fluctuations see Ref. [39]). That
is why it is natural to use information from mean-field cal-
culations in order to extract information about plasmon
lifetime. The plasmon peak can be viewed as a Lorentzian
or Gaussian peak. The first case describes a e−

t
τ decay

of the quasiparticle in the many-body system, while the
second one corresponds to the inhomogeneous broadening

of the peak. The decay law is then e−
t2

τ2 . The lifetime can
differ up to a factor of 2π depending on the choice of the
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Fig. 6. Power spectra of the Pt3 cluster, for different numbers
of electrons and basis functions: dotted line — Ne = 5, Nbf =
15; dashed line — Ne = 10, Nbf = 20; solid line — Ne = 10,
Nbf = 25.

model. We perform a non-linear fitting of the power spec-
trum by a set of Lorentzians (a similar idea can be found
in the recent work of Molina et al., Ref. [40]):

P (ω) =
∑

i

Ai

2π
δi

(ω − ωi)2 + δ2i
(19)

and find the width of the plasmon peak to be δpl = 0.17 eV
that corresponds to a lifetime of approximately τpl = 24 fs
(τpl = 3.8 fs in the case of a Gaussian model). This result
should be compared with experimental data of Eberhardt
and coworkers [11], who determined the lifetime to be less
than 70 fs and attributed it solely to electron-electron scat-
tering.

Up to now we were interested only in the properties
of the system, excited in the way similar to the exper-
iment. For comparison the clean (contains only the in-
formation about the properties of the system, but not of
the laser pulse) power spectrum has been computed. To
move system out of the equilibrium we used as an ini-
tial configuration the eigenstates of the HF Hamiltonian
at elevated temperature (T = 0.005 a.u.). We propagate
this solution during very long time interval (several ps) to
get fine resolution for the spectra. A different number of
basis functions and electrons has been included in the ac-
tive space in order to understand its role on the formation
of the plasmon peak (Fig. 6). Comparing this with the
calculations with a larger basis set (Fig. 5), shows that
only a small number of basis functions (Nbf ∼ 15–25) is
needed to get the correct position of the plasmon. How-
ever the fine details of the spectrum are quite sensitive
to the size of active space. Another important feature of
the clean spectra is the presence of the peaks at 1–2 eV,
not available for the case, when the system is excited by
laser pulse, which shows that some transitions might be
forbidden for the particular polarization of the light, and
can be excited only thermally.

4 Discussion and outlook

We developed a new computational scheme for the inves-
tigation of the electron dynamics in clusters under the
influence of the external laser field within mean-field ap-
proximation. The solution of the TDHF equation was per-
formed using the restricted Hartree-Fock functional for the
closed shell systems, an expansion in Gaussian-type basis
functions and employing effective core potential for the
inner electrons.

The application of the TDHF method to the Na+
9 clus-

ter, previously intensively studied theoretically with dif-
ferent methods, and the Pt3 cluster already accessible in
the experimental investigation revealed the following ca-
pability of our approach: (i) the method is able to accu-
rately predict the position of the plasmon peak for the
Na+

9 cluster, although its oscillator strength differs con-
siderably from the TDLDA result. Two reasons for this
difference could be suggested: different excitation mech-
anisms and the absence of an all-electron treatment in
our case. Plasmon oscillations are a collective effect, that
is why it is quite natural that a correct description of
this phenomenon is only possible within the all-electron
treatment. (ii) The calculation on the open-shell transi-
tion metal cluster Pt3 allowed us not only to determine
the position of the plasmon resonance, but also to estimate
its lifetime by means of fitting the power spectra to a set
of Lorentzians. Our value for the decay constant supports
experimental evidence in favor of a bulk-like lifetime of
the electronic excitations in this cluster.

Although our method is not able to embrace the whole
variety of clusters and excitation regimes accessible exper-
imentally we hope that it will become a useful theoretical
tool in the investigation of nanoscale objects (up to several
tens of atoms), where quantum effects are strong enough
and the semiclassical approach, which is justified for larger
systems, is not applicable any more.

This work was supported by the Deutsche Forschungsgemein-
schaft through SFB 418.
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