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Abstract

Over the past two decades impressive progress has been made in the theoretical and the experimental study
of the multiple excitation and of the complete fragmentation of four-body Coulomb systems. The double
ionization of atoms by charged particle impact is employed routinely to prepare and to explore the Coulomb
four-body excited states (the two ionized electrons and the scattered charged projectile moving in the 6eld
of the residual ion). The spectrum of this four-body system can be determined experimentally by resolving
simultaneously the momentum vectors of all particles. Such a multi-coincidence measurement entails however
low counting rates which makes the experimental realization a challenging task. This work gives a brief
overview on recent achievements in multi-detection techniques and outlines the various methods to carry out
the double ionization experiments induced by electron impact. The advantages and the limits of the various
experimental approaches are pointed out. On the theoretical side, serious di9culties are encountered which
are prototypical for the theoretical treatment of many-body correlated systems: (A) With increasing number
of interacting particles (and hence of degrees of freedom) a direct numerical evaluation of the four-body
Green’s function, which encompasses the entire spectrum of the system, becomes a challenge. (B) Due to the
non-integrable character of interacting many particle systems, an analytical approach can only be approximate.
In this report we discuss in details the various methods that have been put forward to deal with the four-body
problem, including: perturbative many-body treatments (6rst and second order theories) and non-perturbative
methods as well as pure numerical approaches. Due to the complicated structure of the four-particle continuum
spectrum we present and discuss simple qualitative arguments to explain the main features (peaks and dips)
that are observed in the experiments. The limitations of these simple methods are illustrated by contrasting the
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predictions with full numerical calculations and with experimental data. Future directions and possible appli-
cations are also discussed.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years signi6cant advances have been achieved in controlling and investigating multiple,
highly excited states of four-body Coulomb systems. These states are generated in most cases upon
the double ionization of atoms following the impact of electrons [1–20], photons [21] or other
charged-particles [22–33]. The experimental and the theoretical eHorts are focused on the study of
the correlated dynamics of the two ionized electrons and the scattered projectile as they propagate in
the 6eld of the residual ion. For this purpose one measures the double ionization rate while resolving
simultaneously the vector momenta of all particles in the continuum. Thus, a multi-coincidence
detection has to be utilized which implies low counting rates (as compared to the single particle
detection) and makes an experimental realization a challenging task. This obstacle has however
been tackled by several research groups in Europe and in the US by developing and employing a
new generation and variation of multi-detection techniques. It is one of the aims of this review to
reNect on recent technical achievements in this research area and to discuss and contrast the various
available techniques.

On the theoretical side, one has to deal adequately with certain fundamental di9culties akin to
many-body physics in order to provide a satisfactory description of the four–body excited spectrum:
(A) Since the number of integrals of motion is less than the number of degrees of freedom an
analytical solution of the N -body problem (N ¿ 2) is generally not possible. On the other hand a
direct numerical approach becomes increasingly challenging for larger N . (B) In contrast to con-
densed, many-body systems (e.g. simple metals or large metal clusters) where, due to screening, the
inter-particle interaction can be treated perturbatively or can be incorporated as a renormalization of
the single-particle properties, in highly excited few-body Coulomb systems (N = 4) the interactions
are generally strong and a quasi-particle picture is not viable. A perturbative approach has as well
to be carefully examined, as the convergence properties of the perturbation series for Coulomb po-
tentials are not fully established. These facets of the theory for excited four-body systems make the
treatment of particle-impact double-ionization reactions not only a challenging but also an appealing
candidate to develop and test the range of validity of various few-body theories.

This report gives a detailed account of the main theoretical methods that are currently employed
for the description of the Coulomb four-body continuum systems. In particular, we discuss in details
6rst-order perturbative treatments that are used in the literature (e.g. as done in Refs. [34–43])
and present methods that operate in a non-perturbative way. Furthermore, we outline higher-order
perturbation theories as well as approaches that attempt at solving the problem or parts of it full
numerically [36,44–47].
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In view of the aforementioned di9culties associated with the four-body problem and as well due
to the large parameter space to be investigated it is useful to consider at 6rst the general struc-
ture of the four-body spectrum and to identify qualitatively the possible mechanisms of excitations
that are compatible with the energy and the momentum conservation laws. This is achieved by
a multiple-scattering expansion of the four-body scattering operator. Each term of this expansion
is associated with a physical scattering mechanism. For the lowest order terms a pictorial repre-
sentation is given and it is pointed out where these terms may have prominent contributions. For
the three-particle Coulomb scattering problem this approach has been successfully exploited [48–57],
however for the present case of four particles it has not been fully utilized [58,44,59,52,45,47,35,60].
This article does not provide a comprehensive coverage of all of the theoretical and the experi-

mental studies on double ionization of atomic targets. For a coherent and a concise presentation of
the topic we focus on recent investigations that highlight the continuum four-body aspects of the
particle-impact double ionization.

We begin this review by introducing the general theoretical foundations of the treatment of highly
excited four-body systems and derive the formula relevant for the calculations of the particle-impact
double ionization cross section. Since the majority of the experiments have been done in a situation
where the incoming and the scattered projectile are fast (with respect to the Bohr velocity of the
bound electrons) one may expect a perturbation treatment of the projectile–target interaction to be
useful. Therefore, we devote a section to the aspects of such a treatment and show that the cross
sections within this frame work satisfy certain scaling laws with respect to the charge and mass of
the projectile. Therefore, within this scheme it su9ces to treat the case of electron-impact double
ionization. Double ionization with other projectiles is then recovered from the electron-projectile
case via scaling. In a further section we review the main calculational schemes that are presently
employed for the description of the fully resolved cross sections for double ionization. After an
introduction of the experimental strategies and the techniques we compare the theoretical predictions
with the experiments and discuss the possible scenarios for the scattering dynamics that are supported
by the measurements. Furthermore, we discuss less diHerential cross sections and point out their
potential in unravelling the scattering dynamics. The article is concluded by a brief summary and an
outlook.

2. Theoretical concepts

2.1. Formal development

This section gives a brief overview on the formal theoretical foundation of the process of the dou-
ble ionization upon charged-particle impact. The formulation is valid for an arbitrary mass and charge
state of the projectile. In a subsequent section we specialize the treatment to the electron-impact case.
As shown below, in a 6rst-order perturbation theory with regard to the projectile-target interaction,
the double ionization process by an arbitrary projectile can be mapped onto the case of the electron
impact double ionization. For clarity the presentation avoids detailed discussions of the underlying
mathematics, the interested reader is referred to standard quantum scattering textbooks, e.g. [61]. In
particular, we do not elaborate on some of the peculiar features of scattering from Coulomb-type
potentials. Unless otherwise stated, atomic units are used throughout.
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2.1.1. Scattering theory for multi-particle excitations
Let us consider the particle-impact double ionization of an isolated many-electron atom that resides

initially (long before the collision takes place) in the ground state |’a〉 with an energy ja. We refer
to the two electrons emitted into the double continuum as the active electrons.

Upon an external perturbation by a mono-energetic charged particle beam (incident with momen-
tum k0 relative to the center of mass of the target) the two active electrons are elevated into the
double continuum and recede from the ionic core with momenta k1 and k2. The projectile emerges in
the 6nal state with a momentum kp. The residual ion is left in the state |’c〉 (with a binding energy
jc). Experimentally, it has been possible to monitor the double ionization process for well-de6ned
values of all quantities ja, k0 and jc, kp, k1 and k2. The momentum and the energy conservation
laws impose the constraints

k0 = kp + k1 + k2 + kion ; (2.1)

Ei = E0 + ja = Ep + E1 + E2 + Eion + jc = Ef : (2.2)

Here kion refers to the momentum of the ion and the ion kinetic (translational) energy is denoted
by Eion. The total initial and 6nal state energies of the (projectile-target) system are respectively, Ei
and Ef . The projectile energy in the initial (6nal) channel is E0 (Ep). The kinetic energies of the
two emitted electrons are labeled by E1 and E2.

The Hamilton operators in the asymptotic initial and the 6nal channels, i.e. long before and long
after the collision, 1 are, respectively, given by

Hi = ha + hp (2.3)

Hf = hc + hex : (2.4)

The operators ha and hc are the Hamiltonians of the undisturbed atom in the initial state and that
of the residual ion, i.e.

ha|’a〉= ja|’a〉 ; (2.5)

hc|’c〉= jc|’c〉 : (2.6)

The motion of the impinging projectile is dictated by the Hamiltonian hp, while hex is the Hamiltonian
of the 6nal-state continuum fragments in the asymptotic region where all scattered particles are well
separated.

Since we assumed that non-interacting asymptotic states are uniquely determined, the 6nal (Vf )
and initial-state (Vi) transition potential operators are then given by

Vf = H − Hf = Vpe1 + Vpe2 + Ve1e2 + Ve1c + Ve2c + Vpc ; (2.7)

Vi = H − Hi = Vpe1 + Vpe2 + Vpc ; (2.8)

where the total Hamiltonian of the system is denoted by H and Vpe1=2 is the two-particle Coulomb
interactions between the projectile and the active electrons, Vpc is the interaction potential between the

1 We assume that all scattering potentials vanish for in6nitely large separations of the involved particles.
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projectile and the 6nal-state ionic core, and Ve1=2c is the scattering potential of the ionized electrons
from the ionic core. Moreover, Ve1e2 is the Coulomb interaction between the active electrons.
The Hamiltonians Hi and Hf describe the same projectile–atom system, however with diHerent

boundary conditions (a neutral ground state atom and an undistorted projectile in case of Hi and
three charged continuum particles in the 6eld of a doubly charged ion in case of Hf ). Therefore the
relation applies

ha = hc + Ve1c + Ve2c + Ve1e2 : (2.9)

Long before (after) the ionization event, the projectile–target system is described by the state-vector
|k0; ’a〉 (|kp; k1; k2; ’c〉), where Hi|k0; ’a〉= Ei|k0; ’a〉 and Hf |kp; k1; k2; ’c〉= Ef |kp; k1; k2; ’c〉. The
probability amplitude for the transition of the system from the state |k0; ’a〉 into the state |kp; k1; k2; ’c〉
is given by the scattering matrix element Sf i(kp; k1; k2; ’c; k0; ’a) where

Sf i(kp; k1; k2; ’c; k0; ’a) = 〈k0; ’a|S|kp; k1; k2; ’c〉= 〈�−|�+〉 : (2.10)

The experimentally relevant (on-shell) part of these S matrix elements satis6es the constraints (2.1)
and (2.2). The state vectors |�±〉 of the interacting projectile–target system are mapped onto the
asymptotic (detector) states by means of the MHller wave operators �−

f ; �+
i , i.e.

|�−〉= �−
f |kp; k1; k2; ’c〉 ; (2.11)

|�+〉= �+
i |k0; ’a〉 ; (2.12)

where

�−
f = 1+ G−Vf ; (2.13)

�+
i = 1+ G+Vi : (2.14)

The fully correlated many-body Green operator G± is the resolvent of H with appropriate boundary
conditions. From Eqs. (2.7) and (2.8) we deduce the integral equations

G− = G−
f + G−

f VfG− (2.15)

G+ = G+
i + G+

i ViG+ ; (2.16)

where G−
f and G+

i are the resolvents of Hf and Hi (Eqs. (2.4) and (2.3)), with appropriate boundary
conditions. In general the Green operators satisfy the relations (G±

f )
†=G∓

f and similarly (G±
i )

†=G∓
i .

According to our de6nition the Hamiltonians ha and hp in Eq. (2.3) as well as hc and hex in
Eq. (2.4) are decoupled. Therefore, the relations apply

G−
f = g−c g−ex =:G−

c ; (2.17)

G+
i = g+a g

+
p =:G+

a : (2.18)

The Green operators of the atom and the residual ionic core are denoted by g+a and g−c , respectively.
g+p and g−ex are the resolvents of hp and hex.
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Furthermore, a relation between g+a and g+c can be established by means of Eq. (2.9)

g+a = g+c + g+c (Ve1c + Ve2c + Ve1e2)g
+
a : (2.19)

From Eqs. (2.10)–(2.12) we can write Sf i = 〈kp; ke1 ; ke2 ; ’c|�−†
f �+

i |k0; ’a〉. Therefore, the complete
dynamics is described by the product of the two wave operators. This product is traditionally called
the scattering ‘S’ operator.

The conventional expression for the S matrix elements is recovered by considering the identity

[〈�+(Ei)|�−(Ef )〉 − 〈�+(Ei)|�+(Ef )〉]∗

= [〈�+(Ei)|(�−
f − �+

f )|kp; k1; k2; ’c〉]∗ (2.20)

= {〈�+(Ei)|[G−(Ef )− G+(Ef )]Vf |kp; k1; k2; ’c〉}∗ : (2.21)

From this equation it follows that the S matrix elements can be written as

Sf i = �f ; i + 〈kp; k1; k2; ’c|Vf [G+(Ef )− G−(Ef )]|�+(Ei)〉 (2.22)

= �f ; i − i2��(Ef − Ei)〈kp; k1; k2; ’c|Vf |�+〉 : (2.23)

Here we introduced �f ; i := 〈�+(Ei)|�+(Ef )〉, where i and f stand for a set of collective quantum
numbers that characterize the states 〈�+|. Eq. (2.23) is readily deduced upon noting that

[G+(Ef )− G−(Ef )]|�+(Ei)〉=
[

1
Ef − Ei + i�

− 1
Ef − Ei − i�

]
|�+(Ei)〉

=
−2i�

(Ef − Ei)2 + �2
|�+(Ei)〉 (2.24)

=−i2��(Ef − Ei)|�+(Ei)〉 : (2.25)

In this relation � is a small positive real number. Eq. (2.25) follows from the representation of the
Dirac function as �(x) = lim�→0+�=(x2 + �2).
Upon performing similar steps one derives the equivalent expression

Sf i = �f ; i − i2��(Ef − Ei)〈�−|Vi|k0; ’a〉 : (2.26)

From Eqs. (2.25) and (2.26) it is clear that the dynamics of the scattered Nux is governed by the
(transition) matrix elements

Tf i := 〈�−|Vi|k0; ’a〉= 〈kp; k1; k2; ’c|(�−
f )

†Vi|k0; ’a〉 ; (2.27)

= 〈kp; k1; k2; ’c|Vf�+
i |k0; ’a〉=:Tif : (2.28)

This equation can be expressed in terms of the Green’s function by employing the relation (2.14)
for �+

i which yields

Tif = 〈kp; k1; k2; ’c|Vf |k0; ’a〉+ 〈kp; k1; k2; ’c|VfG+Vi|k0; ’a〉 : (2.29)

Similar relation is deduced from Eq. (2.27). Since in general the relation G±V = G±
0 T± applies,

Eq. (2.29) de6nes a Lippmann–Schwinger equation for the transition matrix elements.
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2.1.2. Transition probabilities and cross sections
The S matrix elements Sf i are a measure for the transition probability amplitude. Thus, the prob-

ability Pf i for the double ionization event is then |Sf i|2. Now if we go over into the time domain
by utilizing the relation 2��(Ef − Ei) =

∫
dt exp[i(Ef − Ei)t] and evaluating Pf i = Sf iS∗

f i, we arrive
after some elementary manipulations at the transition rate, i.e. transition probability per unit time:

dPf i

dt
= 2�f i Im Tf i + 2��(Ef − Ei)|Tf i|2 ; (2.30)

= 2��(Ef − Ei)|Tf i|2: (2.31)

Relation (2.31) is valid for inelastic processes, i.e. for our case, where �f ; i = 0.
Usually what is measured and calculated in a scattering process is the transition rate from a

well-prepared initial state to an in6nitesimal group of 6nal states that is characterized by a certain
density of states. In our case this density of state in momentum space is given by d3k1d3k2d3kp. It
is furthermore customary to normalize this transition rate to the asymptotic probability Nux density
jp of the incoming projectile and to call it the multiple diHerential cross section �(kp; k1; k2; k0; ’a).
In a mathematical language this means

�(kp; k1; k2; k0; ’a) :=
dPf i

dt
1
jp

d3k1d3k2d3kp (2.32)

= (2�)4
1
v0

|Tf i|2�(Ef − Ei)d3k1d3k2d3kp : (2.33)

Here v0 labels the velocity of the incoming projectile relative to the center of mass of the target.
In Eq. (2.33) we assumed that the measurement resolves the vector momenta of the two electrons
and the scattered projectile. As clear from Eq. (2.1), one can equally detect instead of one of the
ejected electrons the momentum of the recoiling ion, as done in the so-called COLTRIMS techniques
(cold target recoil ion momentum spectroscopy) [18–20,23–27,33]. Alternatively one can represent
the vector momenta kj; j=1; 2; p in Eq. (2.25) in spherical coordinates, i.e. by the magnitude kj, the
polar angle  j, and an azimuthal angle ’j with respect to some chosen axis. Assuming a parabolic
dispersion for the continuum particles one can relate the wave vectors kj to the energies Ej and
write Eq. (2.25) in the form

�(E1; E2; �1; �2; �p) = (2�)4!2
pt
k1k2kp
k0

|Tf i|2dE1dE2d2�1d2�2d2�p : (2.34)

In deriving this relation we neglected terms of the order of the inverse mass of the nucleus and
introduced the projectile–target reduced mass as (!pt = mpmt)=(mp + mt). The solid angles �j are
spanned by the polar and azimuthal angles  j and ’j; j = 1; 2; p.

2.2. Multiple scattering expansion

As shown above [cf. Eqs. (2.10)–(2.12)] the prime quantity that encapsulates the collision
dynamics is the scattering operator which can be written in the form

�−†
f �+

i = (1+ VfG−†)(1+ G+Vi)

= 1+ G+Vi + VfG−† + VfG
−†
f G+Vi : (2.35)
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To disentangle the various double-ionization pathways it is useful to express Eq. (2.35) as a multiple
scattering series. This expansion is derived by iterating the integral Lippmann-Schwinger equations
of the Green operators (2.15) and (2.16). For clarity we consider here the lowest order terms only
and write Eq. (2.35) in the form

�−†
f �+

i = 1+ A+ B+ C : (2.36)

Here A, B and C denote the leading order terms in a multiple scattering series expansion

A=G+
a Vpe1 + G+

a Vpe2 + G+
a Vpc + G+

a Vpe1G
+
a Vpe2 + G+

a Vpe1G
+
a Vpc

+G+
a Vpe2G

+
a Vpe1 + G+

a Vpe2G
+
a Vpc + G+

a VpcG+
a Vpe1 + G+

a VpcG+
a Vpe2

+G+
a Vpe2G

+
a Vpe1G

+
a Vpc + G+

a Vpe2G
+
a VpcG+

a Vpe1

+G+
a VpcG+

a Vpe1G
+
a Vpe2 + G+

a VpcG+
a Vpe2G

+
a Vpe1 + · · · ; (2.37)

B=
7∑

j=1

Bj ; (2.38)

B1 =Vpe1G
+
c + Vpe2G

+
c + Ve1cG

+
c + VpcG+

c + Ve1e2G
+
c + Ve2cG

+
c

+Vpe1G
+
c Vpe1G

+
c + Vpe2G

+
c Vpe2G

+
c + Ve1e2G

+
c Ve1e2G

+
c + · · · ; (2.39)

B2 =Vpe1G
+
c VpcG+

c + Vpe1G
+
c Ve1cG

+
c + Vpe1G

+
c Vpe2G

+
c

+Vpe1G
+
c Ve1e2G

+
c + Vpe1G

+
c Ve2cG

+
c ; (2.40)

B3 =VpcG+
c Vpe1G

+
c + VpcG+

c Ve1cG
+
c + VpcG+

c Vpe2G
+
c

+VpcG+
c Ve1e2G

+
c + VpcG+

c Ve2cG
+
c ; (2.41)

B4 =Ve1cG
+
c Vpe1G

+
c + Ve1cG

+
c VpcG+

c + Ve1cG
+
c Vpe2G

+
c

+Ve1cG
+
c Ve1e2G

+
c + Ve1cG

+
c Ve2cG

+
c ; (2.42)

B5 =Vpe2G
+
c Vpe1G

+
c + Vpe2G

+
c VpcG+

c

+Vpe2G
+
c Ve1cG

+
c + Vpe2G

+
c Ve1e2G

+
c + Vpe2G

+
c Ve2cG

+
c ; (2.43)

B6 =Ve1e2G
+
c Vpe1G

+
c + Ve1e2G

+
c VpcG+

c + Ve1e2G
+
c Ve1cG

+
c

+Ve1e2G
+
c Vpe2G

+
c + Ve1e2G

+
c Ve2cG

+
c ; (2.44)

B7 =Ve2cG
+
c Vpe1G

+
c + Ve2cG

+
c VpcG+

c + Ve2cG
+
c Ve1cG

+
c

+Ve2cG
+
c Vpe2G

+
c + Ve2cG

+
c Ve1e2G

+
c ; (2.45)

C =Vpe1G
+
c G

+
a Vpe1 + Vpe1G

+
c G

+
a Vpe2 + Vpe1G

+
c G

+
a Vpc

+Vpe2G
+
c G

+
a Vpe1 + Vpe2G

+
c G

+
a Vpe2 + Vpe2G

+
c G

+
a Vpc
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+VpcG+
c G

+
a Vpe1 + VpcG+

c G
+
a Vpe2 + VpcG+

c G
+
a Vpc

+Ve1e2G
+
c G

+
a Vpe1 + Ve1e2G

+
c G

+
a Vpe2 + Ve1e2G

+
c G

+
a Vpc

+Ve1cG
+
c G

+
a Vpe1 + Ve1cG

+
c G

+
a Vpe2 + Ve1cG

+
c G

+
a Vpc

+Ve2cG
+
c G

+
a Vpe1 + Ve2cG

+
c G

+
a Vpe2 + Ve2cG

+
c G

+
a Vpc + · · · : (2.46)

Higher order terms are obtained by a further iteration of the components of Eqs. (2.37) and (2.46).
It is clear from the number of (the lowest order) terms in Eqs. (2.37) and (2.46) that an exact
numerical evaluation of the S matrix elements for particle-impact double ionization is extremely
di9cult. In fact, up to now only few of these terms can be calculated and will be discussed in
details in subsequent sections. The expansions (2.37) and (2.46) are nevertheless quite useful for
two reasons: (I) For certain experimental arrangements it may well be that some of the terms are
predominant. A heuristic way to decide as to which terms are most important is to compare the
strength of the two-body interactions Zij=vij associated with the various two-body Coulomb potentials.
Here Zij is the product of the charges of particle i and j and vij is their relative velocity. For example
if the projectile is very fast and its charge is not very big one can neglect in G± (Eq. (2.35)) the
interaction of the projectile with the target which yields the well-known 6rst-Born approximation.
This situation will be discussed at length in the subsequent sections. (II) The multiple scattering
expansion (2.37)–(2.46) can serve to understand the underlying physics in that each of the terms
can be associated with a certain sequence of binary collisions. In other words all possible (leading
order) double ionization pathways are readily extracted by means of Eqs. (2.37)–(2.46).

2.2.1. Double ionization pathways
In the experiment the cross section (2.33) is measured. This quantity, which is de6ned in a

nine-dimensional momentum space spanned by k1=2 and kp, is calculated as the coherent sum of
all the transition amplitudes associated with the terms (2.37)–(2.46) which may lead to interference
phenomena. However, in some regions of the momentum space (that can be selectively probed
by the experiment by tuning k1=2 and kp appropriately) the matrix elements of some terms in
Eq. (2.37)–(2.46) may become particularly dominant. In this section we single out these terms and
determine qualitatively the regions in the nine-dimensional momentum space where the mechanisms
mediated by the respective terms become operational.

It should be stressed however that the determination procedure used below assumes high impact
and high excess energies, i.e. E0�ja; (Ep + E1 + E2)�jc so that the momentum components
present in the initial bound state become irrelevant. Here, only some selected terms in the expansion
Eqs. (2.37)–(2.46) are analyzed. For a more extensive analysis of this kind we refer the reader
to Ref. [37].

The terms in the multiple-scattering expansion Eqs. (2.37)–(2.46) can be viewed as follows:

1. The unity operator in Eq. (2.36) corresponds to the non scattered part and is irrelevant here.
2. The 6rst (or second) term in Eq. (2.37) describes an electron–projectile encounter in the 6eld of

the atom (Fig. 2.1(a)). The second electron (not interacting directly with the projectile) is emitted
by means of scattering from the ionic core and the 6rst electron. This scattering is encompassed
in Ga (cf. Eq. (2.19)), i.e. in the undisturbed target system. The kinematical conditions for this
process are: k1 ≈ k0−kp and kion ≈ −k2. The assumption underlying this picture is E1 ≈ E0−ja
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Fig. 2.1. A schematic representation of the scattering mechanisms mediated by the respective transition operators shown
in the appropriate inset. The momentum vectors of the incoming and scattered projectile are denoted by arrows labeled
k0 and kp, respectively, whereas the momenta of the two ejected electrons are referred to by the arrows k1 and k2. The
ionic core is shown as a full dot. The mechanism depicted in the inset (a) is generally referred to as the shake-oH process
(SO) when kp�k2; k1�k2. The mechanism shown in the inset (c) is conventionally called the two-step 2 process (TS2).

and E2 ¡ ja. It should be noted that this mechanism can also be viewed in terms of the wave
functions rather then in terms of Ga. In this case the slow electron is ejected by means of the
6nite overlap of the initial-state wave function of this electron with the continuum. This process
is called shake-oH (SO) [62,63].

3. The second term in Eq. (2.37) can be interpreted (see Fig. 2.1(b)) as a direct scattering of the
projectile from the ionic core (the atom except for the active electrons). The two active electrons
are then ejected due to the electron-electron scattering (and electron-core scattering) as contained
in Ga (cf. Eq. (2.19)). The kinematical conditions for this process are kp ≈ −k0, kion ≈ 2k0 and
k1 ≈ −k2. Here it is assumed that the experimental conditions are such that E1 ≈ E2 ¡ ja and
the velocity of the incoming projectile is much higher than that of the ejected electrons. In the
shake-oH picture this process can be seen as a double shake-oH of the two-electrons upon the
sudden removal of the nucleus by the projectile.

4. The fourth and the sixth terms of expansion (2.37) are schematically shown in Fig. 2.1(c). These
processes are of a second order in the scattering potential and can be viewed as follows: after a
binary collision of the projectile with one of the active electrons, it scatters from the second active
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electron. This sequential process shows up in the spectrum at (cf. Fig. 2.1(c)): k1 ≈ k0 − k′p,
kion ≈ 0 and k2 ≈ k′p − kp. If the projectile possesses the same mass mp as the electron mass me

we arrive at k2 ⊥ kp, k22 + k2p = k
′2
p and k1 ⊥ k′p, k21 + k ′2p = k20 . For this process we assume that

E1 and E2 (and E0) are much larger than ja. In the literature this two-step mechanism of double
ionization is called TS2 [64].
It is worthwhile to mention that the presence of two electrons in the continuum (in addition to the
scattered projectile) induces a left-right asymmetry in the intermediate two-particle collision, even
in absence of spin-orbit interactions. This dichroic eHect, which is absent in an isolated two-particle
scattering, is illustrated in Figs. 2.1(c) and (d): The whole experiment as shown in Figs. 2.1(c)
and (d) is cylindrically symmetric with respect to k0. However, the two-particle collision between
the scattered projectile with (intermediate) momentum k′p and the second electron (escaping with
momentum k2) is generally not cylindrically symmetric with respect to k′p. I.e., in general the
processes depicted in Figs. 2.1(c) and (d) are not identical and will have diHerent matrix elements.
This dichroic eHect is correlation induced: it is strongly dependent on the interaction of the 6rst
electron (with the momentum vector k1) with the projectile and the second electron. If electron
“1” does not interact with the second electron and with the scattered projectile in the 6nal state,
it would not see the diHerence between the diagrams shown in Fig. 2.1(c) and Fig. 2.1(d). The
auxiliary momentum k′p cannot be detected in the experiment, it can however be deduced from
Fig. 2.1(c) once the measured spectrum can be identi6ed with the scattering mechanism depicted
in Fig. 2.1(c).

5. In a single ionization experiment the 6rst scattering event (shown in Fig. 2.1(c) and (d)) between
the projectile and the 6rst electron results in the well-known “binary peak” [65]. At the opposite
direction of the binary peak a further structure appears which is called the “recoil peak” and
originates from the scattering of the ionized electron from the ionic core [65].
In the present situation of double ionization the “recoil peak” can be identi6ed by examining the
terms shown pictorially in Fig. 2.1(e) and (f) and Figs. 2.2(a) and (b). In Fig. 2.1(e) one of the
atomic electrons recoils oH the nucleus after a collision with the projectile. The recoil process
can in principle be facilitated by the initial-state binding (i.e. by Ga as given by Eq. (2.19)) or
by 6nal-state interactions of this electron with the ionic core. The second electron is then ionized
upon a single interaction with the projectile. This latter process is not cylindrically symmetric with
respect to k′p. Therefore, in general there will be a diHerence between Fig. 2.1(e) and (f) [and
Fig. 2.2(a) and (b)]. The kinematical conditions under which the processes Fig. 2.1(e) and (f) are
observable in the spectrum are respectively those of Fig. 2.1(c) and (d) except for kion ≈ −k1.
In addition, this interpretation assumes that E2�E1 (and E0�ja).
In the cases shown in Fig. 2.2(a) and (b) the 6rst electron escapes directly into the continuum
after a single collision with the projectile. The projectile scatters then from the second electron
and this electron recoils oH the ionic core. The kinematical conditions are then those discussed
in Fig. 2.1(d) but the ion has a 6nite momentum kion ≈ −k2.

6. In Figs. 2.2(c)–(e) the mechanisms for the projectile’s (elastic) back-reNection are displayed
along with the respective transition operators (cf. Eq. (2.37)). These mechanisms are particu-
larly relevant for lighter projectiles (mp�mc where mc is the mass of the ionic core). Again
we notice the appearance of the dichroic eHect in Figs. 2.2(d) and (e). In cases of Figs. 2.2(c)
–(e) one expects: kion ≈ 2k0. The emergence directions of the collision fragments can then be
determined from Eqs. (2.1) and (2.2). For example, if mp = me we arrive for the process of
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Fig. 2.2. The same as in Figs. 2.1. The mechanisms shown schematically in (g) is often referred to as the two-step 1
process (TS1).

Fig. 2.2(c) at k1 ⊥ k2 and k21 + k22 = k ′12. In addition kp ⊥ k′1 and k ′12 + k2p = k ′p2 ≈ k20 . Hence, if
kion and kp are determined one can deduce k′1.
The processes of Figs. 2.2(c)–(e) are distinguishable in that in Fig. 2.2(c) the two electrons
emerge in the same half plane (with respect to k0) whereas in Figs. 2.2(c)–(e) the active electrons
emerge in diHerent half planes. In Fig. 2.2(d) the projectile escapes in between the emission
directions of the electrons in contrast to the case shown in Fig. 2.2(e).

7. Further scattering mechanisms in which a direct scattering of the projectile from the ionic core
is involved are shown in Fig. 2.2(f) where the projectile scatters from the ionic core and then
from one of the active electrons. This excited electron collides then with the other electron and
both emerge with momenta k1 and k2. The kinematical conditions associated with this process
are readily derived from Eqs. (2.1) and (2.2): k1 ⊥ k2 and k21 + k22 = k ′12, whereas k′p = k0 − kion.
If mp = me then we obtain the relation kp ⊥ (k1 + k2).

8. In Figs. 2.2(g) and (i) few multiple double scattering mechanisms are depicted in which the
electron-electron scattering is involved. In all of these cases the projectile scatters once from one
of the active electrons. Subsequently a scattering of this excited electron from the other active
electron (and/or from the ionic core) leads to double ionization. The two-step process shown in
Fig. 2.2(g) is called conventionally TS1. From Eqs. (2.1) and (2.2) we conclude the following
conditions for this process: k1 ⊥ k2 and kion ≈ 0. In contrast, for the case of Fig. 2.2(h)
we obtain the kinematical condition k1 ⊥ k2, kion ≈ −2(k1 + k2) and k0 + kp = −(k1 + k2).
In Fig. 2.2(i) we encounter the same situation as in Fig. 2.2(g) however one of the electrons
recoils oH the ion after the electron-electron single collision. Thus same kinematical conditions
as Fig. 2.2(g) applies to Fig. 2.2(i) except that kion ≈ −2k1.

As mentioned above the analysis done for the matrix elements of the various transition operators
is rather qualitative. A more precise estimate of the transition amplitudes entails a complicated
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multi-dimensional integrals. E.g., McGuire [64] has estimated the importance of the processes SO,
TS1, and TS2 in the case of a helium target considering the (integrated) total double ionization cross
sections. The cross sections for the TS1 and TS2, are expected to behave essentially as the product
of two single ionization cross sections. Thus, these cross sections decrease rapidly with an increasing
incident energy (roughly as E−1

0 ). On the other hand the cross section for the SO mechanism may be
considered as the product of one single ionization cross section times a factor which is essentially
energy independent. Hence this cross section shows a slower decrease with energy (roughly as
E−1=2
0 ). According to McGuire’s results [64], the SO contribution should be dominant at electron

impact energies larger than ≈ 1 keV.

2.3. Double ionization in the perturbative regime

In the preceding sections we gave a general overview on the formal theory of the double ionization
of atomic targets by charged particle impact and pointed out several prominent scattering mechanisms.
However, the complexity of even the lowest order terms of the transition matrix elements [cf. Eqs.
(2.37) and (2.46)] makes approximate methods unavoidable. Here, perturbation theory oHers a useful
starting point, once a small parameter of the problem is identi6ed. To identify the interaction to
be treated perturbatively we remark that most of the double ionization experiments (with electron
projectiles) have been performed in a regime where the projectile is swift (with respect to the Bohr
velocity of the initially bound electrons) and transfers only little momentum to the target. Hence a
6rst-order perturbative treatment of the projectile–target interaction is appropriate (we assume that
the charge of the projectile is su9ciently small so that Zp=vp�1). This approximation, which is
conventionally called the 6rst Born approximation (FBA), is obtained upon neglecting in the MHller
operator �−

f [�+
i ] in Eq. (2.27) [Eq. (2.28)] any coupling of the projectile to the target, i.e. the FBA

MHller operator !±
FBA is obtained from �± in the limit of vanishing coupling constant Zp → 0. 2

This means that !±
FBA coincides with the MHller operator of the undisturbed atom !±

FBA =1+g±a Va,
where Va = Ve1e2 + Ve1c + Ve2c (cf. Eqs. (2.7) and (2.9)). From Eqs. (2.27) and (2.8) it follows that
the transition matrix element Tf i can be written as

Tf i = Te1 + Te2 + Tc ; (2.47)

Te1 = 〈 −(k1; k2); k0|Vpe1 |k0; ’a〉=− Zp
2�2K2 〈 (k1; k2)|eiK·r1 |’a〉 ; (2.48)

Te2 = 〈 −(k1; k2); k0|Vpe2 |k0; ’a〉=− Zp
2�2K2 〈 (k1; k2)|eiK·r2 |’a〉 ; (2.49)

Tc = 〈 −(k1; k2); k0|Vpe2 |k0; ’a〉= Zp
2�2K2 〈 (k1; k2)|2|’a〉 : (2.50)

In these equations the momentum transfer vector K= k0 − kp is introduced and the positions of the
two electrons with respect to the residual ion are labeled by r1 and r2. The wave function ’(r1; r2)

2 Hereafter we restrict the consideration to Eq. (2.27), equivalent steps apply to Eq. (2.28). Furthermore it is assumed
that the residual ion core is structureless.
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describes the state of the two electrons bound to the residual core whereas the wave function
 −
k1 ;k2(r1; r2) stands for the motion of these same electrons in the double continuum of the residual

ion. Therefore, in principle the scattering amplitude Tc, given by Eq. (2.50), has to vanish identically
since the wave functions  −

k1 ;k2(r1; r2) and ’(r1; r2) are eigenfunctions of the same Hamiltonian for
diHerent eigenvalues. This fact is not based on physical grounds, it is merely a particular feature of
the FBA; using other approximations can lead to a 6nite projectile scattering from the core. At any
case, even within the FBA, the exact forms of these wave functions  −

k1 ;k2(r1; r2) and ’(r1; r2) are
not known and the overlap of approximate expressions for  −

k1 ;k2(r1; r2) and ’(r1; r2) is, in general,
6nite. The approximate initial and 6nal-state wave functions can nevertheless be orthogonalized by
introducing a new 6nal-state wave function as

S −
k1 ;k2(r1; r2) =  −

k1 ;k2(r1; r2)−
T ∗
c

2
’(r1; r2) : (2.51)

The term Tc, as given by Eq. (2.50), vanishes when using the wave function S −
k1 ;k2(r1; r2) to describe

the 6nal state of the secondary electrons. It should be noted, however that the overlap integral
〈 −

k1 ;k2(r1; r2)|’(r1; r2)〉 now enters the de6nition of the wave function (Eq. (2.51)). Therefore, cross
sections calculated using orthogonalized and non-orthogonalized 6nal-state wave functions are in
general diHerent and a priori it is not obvious which wave function is more reliable. In the limit
of very small momentum transfer K�1 the orthogonalized and non-orthogonalized wave functions
yields the same transition matrix elements; for in this case the exponentials in Eqs. (2.48) and (2.49)
can be expanded with respect to K which leads to the optical relation

Tf i ˙ K〈 −
k1 ;k2(r1; r2)|K̂ · (r1 + r2)|’(r1; r2)〉+O(K2) : (2.52)

From this relation it is evident that, to a 6rst order in K , the particle-impact double ionization
cross sections are closely related to cross sections of double ionization upon absorption of a linearly
polarized photon (in the length formulation). The electric 6eld vector is pointing into the K direction.
In the optical limit initial and 6nal states are always orthogonal. This is due to the odd-parity of the
dipole operator which imposes that the initial and the 6nal states must have diHerent parities and
therefore a vanishing direct overlap. A detailed discussion of the dipolar limit is given in Section 5.

2.3.1. Scaling properties of the cross sections
For single ionization by charged-particle impact it is well-established that within the FBA the

cross sections satisfy certain scaling properties [66] with respect to the projectile charge and mass
state. For the charged particle-impact double-ionization the cross sections also follow a scaling law
[67] within the FBA. This law is conveniently derived as follows: We choose an electron as a
reference projectile incident with momentum ki. In the case of electron-impact double ionization
[also called (e,3e)] the momentum vectors of the secondary electrons are traditionally labeled as
kb; kc (cf. Section 4) whereas the momentum vector of the scattered electron is denoted by ka. This
case [(e,3e)] we compare with a situation where a charged particle with initial momentum k0, mass
mp, and charge zp double ionizes the target leading to the emission of secondary electrons with
vector momenta k1; k2 (Fig. 2.3). In both cases we choose the momentum transfer vectors K to be
identical and kb ≡ k1, kc ≡ k2. In addition we choose the incident velocities such that 1=ki=Zp!pt=k0
where !pt is the projectile–target reduced mass. These conditions ensure that the FBA is equally
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Fig. 2.3. A schematics of the conditions under which one should compare double ionization events upon the impact of
a projectile with mass mp with those following electron impact. The vector momenta of the electrons emitted from the
target are the same in both case and therefore are not shown in the drawing. The incident momentum of the electron is
ki and that of the projectile with mass mp is k0. In both cases the momentum transfer vector K is the same. The angle of
K with respect to the incident direction is  K . The 6nal-state momentum vector of the electron (the projectile with mass
mp) are ka (kp) and the associated scattering angle is  a ( p). The component of the momentum transfer vector transverse
to the incident direction is denoted by x.

justi6ed for a variety of projectiles. The imposed constraints for a meaningful comparison are shown
schematically in Fig. 2.3.
From Fig. 2.3 we deduce that the scattering angle of the projectile electron  a is related to the

scattering angle  p of other projectiles (with arbitrary masses) via

tan  a =
x

ki − K cos  K
; (2.53)

tan  p =
x

k0 − K cos  K
; (2.54)

tan  p =
ki − K cos  K

Zp!ptki − K cos  K
tan  a : (2.55)

As depicted in Fig. 2.3  K is the polar angle of the momentum transfer vector with respect to the
incident direction and is the same for electron or for other projectiles (per requirement). Under the
experimental conditions speci6ed above we conclude from Eqs. (2.34), (2.48)–(2.50) that the scaled
cross section �∗ = �=C where C = Z2

p!
2
ptk0=kp is independent of the charge and mass state of the

projectile. That is, �∗ has to be determined only for one particular projectile, say an electron, while
the cross sections for the other projectiles are then deduced via scaling. Since the large majority of
experiments have been performed in a regime where the FBA might work we therefore specialize for
the rest of this work to the case of electron-impact double ionization, the so-called (e,3e) process.
It should be noted however that in recent years several pioneering double-ionization experiments
have been performed using ion impact in the regime where the FBA and perturbative treatments in
general are expected to break down [23–27,29,30]. In this case it would be valuable to assess the
validity of the scaling law (which is exact within the range of validity of the FBA) as a tool to
explore the deviations from the perturbative regime.

3. Calculational schemes

The practical calculations of the cross sections for the (e,3e) process entails the evaluation of the
transition matrix elements, as given e.g. by Eq. (2.27).This can be done following one of the two
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strategies: (1) One solves directly the Lippmann–Schwinger equation for the transition operator, as
given by Eq. (2.29). This is done for example by means of a close coupling technique, as discussed
below. (2) The second method is to 6nd appropriate expressions for the many-body excited state �−
which enters in the expression for the transition matrix elements (2.27). This may be done as well
by solving an integral equation for the wave function of a Lippmann–Schwinger type, however one
has then to deal with a number of complications that result from the in6nite range of the Coulomb
interaction. Therefore, the line followed in practice is to derive expressions for the wave function
�− by solving directly the SchrUodinger equation with boundary conditions appropriate for continuum
states.

In principle the two approaches are equivalent, however in the perturbative regime the direct
calculations of the T -matrix Lippmann–Schwinger equations have yielded till now more accurate
results for the cross sections than the wave functions route due to the lack of a precise expression
for �−. On the other hand it has been possible to utilize the wave function method for cross section
calculations beyond the non-perturbative. In addition, the wave function �− describes the excited
target independently of the kind of perturbations which trigger the excitation process. I.e. once an
acceptable solution for �− is found it can be employed for any excitation process that leads to �−.
In contrast, the direction evaluation of the transition matrix elements Tf i is restricted to the process
associated with Tf i.

As discussed in Section 2.3 the transitions matrix elements simpli6es considerably in the pertur-
bative regime with respect to the projectile–target interaction. Fortunately, most of the experimental
work has been done in a situation where the FBA might be a useful starting point. Therefore we
devote a special attention to this case.

3.1. The many-body wave function approach to double ionization

The wave function �− which appears in the transition matrix elements (2.27) describes in the sim-
plest case three-continuum electrons moving the 6eld of a doubly charged core (the two knocked-out
electrons and the scattered projectile electron). Thus, to obtain the wave function �− a solution
of the four-body SchrUodinger equation is required, which cannot be done in an exact manner.
Even in the 6rst order perturbation theory as de6ned in Section 2.3 one needs for the evalua-
tion of the matrix elements (2.48)–(2.50) the three-body wave function  − (two electrons in the
6eld of the residual ion). Again exact expressions for  − are not available. Nevertheless some
useful approximations for the four-body and for the three-body wave functions �− and  − can
be obtained from a general consideration of the structure of the SchrUodinger equation. The argu-
ments made in the course of the derivation of the approximate expressions for �− and  − are
of a general nature and can be utilized to obtain approximate wave functions for N continuum
particles.

For generality we consider N charged particles of equal masses m and with charges Zj; j∈ [1; N ]
subject to the 6eld of a residual positive charge Z . For our purposes it is justi6ed to neglect terms
of the orders m=M (m is the mass of the electron and M is that of the residual ion). In this case
the center-of-mass system and the laboratory reference frame coincide. Furthermore, only continuum
states are considered, i.e. the total energy E and the particles’ energies are high enough so that all
particles move in the continuum of the residual ion. The non-relativistic time-independent SchrUodinger
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equation for the N -body system can be written in position space as
H0 +

N∑
j=1

ZZj

rj
+

N∑
i; j

j¿i=1

ZiZj

rij
− E


�(r1; : : : ; rN ) = 0 ; (3.1)

where rj is the position of particle j with respect to the residual charge Z and rij := ri − rj
denotes the relative coordinate between particles i and j. The kinetic energy operator H0 has the
form (in the limit m=M → 0) H0 = −∑N

‘=1 1‘=2m where 1‘ is the Laplacian with respect to the
coordinate r‘.
We seek a solution for (3.1) which describes N continuum particles that escape with asymptotic

momenta kj relative to the residual charge Z . The form of the boundary conditions for this problem
has been suggested in Ref. [68], due to an unpublished work by Redmond to be

lim
rlm→∞
rn→∞

�(r1; : : : ; rN )→ (2�)−3N=2
N∏

s=1

5s(rs) s(rs)
N∏

i; j=1
j¿i

 ij(rij); ∀l; m; n∈ [1; N ];m¿l : (3.2)

We introduced the functions 5j(rj);  j(rj);  ij(rij) as

5j(rj) := exp(ikj · rj) ; (3.3)

 j(rj) := exp[∓ i6j ln(kjrj ± kj · rj)] ; (3.4)

 ij(rij) := exp[∓ i6ij ln(kijrij ± kij · rij)] : (3.5)

The + and − signs refer to outgoing and incoming wave boundary conditions, respectively, and
kij is the momentum conjugate to rij, i.e. kij := (ki − kj)=2. The Sommerfeld parameters 6j; 6ij are
given by

6ij =
ZiZj

vij
; 6j =

ZZj

vj
: (3.6)

The total energy of the system E which appears in (3.1) is given by

E =
N∑
l=1

El where El =
k2l
2m

: (3.7)

In Eq. (3.6) vj denotes the velocity of particle j relative to the residual charge whereas vij := vi−vj.
It su9ces to restrict the considerations to outgoing-wave boundary conditions. The derivation for
incoming-wave boundary conditions runs along the same lines. For the derivation of scattering states
that behaves asymptotically according to (3.2) we write for �(r1; : : : ; rN ) the ansatz

�(r1; : : : ; rN ) =N7I(r1; : : : ; rN )7II(r1; : : : ; rN )8(r1; : : : ; rN ) : (3.8)

The functions 7I; 7II are appropriately chosen and will be speci6ed below, N is a normalization
constant and 8(r1; : : : ; rN ) is a function of an arbitrary form. It is advantageous to choose the function
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7I as the solution for the independent particle problem, i.e.
H0 +

N∑
j=1

ZZj

rj
− E


7I(r1; : : : ; rN ) = 0: (3.9)

This independent-particle equation is completely separable. For free-particles (i.e. for Z ≡ 0) the
solution is a product of plane waves 5j(rj) each describing the free motion of particle j. The function
7I has the form

7I(r1; : : : ; rN ) = S7I(r1; : : : ; rN )
N∏

j=1

5j(rj) : (3.10)

From Eq. (3.9) we deduce the regular exact solution 7I to be

7I(r1; : : : ; rN ) =
N∏

j=1

5j(rj)’j(rj) : (3.11)

’j(rj) stands for the conNuent hypergeometric function (we use the notation of Ref. [69])

’j(rj) = 1F1[6j; 1;−i(kjrj + kj · rj)] : (3.12)

In the case where the continuum particles are strongly coupled to the residual ion, i.e. if
|ZZj|=vj�|ZjZi|=vij; ∀i; j∈ [1; N ] the function 7I provides a good approximation to the total wave
function, i.e. to Eq. (3.1) since in this case one may neglect the inter-particle interaction in favor
of the strong interaction with the ion.

The other extreme case is when the correlation among the continuum particles is very strong (as
compared to the interaction strength with the residual ion). This is the case when |ZjZi|=vij�|ZZj|=vj;
∀i; j∈ [1; N ]. To include this limit in the theoretical treatment we choose for 7II

7II(r1; : : : ; rN ) = S7II(r1; : : : ; rN )
N∏

j=1

5j(rj) ; (3.13)

with

S7II(r1; : : : ; rN ) :=
N∏

j¿i=1

’ij(rij) : (3.14)

Here ’ij(rij) := 1F1[6ij; 1;−i(kijrij + kij · rij)]. The functions ’ij(rij)
∏N

l=1 5l(rl) solve for the
SchrUodinger Eq. (3.1) in the case of extreme correlations between the particle i and the particle
j, i.e. |ZZl|�|ZiZj|�|ZmZn|; ∀l; m; n �= i; j, i.e. it is a solution of the diHerential equation(

H0 +
ZiZj

rij
− E
)

’ij(rij)
N∏

j=1

5j(rj) = 0 : (3.15)

However, in the general case the function (3.13) does not solve for Eq. (3.1) in absence of the 6eld
of the residual ion (i.e. for Z → 0). This is due to the fact that the two-body subsystems formed
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by the continuum particles are coupled to each other. From the theory of the interacting electron
gas [70] it is well known that this problem is complicated and the appropriate approach depends
very much on the strength of the kinetic energy as compared to the potential energy, e.g. for the
dense electron gas perturbation theory is a good starting point. In the present case of three and four
interacting particles we proceed diHerently. At 6rst we note that

1m S7II =
m−1∑
l=1

1m’lm

N∏
j¿i
i 
=l

’ij +
N∑

n=m+1

1m’mn

N∏
j¿i
j 
=n

’ij + Am; m∈ [1; N ] ; (3.16)

where the diHerential operator Am has the form

Am =2
m−1∑
l=1

[
(∇m’lm) ·

(
N∑

n=m+1

∇m’mn

)]
N∏

j¿i
j 
=n; i 
=l

’ij

+
m−1∑
l=1


(∇m’lm) ·


 m−1∑

l 
=s=1

∇m’sm




 N∏

j¿i
s 
=i 
=l

’ij

+
N∑

n=m+1


(∇m’mn) ·




N∑
t=m+1
t 
=n

∇m’mt






N∏
j¿i

j 
=t 
=n

’ij m∈ [1; N ] : (3.17)

The diHerential operator that couples the two-body subsystems (in absence of the residual ion 6eld
in (3.1), i.e. for Z = 0) is obtained by substituting the function (3.13) in Eq. (3.1) and making use
of the relation (3.16). This leads to the conclusion that the coupling term which prevents separability
has the form

A=
N∑

m=1

Am : (3.18)

The terms Am are mixing operators that couple, in absence of the residual ion, the individual two-body
subsystems that can be formed out of the continuum particles. Hence all the terms in the sum (3.17)
vanishes for a three-body system (only one two-body system does exist in absence of the residual
ion). From Eq. (3.16) we conclude that the mixing term (3.17) is a part of the kinetic energy
operators. Since such parts decay with distance faster that the Coulomb potential one can expect the
existence of an “asymptotic” separability, i.e. at large inter-particle distances. To test this anticipation
one has to calculate explicitly the term A using the known functional form of ’ij(rij).
To determine the form of the total wave function, i.e. the solution (3.8) of Eq. (3.1), we need,

in addition to 7I and 7II, an expression for 8(r1; : : : ; rN ). Upon the substitution of the expressions
(3.13) and (3.11) into the ansatz (3.8) and insertion in the SchrUodinger equation (3.1) we deduce
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a diHerential equation for the determination of 8(r1; : : : ; rN ):{
H0 − A

S7II
−

N∑
‘=1

[(∇‘ ln7I +∇‘ ln7II) · ∇‘ + (∇‘ ln7I) · (∇‘ ln7II)] + E

}

×8(r1; : : : ; rN ) = 0 : (3.19)

The functions 7I and 7II have been chosen in such a way that all the two-body Coulomb potentials
are diagonalized exactly, as we have shown explicitly above. Therefore, the function 8 which is still
to be determined, contains information on many-body couplings. To obtain an expression for 8 we
rewrite it in the form

8(r1; : : : ; rN ) =
N∏

j=1

5∗(rj)[1− f(r1; : : : ; rN )] ; (3.20)

where f(r1; : : : ; rN ) is an arbitrary function. Inserting (3.20) into Eq. (3.19) leads to the inhomoge-
neous diHerential equation{

H0 −
N∑

‘=1

[∇‘(ln7I + ln7II) + ik‘] · ∇‘

}
f +R(1− f) = 0 : (3.21)

The inhomogeneous term R is given by

R :=
N∑

m=1


(∇m ln S7I) · (∇m ln S7II) +

m−1∑
l=1

N∑
p=m+1

(∇m ln’lm) · (∇m ln’mp)

+
1
2

m−1∑
l=1

m−1∑
s 
=l

(∇m ln’lm) · (∇m ln’sm)

+
1
2

N∑
n=m+1

N∑
n 
=q=m+1

(∇m ln’mn) · (∇m ln’mq)


 : (3.22)

The inhomogeneous term R contains the coupling between all individual two-particle subsystems:
The 6rst term in Eq. (3.22) describes the coupling of a two-body subsystem formed by particles
i and j to all two-body subsystems formed by the individual continuum particles and the residual
ion. The second term originates from (3.18) and, as explained above, is a measure for the coupling
among two-body subsystems of the continuum particles (in absence of Z). For these coupling terms
to be negligible the norm of the term R must be small.

To simplify the structure of R, as given by (3.22), we note that

∇‘ ln S7I = 6‘k‘F‘(r‘) ; (3.23)

where

F‘(r‘) :=
1F1[1 + i6‘; 2;−i(k‘r‘ + k‘ · r‘)]

1F1[i6‘; 1;−i(k‘r‘ + k‘ · r‘)] (k̂‘ + r̂‘) : (3.24)
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Furthermore, the relation applies

∇m ln S7II =
N∑

n=m+1

∇m ln’mn +
m−1∑
l=1

∇m ln’lm

=
N∑

n=m+1

6mnkmnFmn(rmn)−
m−1∑
l=1

6lmklmFlm(rlm) ; (3.25)

where

Fij(rij) :=
1F1[1 + i6ij; 2;−i(kijrij + kij · rij)]

1F1[i6ij; 1;−i(kijrij + kij · rij)] (k̂ij + r̂ij) : (3.26)

The expression R can then be written in term of Fij(rij); Fl(rl), i.e.

R :=
N∑

m=1

{
6mkmFm(rm) ·

[
N∑

n=m+1

6mnkmnFmn(rmn)−
m−1∑
s=1

6smksmFsm(rsm)

]

−
m−1∑
l=1

N∑
p=m+1

6lm6mpklmkmpFlm · Fmp +
1
2

m−1∑
l=1

m−1∑
s 
=l

6lm6smklmksmFlm · Fsm

+
1
2

N∑
n=m+1

N∑
n 
=q=m+1

6mn6mqkmnkmqFmn · Fmq


 : (3.27)

A straightforward approximation is to neglect the term R altogether. In this case the function f=0
solves for equation (3.21). Then, the solution of Eq. (3.1) takes on the approximate form

�(r1; : : : ; rN ) ≈ N

N∏
m¿l;j=1

5j(rj)’j(rj)’lm(rlm) : (3.28)

Thus, the validity of the approximate expression (3.28) is directly related to whether the inhomoge-
neous term (3.27) can be neglected. Till now, such a justi6cation is documented only in the case of
large inter-particle separations. This is readily seen from the asymptotic behaviour of the functions
Fij(rij); Fl(rl)

lim
rij→∞ |Fij(rij)| →

∣∣∣∣∣ k̂ij + r̂ij
kij · (k̂ij + r̂ij)rij

∣∣∣∣∣+ O(|kijrij + kij · rij|−2) ; (3.29)

which implies that R diminishes faster than the Coulomb potential in the asymptotic regime, i.e.

lim
rij→∞
rl→∞

R → O(|kijrij + kij · rij|−2; |klrl + kl · rl|−2) ∀j¿ i; l∈ [1; N ] : (3.30)

Thus the approximation (3.28) is justi6ed in the asymptotic region and possesses the correct boundary
conditions (3.2) in the limit of large inter-particle separations. It should be stressed however that, in
contrast to the function given by Eq. (3.2), the wave function (3.28) is de6ned in the entire Hilbert
space and diagonalizes all the two-body potentials at any distance. A further important remark
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concerning the utilization of the wave function (3.28) for the calculations of the cross sections is
that the limit Eq. (3.30) is energy dependent. With increasing velocities of the escaping particles
the asymptotic region is reached faster, i.e. the asymptotic regime covers a much larger area for fast
particles than for slow ones. Therefore, the wave function (3.28) is a high energy approximation.
Nevertheless, the method has been applied at low energies as well. In this case the reliability of this
approach is not clear from a mathematical point of view.

3.1.1. Normalization of the N -body wave functions
For the evaluation of cross sections using the wave function (3.28) it is decisive to have an

accurate expression for the normalization factor N of the wave function (3.28); since it is this fac-
tor which determines the overall structure of the phase space available for the continuum particles.
Traditionally N is determined by solving a 3N -dimensional integral over the norm of the function
(3.28). Obviously this task is intractable for an arbitrary number N of continuum particles. Alter-
natively, one can obtain the factor N from Nux arguments, i.e. by requiring that the Nux through
an asymptotic manifold de6ned by a constant large inter-particle separations should be the same,
regardless of whether we use the wave function (3.28) and calculate the Nux (J�) or if we employ
normalized plane-waves which generate the Nux JPW. On the other hand the plane-wave Nux is
given by

JPW =− i
2
(2�)−3N

{
N∏
l

5∗l (rl)∇
[

N∏
l

5l(rl)

]
−

N∏
l

5l(rl)∇
[

N∏
l

5∗l (rl)

]}

= (2�)−3N
N∑
l=1

kl : (3.31)

Here the total gradient ∇ :=
∑N

l=1 ∇l has been introduced. For the evaluation of the Nux J� which
is related to the wave function (3.28) one needs the total gradient of the wave function. This is
derived by exploiting Eqs. (3.23) and (3.25) which yields

∇� :=N

N∑
m=1



ikm� + 6mkmFm� +




N∑
n=m+1

6mnkmn SFmn(rmn)
N∏

j¿i
j 
=n

’ij

−
m−1∑
l=1

6lmklm SFlm(rlm)
N∏

j¿i
i 
=l

’ij




N∏
s=1

5s(rs)’s(rs)




: (3.32)

Here we used the notation SFmn = Fmn’mn. Since only the asymptotic Nux is considered, i.e. the
Nux at large inter-particle distances, only the 6rst term of Eq. (3.32) is relevant, as can be deduced
from Eqs. (3.24) and (3.26). Taking the asymptotic expansion of the conNuent hypergeometric



114 J. Berakdar et al. / Physics Reports 374 (2003) 91–164

function [69] into account we derive for the Nux J�

J� =N2
N∏

j=1

exp(�6j)
<(1− i6j)<∗(1− i6j)

N∏
m¿l=1

exp(�6lm)
<(1− i6lm)<∗(1− i6lm)

N∑
n=1

kn ; (3.33)

where <(x) is the Gamma function. From the requirement that asymptotically J� = JPW and from
Eqs. (3.31) and (3.33) we conclude that the normalization constant has the form

N= (2�)−3N=2
N∏

j=1;m¿l=1

exp[− �(6lm + 6j)=2]<(1− i6j)<(1− i6lm) : (3.34)

For two charged particles moving in the 6eld of a heavy nucleus the wave function (3.28) with
the normalization, given by Eq. (3.34), simpli6es to the three-body wave function proposed in Refs.
[71]. This simpli6ed form is needed in the perturbative regime, i.e. when calculating (2.48)–(2.50).

3.2. First-order perturbation treatments

As discussed in Section 2.3, in a 6rst-order (Born) treatment of the projectile target interaction,
the description of the double ionization reduces to the treatment of a three-body continuum state (the
two knocked out electrons and the positive ion). This section deals with the calculational schemes
in this regime.

3.2.1. The three-body Coulomb wave approach: The 3C method
In this method Eq. (3.28) for N=3 is utilized for the description of the motion of the knocked-out

electrons as they move in the double continuum of the residual ion (the projectile electron moves
freely). The matrix elements (2.48)–(2.50) are then evaluated numerically to yield the (e,3e) cross
sections. In the literature this approach is called the 3C method which stand for the three-body
Coulomb wave method. Generalization to the non-perturbative regime is straightforward by choosing
in Eq. (3.28) N =4, as done in Ref. [46]. However, rather sophisticated numerical methods are then
needed to evaluate the nine-dimensional integrals as given by Eq. (2.27).

3.2.2. The convergent close coupling approach: The CCC method
In this theory the transition matrix elements are evaluated by solving a Lippmann–Schwinger

equation for the three-body problem. This approach has been implemented within the FBA only.
Hitherto only the electron-impact double-ionization of an atomic helium target has been treated with
this method.

To evaluate the matrix elements (2.48)–(2.50) one proceeds as follows. The (Born) transition
operators exp(iK · rb=c) is expanded in multipoles where K̂ is chosen as the quantization axis, i.e.

eiK·rb=c =
√
4�
∑
J

iJ jJ (Krb=c)
√
2J + 1YJ0(r̂b=c) : (3.35)

Here YJM (r̂) denotes a standard spherical harmonic as function of the direction r̂ and J;M is an
angular quantum number and its projection on the quantization axis. Expansion (3.35) allows to
perform the angular integration involved in (2.48)–(2.50). The cross sections (2.34) expressed in
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terms of spherical harmonics reads

�=
8ka
k0

1
K4

∣∣∣∣∣
∑
J

∑
l1l2

∑
m1=−m2

iJ−l1−l2Yl1m1(k̂b)Yl2m2(k̂c)

(
l1 J l2

m1 0 m2

)

× exp[i(�l1 + �l2)](2J + 1)[MJl1l2(K; kb; kc) +MJl2l1(K; kc; kb)]

∣∣∣∣∣
2

: (3.36)

The angular-independent matrix elements MJlilj are then calculated by means of a convergent close
coupling technique (CCC). This is achieved by expanding the 6nal two-electron continuum state
using square-integrable (L2) states and solving for the atomic scattering of one of the target electrons
from the singly charged ion. I.e., upon the perturbation of the target by the passing projectile one
of the target electron is elevated in energy. It then re-scatters from the singly ionized target ejecting
the second electron. This latter process is treated in a non-perturbative way. Technically [36,19,8],
the double ionization processes are identi6ed as an excitation of the positive-energy pseudostates
of the ion. Thus in the 6nal state one of the ejected electron occupies a true continuum state with
energy Eb and orbital angular momentum l1 whereas the other electron resides in an excited state
of the ionic which is labeled by l2 with energy Ec. Therefore, the boundary conditions employed
by the CCC are appropriate for situations where the “excited” electron shields the residual ion 6eld
which is experienced by the true continuum electron. This is done irrespective of the energies Eb

and Ec. Nevertheless, since the initial bound state which enters the matrix elements (2.48)–(2.50) is
well localized, the boundary conditions seem to be of a minor importance as far as the numerical
results are concerned.

In recent years there has been an impressive amount of work concerning the solution of the
three-body problem as well as improving on the 3C model. It is beyond the scope of the present
article to cover all these topics. Here we discuss only those theories that have been applied to the
case of particle-impact double ionization. The interested reader is referred to Refs. [68,71–83] where
further references can be found.

3.3. Beyond the perturbative regime

The treatment of the projectile–target interaction within the 6rst order perturbation theory (i.e.
within FBA) brings about signi6cant simpli6cations in that one only needs to describe two-electron
transitions of the target. As will be shown below however, the experimental results indicate some
de6ciency of the FBA treatment, even in the high energy regime. Therefore, and in view of the
planned experiments in the low-energy regime, a theoretical treatment is desirable that takes account
of the projectile–target interaction in a dynamical way.

3.3.1. The second Born approximation (2BA)
One obvious extension is the second Born approximation. It takes into account the successive

interactions of the incoming electron with the two target electrons [40]. The intermediate state of
the scattered electron is described by a plane wave. This electron collides with the second bound
electron after having singly ionized the target without or with simultaneous excitations. This process
corresponds to the TS2 mechanism discussed above (cf. Fig. 2.1). Because of these two successive
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interactions the symmetry with respect the momentum transfer is broken. Similar eHects arise when
using the second Born approximation to describe the electron-impact single ionization [the (e,2e)
process] at low incident energies [84]. In the second Born calculations done so far for the (e,3e)
process, the 6nal state has been modeled by a 3C wave function. Alternatively, to reduce the
computational eHorts, Ref. [40] uses a product of two Coulomb wave functions multiplied by the
density of state corresponding the 6nal state interaction of the two slow electrons. One of the
principal di9culties of the calculations is that the integration over the intermediate scattered-electron
states may well be singular and these singularities should be treated carefully.

3.3.2. The four-body Coulomb wave function: The 6C approach
A further method which goes beyond the FBA is to evaluate the matrix elements (2.27) using

the wave function (3.28) with N = 4, as done in Ref. [46]. As clear from Eq. (3.28) the wave
function consists in this case of a product of six two-body Coulomb waves (and therefore the name
6C), each describing the scattering within the individual two-body subsystems that can be combined
within a four-body systems. Thus, all the four continuum particles are treated on equal footing, i.e.
this treatment goes beyond the second Born type. The connection between the perturbation theory
and the use of the 6C wave function is best illustrated within the Green function formalism, as
done in Ref. [81]. There it is shown that the use of (3.28) implies that all two-particle collisions
are treated to in6nite orders. The treatment of the projectile target interaction within this scheme
resembles then the so-called ladder-approximation which is well-known in the realm of many-body
theory [70]. The price to be payed for using the sophisticated 6C wave function [Eq. (3.28) with
N =4] is that one has to deal with the nine dimensional integrals (2.27) in the continuum which is
a serious problem. In certain situations this numerical obstacle has been tackled [46] successfully.

3.3.3. Dynamical screening and eDective charges: The C4FS method
The numerical problems in using (3.28) for N = 4 can be circumvented by the following obser-

vation. In the SchrUodinger equation (3.1) the term which prevents separability is the inter-particle
interaction potential ZiZj=rij. If it were not for this term the complete problem reduces to Eq. (3.9)
which is exactly solvable (the solution of which we derived as Eq. (3.11)). Thus, if an approximate
method is developed which encompasses the correlation term ZiZj=rij into the potentials ZjZ=rj in an
eHective, position-independent manner, the complete SchrUodinger equation (3.1) can then be solved
by a function of form (3.11). This scheme is realized by the eHective charge method which will be
illustrated for the electron-impact double ionization. For the general case we refer to Ref. [81].

For the (e,3e) the 6nal state consists of three interacting electrons labeled a; b; c moving in the
6eld of a nucleus of charge ZT = 2. Thus the total potential in Eq. (3.1) reduces to

− ZT
ra

− ZT
rb

− ZT
rc

+
1
rab

+
1
rac

+
1
rbc

=
Zb

rb
+

Zc

rc
+

Zbc

rbc
: (3.37)

Here Zb; Zc; Zbc are introduced as unknown functions yet to be determined. Their functional form is
speci6ed by a linear expansion in terms of the two-body interactions, as explained in Ref. [85]. For
this expansion to be exact we require Eq. (3.37) to be identically ful6lled and the boundary conditions
imposed on (3.1) are not violated. The approximation which makes this procedure favorable for
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numerical calculations is the assumption rj ˙ kj; j = a; b; c, which yields for the eHective charges

Zb =−ZT − ZT
2

kb
ka

+
kb

|ka − kb| ;

Zc =−ZT − ZT
2

kc
ka

+
kc

|ka − kc| ;

Zbc =1 : (3.38)

With these eHective charges it is readily concluded that the eigenfunction of (3.1) can be approxi-
mated by

�ka;kb;kc(ra; rb; rc) ≈ (2�)−3=2 exp(ika · ra) ;

where

 = (2�)−3N exp(ikb · rb + ikc · rc)1F1(i6bc; 1;−i[kbcrbc + kbc · rbc])
1F1(i6b; 1;−i[kbrb + kb · rb])1F1(i6c; 1;−i[kcrc + kc · rc]) : (3.39)

The normalization factor is

N = exp(−�6bc=2)<(1− i6bc) exp(−�6b=2)<(1− i6b) exp(−�6c=2)<(1− i6c) :

Here the eHective Sommerfeld parameters have been de6ned as 6c = Zc=kc; 6b = Zb=kb and 6bc =
Zbc=(2kbc), where kbc is the momentum conjugate to rbc.

It should be noted that the approximation kj ˙ rj which lead to the wave function (3.39) does not
mean that this treatment of the (e,3e) process is classical. In fact we are utilizing the wave function
(3.39) to perform the calculations. Our approximation means merely that the total potential (3.37)
is exactly diagonalized by (3.39) along the trajectories for which kj ˙ rj.
Since the functions Zj; j=a; b; c are position independent, the transition amplitude (2.27) is readily

reduced to the form (2.48)–(2.50) derived in Section 2.3.
The amplitudes Te1 ≡ Tab; Te2 ≡ Tac; Tc ≡ Ta describe, respectively, the direct scattering of

the projectile electron (a) from the two electrons (b; c) bound to the target and from the nucleus.
Multiple scattering events within the four-body system are contained in |�〉 as 6nal state interactions.
The transition matrix elements Tf i depend dynamically on all four vector momenta k0; ka; kb; kc, as
evident from Eqs. (3.38) and (3.39): If the projectile electron approaches in velocity space one of
the ejected electrons, say electron b the interaction of this ejected electron with the residual ion
turns repulsive (i.e. Zb, as de6ned by Eq. (3.38) becomes positive) as to simulate the repulsion
between the scattered and the ejected electron b. For this reason the wave function (3.39) is called
the C4FS which stands for Coulomb four body 6nal-state wave function. In contrast within the 6rst
Born approximation (FBA) the eHective charges in Eqs. (3.38) reduce to Zb =−Z = Zc; Zbc =1 and
Tf i depends dynamically only on K; kb and kc.

3.3.4. The many-body Green function theory: The GF method
All the methods discussed so far deals with the double ionization by evaluating in some way

the wave functions of the excited electrons and calculating the desired transition matrix elements.
This approach is suitable for few-particle systems but it becomes inappropriate for large systems.
This is not only because of the dramatically increasing complexity of the wave functions with
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increasing number of particles (cf. Eq. (3.28)). For “large systems”, i.e. in the thermodynamic limit,
new macroscopic phenomena appear like collective modes, phase transitions and thermodynamic
properties. While many of the macroscopic properties are strictly de6ned for in6nitely large systems
with constant density, it turns out that the onset of these macroscopic features can also be observed
in 6nite systems [83]. Thus it is desirable to develop a method that is conceptually and practically
applicable for 6nite systems, like the four-body problem and that oHers a tractable scheme for the
treatment of systems with a larger number of interacting particles. The ideal tool for this purpose is
the Green function technique. Here we will brieNy sketch the method as applied to the four-body
problem. Applications of this same approach to critical phenomena in 6nite systems can be found
in Ref. [83].

3.3.4.1. The Green function expansion. Let us consider a non-relativistic system consisting of N
particles that interact via two-body potentials vij, as for example in Eq. (3.1). The total potential is
then U (N ) =

∑N
j¿i=1 vij (there is no need to specify the form of vij). The function U (N ) satis6es the

recurrence relations [86]

U (N ) =
1

N − 2

N∑
j=1

u(N−1)
j ; (3.40)

u(N−1)
j =

1
N − 3

N−1∑
k=1

u(N−2)
k ; j �∈ [1; N − 1] ; (3.41)

where u(N−1)
j stands for the total potential of a system of N − 1 interacting particles in which the

j particle is missing. It has been shown using operator algebra that the recurrence relations (3.40)
and (3.41) are reNected in similar relations for the total Green operator G(N ) and for the transition
operators T (N ) [86]:

T (N ) =
N∑

j=1

T (N−1)
j ; (3.42)

T (N−1)
j = ũ(N−1)

j + T (N )G0ũ
(N−1)
j ; j∈ [1; N ] : (3.43)

Here we de6ned the scaled potentials ũ(N−1)
j = (u(N−1)

j )=(N − 2). The operators T (N ) are related to

the transition operator t(N−1)
j of a system with N − 1 particles that interact via the scaled potential

ũ(N−1)
j (i.e. t(N−1)

j = ũ(N−1)
j + ũ(N−1)

j G0t
(N−1)
j ):



T (N−1)
1

T (N−1)
2

...

T (N−1)
N−1

T (N−1)
N




=




t(N−1)
1

t(N−1)
2

...

t(N−1)
N−1

t(N−1)
N




+ [K(N−1)]




T (N−1)
1

T (N−1)
2

...

T (N−1)
N−1

T (N−1)
N




: (3.44)
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The kernel [K(N−1)] is a matrix operator and is given by

[K(N−1)] =




0 t(N−1)
1 t(N−1)

1 ::::: t(N−1)
1

t(N−1)
2 0 t(N−1)

2 ::::: t(N−1)
2

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

t(N−1)
N−1 ::::: t(N−1)

N−1 0 t(N−1)
N−1

t(N−1)
N ::::: t(N−1)

N t(N−1)
N 0




G0 : (3.45)

Eq. (3.41) makes clear that t(N−1)
j is expressible in terms of the transition operators of the N − 2

interacting subsystems as t(N−1)
j =

∑N−1
k 
=j T (N−2)

k , where the operators T (N−2)
k are deduced from

Eq. (3.44) with N being replaced by N − 1.
Since the relation G(N ) = G0 + G0T (N )G0 applies we conclude that the Green operator of the

interacting N particle system has the form G(N ) = G0 +
∑N

j=1 G
(N−1)
j . The operators G(N−1)

j are

related to the Green operators g(N−1)
j of the systems in which only N − 1 particles are correlated by

virtue of ũ(N−1)
j . This interrelation is given via



G(N−1)
1

G(N−1)
2

...

G(N−1)
N−1

G(N−1)
N




=




g(N−1)
1 − G0

g(N−1)
2 − G0

...

g(N−1)
N−1 − G0

g(N−1)
N − G0




+ [K̃(N−1)]




G(N−1)
1

G(N−1)
2

...

G(N−1)
N−1

G(N−1)
N




; (3.46)

where [K̃(N−1)]=G0[K̃(N−1)]G−1
0 . Hence, if the Green operator of the interacting N −1 body system

is known the Green operator of the N particles can then be deduced by solving a set of N linear,
coupled integral equations (namely Eqs. (3.44), (3.46)). If only the solution of the N −M problem
is known where M ∈ [1; N − 2] one has to perform a hierarchy of calculations starting by obtaining
the solution for the N − M + 1 problem and repeating the procedure to reach the solution of the
N body problem. For N = 3 the present scheme reduces to the well established Faddeev equations
[87,88]. These relations for the Green’s function have far reaching consequences, as they relate the
spectral and thermodynamic properties of a many-body interacting system to the strength of the
residual interactions: In each step in the recurrence loop (3.41) the interactions in the system is
diluted by cutting all interaction lines to the particle which is removed from the system.

3.3.4.2. Application to the four-body problem. Using the above GF technique the four body Green
operator can be expressed in terms of approximate solutions of three body systems. Methods to obtain
the latter have been discussed in the previous sections. For N = 4 the 6rst iteration of Eq. (3.46)
yields

G(4) =
4∑

j=1

g(3)j − 3G0 ; (3.47)
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where g(3)j is the Green operator of the interacting three body system (particle j is non-interacting).

This g(3)j we assume is known in some approximate form. For example, within the 3C or the C4FS
approach the Hamiltonian of the three body system reduces to a sum of three commuting Hamilto-
nians h(2)k in which only two particles are interacting (particle k is free). Therefore, the three-body
Green function in approximated within the 3C-type approaches by g(3)j ≈ G−2

0

∏(3)
k=1 g

(2)
k ; k �= j∈ [1; 4]

where g(2)k is the resolvent of h(2)k . Employing this expression for the three-body Green’s function, the
present procedure [Eq. (3.47)] yields for the four-body GF G(4) = [

∑4
j=1 G

−2
0

∏3
k g

(2)
k ]− 3G0; j �= k.

A well-known advantage of the GF method is its Nexibility and versatileness. For example if parts
of the problem can be conveniently solved numerically or analytically one can choose the reference
Green’s function G0 as to encompass these solutions. For example in the GF calculations for the
(e,3e) process shown in the next section the reference GF G0 is chosen to be the Green operator of
the three continuum particles moving independently in the Coulomb nuclear 6eld. What remains in
the potential (3.40) are the correlation terms among the continuum particles that are treated according
to the method presented above.

4. Experimental techniques

In the preceding sections we gave a general overview on the theory of double ionization of
atomic targets by charged particle impact and pointed out several prominent scattering mechanisms.
However, most of the experiments have been performed in the regime where the projectile is swift
(with respect to the Bohr velocity of the initially bound electrons) and transfers only little momentum
to the target. Hence 6rst-order perturbative treatments with regard to the projectile-target interaction
are expected to yield useful results (this implies that the charge of projectile is su9ciently small
so that Zp=vp�1). As shown above, in this regime, the cross sections satisfy a scaling law that
allows to relate the double ionization with projectiles having arbitrary masses and charges to the
electron-impact double ionization. Therefore, we specialize for the rest of this work to the case of
electron-impact double ionization, i.e. the (e,3e) process. It should be noted however that in recent
years several pioneering double-ionization experiments have been performed using highly charged
ions in a regime where perturbative treatments are expected to break down [23–27,29,30]. The
physics underlying these non-perturbative processes is not discussed here. We start this part of the
article by a detailed discussion of the experimental techniques used in (e,3e) processes.

4.1. Notations

The reaction leading to the electron impact direct double ionization of a target X can be symbol-
ically written as

e0 + X → ea + eb + ec + X 2+ : (4.1)

This reaction conserves the total energy and the total linear momentum, as stated by Eqs. (2.1)
and (2.2). The outgoing electrons, though indistinguishable, are indexed a for the fast “scattered”
one and b and c for the slow “ejected” ones. The atom and the residual ion are assumed to be in
their ground state. The ion recoil energy Eion is generally negligible because of the smallness of
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K
→

ak

0k
bk

ck
θc

θb

Fig. 4.1. The coplanar scattering geometry for the (e,3e) experiments. The two ejected electrons with momenta kb and
kc are detected in the plane de6ned by the incoming and the scattered projectile with momentum vectors k0 and ka,
respectively. The momentum transfer is labelled as K.

the electron to ion mass ratio. The recoil ion momentum kion is obtained by subtracting from the
momentum transfer vector K the momentum of the center of mass of the ejected electron, (kb+kc).
A general schematic diagram for the experiment is shown in Fig. 4.1. In the particular case of a
coplanar geometry, all electrons are observed in the collision plane at in-plane angles  a;  b and  c

with respect to the incident direction, while the out-of-plane (azimuthal) angles ’b and ’c are set to
0 or �. The mutual angle  cb =  b −  c is also often used. In what follows we consider the case of
fully diHerential experiments with completely determined kinematics (apart from spin and magnetic
sublevels), where all three 6nal electrons are simultaneously analysed both in direction and in energy
and are detected in coincidence. This allows one to determine the energy state in which the ion is
left, i.e. to 6nd the orbitals from which the outgoing electrons are knocked. But the price to be
paid for that is the need for multiple coincidence techniques which make these experiments far more
di9cult than the corresponding (e,2e) single ionization ones, the addition of an extra solid angle
of detection for the third electron, W�, roughly resulting in a reduction of the overall collection
e9ciency by a factor W�=4�. In addition, the double ionization cross section is typically two orders
of magnitude smaller than the single ionization cross section. This puts two major constraints on
the design of an (e,3e) experiment: the achievement of a large luminosity without degrading too
much the energy and angular resolutions, and the need to use multi-detection techniques to reduce
the necessary accumulation time.

4.2. Overview on measured double ionization cross sections

Because a double ionization experiments involves many variables (10 variables: E0; Ej;  j; ’j with
j = a; b; c) linked by the energy and momentum conservations, we pay a particular attention to the
terminology used and to a precise de6nition of n-fold diHerential cross sections. Extensive exper-
imental and theoretical information exists on total double ionization cross sections under various
projectiles impact. Such studies usually determine only the ratio �2+=�+ of double (�2+) to sin-
gle (�+) ionization cross sections as a function of the incoming particle energy, and are therefore
not sensitive to 6ner details of the ionization dynamics. DiDerential cross sections with respect
to the energies and/or solid angles of emission of the 6nal particles have seldom been reported,
and discussion has been there mostly concentrated on integral characteristics determined from
single or double diHerential cross sections. Cross sections for multiple ionization which are singly
diHerential (SDCS) with respect to the energy-loss of the incident electron, d�=dE, were reported



122 J. Berakdar et al. / Physics Reports 374 (2003) 91–164

by van der Wiel and coworkers (see for instance [89]) for the inelastic scattering of 10 keV elec-
trons from various rare gases. Doubly diHerential cross sections (DDCS) with respect to the ejected
electron energy and solid angle �, i.e. d2�=dE d�, were measured by Hippler and coworkers [90,91]
for the double (or multiple) ionization of rare gases under 300 eV–10 keV electron impact. Several
authors [92–99] measured in coincidence pairs of electrons scattered–ejected (ea − eb) or scattered–
Auger (ea−eA) issued from the same indirect double ionization process. The detected electrons were
angle and energy analysed, integrating over the parameters of the unobserved electron. Therefore,
one measures triply diHerential cross sections (TDCS), d3�=dEad�ad�b or d3�=dEad�ad�A, with
respect to one energy and two solid angles, analog to the TDCS obtained in single ionization (e,2e)
experiments (see for instance [100]), or in the fully diHerential double photoionization experiments,
(C; 2e) [101]. Higher-order diHerential cross sections are investigated in an (e,3e) experiment. All
three 6nal electrons are analysed both in direction and in energy and are detected in coincidence.
Hence, the quantity that is measured at a given impact energy is a 6vefold diHerential cross section,
5DCS or d5�=dEadEbd�ad�bd�c. Only two energies appear in the denominator since the third one
is known from the energy balance. However, these experiments are technically di9cult and very
time-consuming. Therefore, it is also of interest to consider an alternative method to study the dou-
ble ionization process [102,103] avoiding the di9culties of a triple coincidence. This is achieved by
a method that can be categorized as a halfway between (e,2e) and (e,3e) experiments: An arbitrary
pair of electrons, that is (ea; eb), (ea; ec), or (eb; ec), is detected in coincidence, while integration is
performed over the solid angle of emission of the undetected one, say �c. Its energy is in general
also unknown since the ion 6nal state is not de6ned (except for helium). That is, the energy trans-
fer to the target, E0 − Ea, is 6xed from the knowledge of Ea, but the energy partitioning between
the two “atomic” electrons is not. In other words, Ec may take any value between 0 and Eb + Ec.
However, the measured quantity is still diHerential in two energies, say Ea and Eb. One therefore
measures a four-fold diHerential cross section (4DCS), d4�=dEadEbd�ad�b. This is a major diHer-
ence with respect to (e,2e) experiments, though a double coincidence is involved. These experiments
are called the e,(3-1)e experiments since three electrons are present in the 6nal state of which only
two are detected. The diHerence in the information content between the 5DCS and the 4DCS can
be illustrated by comparing with analogous single ionization quantities obtained in electron impact
experiments. The (e,3e) 5DCS and the (e,2e) TDCS are analogous in the sense that they represent
the fully diHerential process. The 4DCS measured via integration over �a (hereafter noted �c;b) are
analogous to the doubly diHerential cross sections (DDCS) extracted from angular distributions of
the ejected electron [104,105], while the 4DCS with integration over �c (noted �a;b) are analogous
to the DDCS extracted, for instance, from electron energy-loss spectra [106,66].

4.3. Genesis of the (e,3e) experiments

As in the (e,2e) case, the (e,3e) experiments may be subdivided into two categories depending
on the kinematical parameters: structure studies and ionization dynamics studies. It is remarkable
that the same group of authors at Moscow who proposed (e,2e) structure studies to “investigate
the electronic states of atoms, molecules and solids by quasi-elastic knock-on of an electron by a
fast electron” [108,109] have reported a decade later [110,111] an analogous proposal to “study the
two-electron Fourier amplitudes of atomic and molecular wave functions using the (e,3e) processes
at high energies” (see also [112,113] and the more recent review by Neudatchin et al. [114]). Both
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proposals rely on the idea that at large enough incident and outgoing electrons energies, a 6rst-order
Born approximation (so-called dipolar approximation in the photo double-ionization (PDI) case)
using plane waves to describe all the free electrons should be su9cient. Hence, neglecting exchange
eHects between the incident electron and the target bound electrons, as well as all interactions between
the ejected electron(s) and the ion and between all outgoing electrons, the corresponding TDCS or
5DCS for a two-electron atom are given by

(e,2e) case:

d3�
dEadEbd�a

=
4kakb
k0K4 |〈�f (r)|eiK·r|�i(r)〉|2 ; (4.2)

(e,3e) case [34]:

d5�
dEadEbd�ad�bd�c

=
4kakbkc
k0K4 |〈�f (r1; r2)|eiK·r1+iK·r2 |�i(r1; r2)〉|2 : (4.3)

The (e,3e) case yields the well-known dipolar approximation (dipole-length formulation) correspond-
ing to the PDI case, when the momentum transfer K goes to zero [115]. At high enough energies
and momentum transfer, the (e,2e) TDCS may be factorized such as

d3�
dEadEbd�a

=
(2�)4kakb

k0K4 |TM|2|�(p)|2 (4.4)

where |TM|2 is the half-oH-shell electron–electron Mott scattering cross section. The structure factor,
|�(p)|2, is the spherically averaged electron momentum distribution, where �(p) is the Fourier
transform of the position space wave function

�(p) =
1

(2�)3=2

∫
dr�i(r) exp(−ip · r) : (4.5)

The remaining part of the right hand term of Eq. (4.4) corresponds to a kinematical factor which can
readily be determined in the experiments. Therefore, a measure of the (e,2e) TDCS allows a direct
mapping of the one-electron momentum density |�(p)|2. Similarly, under the same approximation
of high enough energies, the matrix element in the (e,3e) 5DCS easily reduces to the double Fourier
transform �(p1; p2) [110]

�(p1; p2) =
1

(2�)3=2

∫
dr1dr2�i(r1; r2) exp(−ip1:r1 − ip2:r2) : (4.6)

Therefore, the cross section measured in an (e,3e) experiment is a direct measure of the two-electron
momentum density |�(p1; p2)|2. The importance of studying this quantity becomes clear when a
two-electron system is considered. In this case, the Fourier amplitude in Eq. (4.6) is merely the
wave function of the two-electron system in the momentum representation. It contains all the details
of the structure of the system, and in particular the momentum distribution associated with the
relative motion of electrons (i.e. in r12 coordinate). This motion is dominated by electron–electron
correlations. It is through the strong dependence on r12 of the (e,3e) cross section that rich and new
information is expected to be obtained with a high sensitivity to the correlated motion of the electrons
in the initial state of the target. In many-electron systems, if the transition i → f involves the
knock-out of two electrons from the same orbital then �(p1; p2) characterizes the electron–electron
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correlations in that orbital, whereas if the transition involves electrons from diHerent orbitals then
�(p1; p2) enables the study of electron–electron correlations in diHerent orbitals. Typical experimental
conditions recommended by the Moscow group correspond to 5–10 keV incident electrons which are
scattered strictly forward ( a ≈ 0), and symmetrical energy distribution between outgoing ejected
electrons Eb = Ec ∼ 250 eV. Under these conditions, the predicted absolute values of the cross
sections are unfortunately quite low, ∼ 10−5 a.u. or less. This has hampered the attempts of such
experiments until recently when the use of multi-detection techniques in specially designed (e,3e)
apparatuses [16,116,19] has opened up the way to the exploration of initial state electron–electron
correlations 6rst in magnesium [11,16] and more recently in helium [7,19] and argon [7]. Meantime,
“conventional” (e,3e) experiments have been successfully performed in a diHerent energy regime
where the cross sections are larger. These experiments [1–9,36,102] have been used to investigate
the dynamics of double ionization, and were mostly performed at lower ejected electron energies,
4–60 eV, where the measured absolute 5DCS are two orders of magnitude larger than given above.
Yet, the coincidence signal is very low, ∼ 10−3 Hz or less, and is mostly limited by the high
accidental coincidence rate generated by the dominant single ionization events. Recently, a diHerent
approach was utilized [18–20] to perform the (e,3e) experiments. This is the so-called cold target
recoil ion momentum spectroscopy (COLTRIMS) where the recoil ion is detected in coincidence
with two emitted electrons [cf. Fig. 4.3]. The method is highly e9cient and bene6ts from an eHective
collection solid angle close to 4�. Its advantages and limitations will be discussed in the next section,
in comparison with “conventional” (e,3e) methods.

4.4. Experimental techniques

The aim of this section is to discuss some aspects of coincidence experiments which are speci6c
to the study of double ionization. For a general discussion of coincidence techniques, the reader
may consult, for instance Refs. [117–119]. We have already emphasized the technical di9culty of
the (e,3e) experiments, due to the very low count rates. Such limitation is almost unavoidable as it
is inherent to the physical process under study, for two reasons. First, the double ionization cross
section is very small. Second, and this is the worst limitation, the ratio of double ionization to single
ionization cross sections is very small, ∼ 0:5% in He (and ∼ 5% in Ar), which means that 99:5%
of all the electrons of a given energy that reach the detector belong to a single ionization event,
and only contribute to the accidental coincidences. Hence the need to achieve a large luminosity
for the (e,3e) spectrometers. This usually results from a compromise between count rate and one or
more other experimental parameters. We will discuss how this problem was tackled by the diHerent
groups and what approach was used to make the experiments feasible. The pertinent parts of the
experimental set-ups and the speci6cities in the data analysis methods will be described subsequently.

4.5. General description of experimental arrangements

The 6rst (e,3e) experiments reported for Ar and Kr [102,2,4] have been performed on a modi6ed
version of an (e,2e) spectrometer [118], to which a third energy analyser and detection system were
added. The luminosity problem was essentially solved by tolerating a large increase in the acceptance
solid angles and energy windows. The solid angles W�b and W�c were set to ∼ 2× 10−2 sr which
is an acceptable value as long as no sharp structure is expected in the 5DCS angular distribution,
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Fig. 4.2. A schematic view of the spectrometer used for the electron-impact ionization studies [(e,2e)-(e,3e)]. The electron
gun (EG), deNector plates (DP), gas jet (GJ), and the beam stop (BS) are shown. The cylindrical analyzer (CA) preceded
by its associated optics and followed by the scintillator (Sc) and the photomultiplier tube (PMT), the entrance and exit
slits (ES) to the (CA), and the collimating slits (CS). The dual toroidal analyzers (T1 ) are of cylindrical symmetry about
the Z-axis. They are preceded by the entrance annular lenses, L1–L4, and followed by two three-element toroidal lenses,
T2–T4. L4 is the entrance or exit annular slits to the toroids. Electrons ejected in the x–y horizontal plane of collision are
imaged as two half rings on the position sensitive detectors (PSDs) at the top and the bottom, respectively.

as is the case in the reported measurements. The energy windows, WEa;WEb;WEc, were 6xed to
5–15 eV. This is the most serious limitation of these experiments since an eHective coincidence
energy resolution of a few eV would be necessary in order to distinguish between diHerent ion
6nal states. That is, the compromise chosen there was to increase the count rate at the expense
of the 6nal state selectivity of these experiments. There exist now two second generation (e,3e)
apparatuses [120,16,116] whose common main feature is to include multi-detection techniques for
the slow ejected electrons. Only the main characteristics of the Orsay (e,3e) spectrometer [Fig. 4.2]
are brieNy described below. More or less the same philosophy has been used by the Maryland
group in the design of their (e,3e) spectrometer [16], whose two major speci6cities are: (I) the two
ejected electrons are detected on a series of discrete detectors, in an out-of-plane arrangement, so
that many triple-coincidence measurements can be carried out at the same time. (ii) a good momen-
tum resolution is achieved, WK ∼ 0:07 a:u:. Besides these two (e,3e) spectrometers, an (e,2e+ion)
COLTRIMS one is now operational [18], and will be brieNy described. The Orsay apparatus [116]
utilizes a crossed electron-beam gas-beam technique, and is based on the combination of three elec-
trostatic energy analyzers, arranged in a con6guration which is unique for electron impact ionization
experiments. A “single channel” cylindrical analyzer is devoted to the observation of the fast scat-
tered electron under a variable angle,  a. Whereas independent multi-detection of the two ejected
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electrons (eventually with dissimilar energies) is realized in two twins toroidal analyzers. The ejected
electrons emitted into the collision plane are detected over almost the full in-plane angular range by
imaging one half-plane of emitted electrons into one toroidal analyzer, placed above the collision
plane, while the other half-plane of emitted electrons is imaged into the other toroidal analyzer,
which is placed below the collision plane. The detection system associated with each toroid utilizes
the imaging properties of the toroids. It essentially comprises three multichannel plates (MCP) and
a two-dimensional position sensitive resistive anode. One important speci6city of this spectrometer
is that the scattering angle  a is determined to a high accuracy, ±0:02◦, while the acceptance angle
W a is kept reasonably small, ±0:10◦. This results in a high momentum transfer resolution, see
below, WK = ±0:02 a:u: or less. Similarly, the overall uncertainty in the ejection angles determi-
nation is W b;c ¡ ∼ 1◦. An other essential feature of the spectrometer is its excellent long term
stability. This is a crucial requirement for the (e,3e) long run experiments which may last up to
2 months! However, due to this long accumulation time and to a local, rather high non-coincident
count rate on each detector assembly, the data had to be corrected in the oH-line analysis for local
changes in the collection e9ciency of the MCPs (so-called fatigue eHect). The correction typically
amounts to 5–15%, and is determined by daily repeating the measurement of the same (e,2e) angu-
lar distributions, see [5,6]. These complementary (e,2e) experiments and the correction function are
obtained with much better statistics than the (e,3e) ones, due to the larger single ionization cross
sections. The data acquisition system is based on two identical time-to-amplitude converters (TACs),
simultaneously started by the time signal from one detector (usually the a-signal), and, respectively,
stopped by the b- and c-time pulses. Depending on the type of experiments which are performed,
the output signals from the TACs are applied either to a logical OR gate in the case of a “double”
(e,2e) experiment where both binary and recoil lobes are simultaneously measured, or to an AND
gate in the case of an (e,3e) experiment. Therefore, a triple coincidence is registered if and only
if the TACs are both stopped within a given time window arbitrarily set to 300 ns. Two types of
e,(3-1)e experiments may also be performed. In the so-called ab-mode where the angular correlation
between the fast electron and one emitted electron is measured the same experimental con6guration
is used as in the “double” (e,2e) experiments except for the energy balance which is adjusted to meet
the double ionization requirements. In the so-called bc-mode where the angular correlation between
the two “atomic” electrons is measured, the a-analyser channel is simply turned oH, and only one
TAC is needed to perform this quasi-(e,2e) type experiment. The TACs have a dead time of 6–7 �s,
which restricts the imaging count rate in the coincidence mode to ∼ 150 kHz. A more restrictive
limitation is due to the long term local fatigue of the MCPs discussed above which imposes a max-
imum non coincident count rate ¡ 100 kHz on each of the b- and c-channels. However, the count
rate limitation is ultimately governed by the physics of an (e,3e) process. This imposes an optimum
beam current, Iopt, which usually corresponds to single count rates on the MCPs ∼ 50 kHz, and to a
total (true + accidental) triple coincidence count rate ¡ 1−2c=s, which is far below any of the dead
time constraints of the electronics. The latest experimental development has come recently from the
COLTRIMS technique, with the so-called “reaction microscope” [18] developed in Ullrich’s group
and Schmidt–BUocking’s group in Germany. In short, a pre-cooled supersonic He jet intersects the
electron beam at the collision centre. Ions and low-energy electrons produced in ionizing collisions
are extracted to opposite directions by a uniform electric 6eld, applied along the primary beam, and
are detected by two position sensitive multichannel plates. An additional solenoidal magnetic 6eld
is forcing the slow electrons with non-zero transverse momenta to spiral trajectories. In this way,



J. Berakdar et al. / Physics Reports 374 (2003) 91–164 127

Table 1
Comparison of the merits and performances of the (e,3e) multi-detection spectrometers versus the (e,2e+ion) spectrometer

Conventional (e,3e) COLTRIMS (e,2e+ion)

Angle-multi-detection Angle-multi-detection

Acceptance solid angle
W�
4�

6 7% ¿ 70%

Energy-multi-detection Potentially Yes
Ejected electron-energy range Nominal Eej ± 40% 0¡Eej ¡ 30 eV
Ejected electron-energy maximum No max → EMS max ≈ 30 eV

Measured physical quantity
d5�

dEadEbd�ad�bd�c

d5�
dEadEbd�ad�bd�c

Angular resolution High W a = 0:10◦ W a ≈ 3◦

Momentum transfer resolution High WK = 0:02 a:u: WK = 0:4 a:u:
Ion-recoil momentum resolution High Wkion = 0:1 a:u: Wkion = 0:3 a:u:

All targets Light targets (He, H2)
Complete experiments Single or double ionization Single or double ionization
Less diHerential studies n-fold ionization (n small) ≈ any n-fold ionization
Investigated phase space region Detailed zooms Global view

essentially all ions, and all electrons with energies below roughly 30 eV, are detected on the PSD’s
with a very large solid angle, about 70% of 4�. From the measured times-of-Night and positions
on the detectors, the initial momentum vectors of all particles can be reconstructed. The experiment
measures an ion and two electrons in triple coincidence, but of course it is a quasi-(e,3e) experiment,
as it yields the same information.

4.6. Comparison of merits and performances

It is certainly of interest here to show a brief comparison of the merits and performances of
the (e,3e) “conventional” multi-detection spectrometers versus the (e,2e+ion) spectrometer. Such
comparison is summarized in Table 1. Both methods use angle-multi-detection. Main diHerence
is that the solid angle collected in the COLTRIMS is close to 4� (with some dead zones, see
[121]), whereas it is a factor of 10 or so lower in the conventional (e,3e) case and being limited
to a coplanar geometry in [116], or to a series of discrete out-of-plane measurements in [16].
Besides, the multi-angle detection in conventional (e,3e) necessitates the use of several electron
spectrometers in a complex arrangement, as compared to the more elegant approach in COLTRIMS
where electrons and ions are “guided” to the detectors in a compact design (Fig. 4.3). A high
energy and angular collection e9ciency means measuring at once a large fraction of the phase
space, but this should not be confused with a better quality experiment in terms of statistics. In
both types of spectrometers the data are reduced during the oH-line analysis to “bins” (or single
data points) corresponding to small energy and angle (or momentum) intervals, �Ei and � i. If these
intervals are chosen to be identical in both apparatuses, and assuming as it is the case comparable
incident electron Nux and target gas density, then the number of events per unit time and hence
the statistics would be the same for each group of three coincident bins. The statistics can only be
improved by degrading the resolution per bin, i.e. increasing �Ei and/or � i, as done in the (e,2e+ion)
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Fig. 4.3. A schematic view of the COLTRIMS apparatus as used for the (e,3e) reaction.

experiments, or by accumulating over a longer period as done in the (e,3e) experiments, but with
the additional constraint that a long term stability of the system is needed. On the other hand, the
statistics are essentially limited by the accidental coincidence rate in conventional (e,3e) experiments.
Whereas in COLTRIMS nine momentum components are determined, one more than necessary
to completely 6x the kinematics, and the redundant information obtained is used to discriminate
against and hence reduce the accidental coincidences. COLTRIMS uses energy-multi-detection in
the ejected energy range 0 to 30 eV, whereas such E-multi-detection does potentially exist in the
(e,3e) case within a range of some 30–50% of the nominal ejected energy. However, it has not
so far been used. Due to the presence of the electric and magnetic 6elds, and to the multi-hit
detection technique used, the COLTRIMS is presently limited to ejected electron energies below
∼ 30 eV. No such limitation exists for the (e,3e) where at least in principle any ejected energy
larger than ∼ 1 eV can be measured. For example, the Maryland group has reported results with
50, 100 and 200 eV energies. This is an important issue if one wants to reach the impulsive regime
where electron momentum spectroscopy (EMS) can be performed. Next point is the following:
both methods measure cross sections which are fully (6ve-fold) diHerential in several parameters:
three in-plane and three out-of-plane angles, plus three energies. The resolution for each parameter
determines the quality of the experiment, in particular how much integration is involved in the
data. The high angular resolution achieved in the (e,3e) case, particularly for the scattered electron,
W a = 0:10◦ (together with the high accuracy, ±0:02◦, achieved in the measurement of the actual
scattering angle), result in a high momentum transfer resolution, WK = 0:02 a:u: or less, and a high
ion recoil momentum resolution, Wqr = 0:1 a:u:. These are typical (not ultimate) numbers to be
compared in the (e,2e+ion) case to W a= ∼ 3◦; WK = 0:4 a:u: and Wkion = 0:3 a:u:, respectively,
[18,19]. It should be noted that the COLTRIMS method is generally capable of achieving better
momentum resolution, e.g. in ion–atom collisions or in photoionization studies. The 6gures quoted
here partly result from the necessary degradation of the resolution per bin �Ei and/or � i in order
to improve the statistics in quasi-(e,3e) experiments.

Due to the need of a cold target with a small momentum spread a supersonic gas jet is needed
in the COLTRIMS, so that the technique is limited (at least presently) to light targets such as He
and H2. Whereas no such limitation occurs in the (e,3e) where all targets can be envisaged, and
where apart from He results have also been obtained for Ne, Ar, Kr and Mg. Nevertheless, for
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the fundamental He target the conventional (e,3e) experiments are presently restricted to particular
cases with relatively large cross sections such as the small momentum transfer regime. Finally, as
far as complete experiments involving full determination of the kinematical parameters of all 6nal
state particles are concerned, both techniques are essentially limited to single ionization or double
ionization studies where up to 3 6nal particles need to be detected. In addition, they can both be
extended to investigate higher ionization states but on the expense of measuring less diHerential cross
sections, that is integrating over the parameters of the undetected particles. However, in this respect
these measurements should be easier to perform and less ambiguous in their output when using the
COLTRIMS technique due to the measurement of the ion charge state. To summarize, one may
say that the obvious advantage of the (e,2e+ion) method is to be able to simultaneously measure
all ejected electrons for arbitrary energies below 20–30 eV, for arbitrary emission angles and for a
large range of momentum transfer, hence giving at once a global picture of the double ionization
process over almost the full 6nal state momentum space. Whereas the (e,3e) method concentrates
on a smaller region of the six-dimensional space, but in more details due to the higher momentum
resolution. To give an easy analogy: COLTRIMS is analog to a high-tech camera embarked on a
satellite at high altitude, for instance geostationary, taking a picture of the earth. One sees all of
the Earth, that is one has in principle all the information but with a modest resolution. Whereas
(e,3e) corresponds to the same high-tech camera (the same imaging techniques and the same position
sensitive detectors are used), embarked for instance in a plane at lower altitude: a picture of a smaller
region is taken but looking at much smaller details. Clearly, in several aspects listed above the two
techniques are not competing against each other, they are rather very much complementary.

4.7. Procedure of oD-line data analysis

The long run (e,3e) data, which necessitates long accumulation times (1–8 weeks) are accumulated
in several successive 24h-6les, sequentially separated by shorter test-runs of a well-known process
(usually an outer-shell (e,2e) process). The raw data from these (e,3e) 6les are then concatenated in
a sum-6le, from which the true and accidental coincidence windows to be used in the data analysis
are determined. Finally, the (x; y) images are converted to polar (r;  ) coordinates, and the total
useful angular range subtended by each PSD is divided into sectors or bins whose width � b or � c

de6nes the acceptance angle for each of the data points of an angular distribution. Depending on
the experiment, � b and � c are usually ±1◦ to ±8◦.

4.8. Background coincidences subtraction and percentage statistical error

A typical three-dimensional triple coincidence time spectrum is shown in Fig. 4.4. The x and y
axes of the spectrum are the arrival times of the slow b and c electrons with respect to the fast one.
The peak at the center corresponds to the triple coincidence double ionization signal, superimposed
on a background due to four diHerent contributions [122,123]. One contribution is fully accidental,
where the three electrons ea, eb and ec are uncorrelated, hence a uniform time distribution. The
other three contributions are semi-random as they are due to two correlated electrons, the third one
being random, hence the shape of walls or ridges. Two of them are parallel to the time axes (ea–eb
and ea–ec walls) and the third runs parallel to the diagonal (eb–ec wall). Each wall is widened by
the resolution time of the corresponding double coincidence experiment, Fab, Fac and Fbc. Note that



130 J. Berakdar et al. / Physics Reports 374 (2003) 91–164

Fig. 4.4. The (e,3e) three-dimensional triple coincidence time spectrum for the double ionization of argon. The horizontal
axes correspond to the arrival times tb and tc of the ejected electrons (eb and ec) with respect to the fast one. The peak at
the center corresponds to the triple coincidence signal, superimposed on a uniform (random) background due to three fully
uncorrelated electrons, and on three semi-random background contributions (or walls) due to two correlated electrons, the
third one being random.

each of these walls is also a double ionization signal, which measures the respective e,(3-1)e cross
section, but with a very low e9ciency given by the probability of simultaneously 6nding a third
electron within the 300 ns time interval corresponding to the TACs ramps. Lahmam–Bennani and
coworkers [122,120] gave a detailed analysis on how to subtract the contribution of the walls and
of the uniform background from the total number of counts in the peak. Formulas were derived
which give the number NT of true triple coincidences registered in the peak during the accumulation
time t, and its standard deviation, �T. The ultimate measure of the quality of the experiment is the
percentage statistical uncertainty �T=NT for a given time t. Following the conclusions of Dupr[e et al.
[122], this quantity is minimized by two diHerent actions: (i) minimizing the coincidence resolution
times, Fab, Fac and Fbc, e.g. by accelerating the electrons prior to analysis, which reduces the transit
time spread and hence F; (ii) optimizing the target gas density ng and beam current I . Indeed, in an
(e,3e) experiment, the percentage statistical uncertainty is not a monotonic function of ngI as in the
(e,2e) case (see Fig. 4.3 of Ref. [120]), but 6rst decreases for low ngI values, then passes through a
minimum which determines the optimum choice for ngI , and increases for larger values. This is the
consequence of the additional presence of the uniform background due to three fully uncorrelated
electrons, which introduces a quadratic term in the �T=NT dependence over ngI . The existence of this
minimum strongly limits the operating conditions. In the (e,3e) experiments reported so far, it was
necessary to operate at rather low ngI values (I=1–50 nA) to allow the coincidence signal to emerge
from the accidental background. The corresponding drastic reduction in signal was compensated by
a degradation of the angular and energy resolutions whose eHect is to increase the signal without
aHecting the signal to background ratio.
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4.9. EDective coincidence energy resolution

The inNuence on the data of the energy resolution was investigated by Lahmam–Bennani et al.
[118] for the (e,2e) case and generalized by Dupr[e et al. [122] for the (e,3e) case. In the latter, the
observed coincidence rate, f5, per unit time may be expressed as

f5 = �5i(GaW�a)(GbW�b)(GcW�c)WE5 ; (4.7)

where �5 refers to the 6ve-fold diHerential cross section, W�6 is the acceptance solid angle for
analyser 6 (6 = a; b or c), j6 is the overall detection e9ciency and i = ( lng I=e) where l is the
length of the collision volume. Assuming Gaussian shapes for each analyzer’s individual energy
transmission function, the (e,3e) eHective coincidence energy resolution (ECER), WE5, was shown
to be given by

WE5 =
WEaWEbWEc√

WE2
a +WE2

b +WE2
c

: (4.8)

It is important to note here that this (e,3e) “energy” resolution in fact has the dimension of an
energy squared, as it is also obvious from equation Eq. (4.7). Physically, this can be understood as
follows: One may consider that one “energy-dimension” represents the deviation from its nominal
value of the energy loss, E0 − Ea, suHered by the incident electron, or alternatively of the excess
kinetic energy, Eb + Ec, left to the two “atomic” electrons. The second one would then represent
diHerent possible partitionings of this kinetic energy. As an example, an eHective energy resolution
WE5 = 16 eV2 may be interpreted as being due to a sum (Eb + Ec) known to within 4 eV, and a
partitioning Eb versus Ec known to within another 4 eV. In the case where WEa is much larger than
WEb and WEc, Eq. (4.8) reduces to WEa ∼ WEbWEc, which is basically independent of WEa.
The (e,3-1e) case is essentially an (e,3e) experiment where one energy transmission function,

say c, is in6nitely wide. Setting WEc → ∞ one obtains WE4 = WEaWEb. Obviously, any triple
coincidence (e,3e) experiment has a better ECER, WE5, than the corresponding WE4 of a double
coincidence (e,3-1e) experiment which uses the same WEa and WEb.

4.10. Absolute scale determination

Most of the (e,3e) experiments reported by Lahmam–Bennani’s group at several keV impact en-
ergy have been assigned an absolute scale for the cross sections, with an accuracy of about 10%
to 30%. This is a very important issue in comparison with theory. Indeed, data obtained only on a
relative scale cannot distinguish between diHerent theoretical models which predict about the same
shape for the angular distributions but might diHer in intensity by very large factors, e.g. see [36].
Part of the sensitivity of the (e,3e) angular distributions to the electron correlations would then be
lost. Therefore, before discussing the results, we brieNy present the method of absolute scale de-
termination. This method [2,5] relies on Eq. (4.7), and requires knowledge of all quantities therein
appearing. Of these, only f5 and I are directly measurable. The other quantities can, however,
be determined as follows, using known double diHerential cross sections (DDCS), or alternatively
elastic cross sections (ECS), and known (e,2e) triple diHerential cross sections (TDCS) for single
ionization, all measured under the same experimental conditions (i.e. beam current, target density, an-
alyzers settings: detected electrons energies, e9ciencies, solid angles, ...) as in the (e,3e) experiments.
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We illustrate this point on the simple case of a He target. First, the product (ja W�a) is determined
by measuring the DDCS, noted �a, given by

fa = �ai(W�a)WEa ; (4.9)

where fa is the a-analyzer single count-rate. WEa is determined from the width of the elastic
peak, while the DDCS �a is obtained for instance from tabulated Compton pro6les [124]. Then, the
quantities (jbW�b) and (jcW�c) are determined by measuring (e,2e) TDCS’s for He and comparing
them with 6rst-Born theoretical TDCS’s, such as the orthogonalized Coulomb wave (OCW) model or
the convergent close coupling (CCC) model, which have been widely proved to very well reproduce
the measured TDCS in the keV regime, at least for He on the binary lobe (see e.g. [100,125],
respectively). Finally, the eHective coincidence energy resolution, WE5, as de6ned in Eq. (4.8), is
straightforwardly obtained from the measurement of the individual resolutions, WEa, WEb and WEc.

5. Comparative analysis of the experimental and the numerical results: Helium

The analysis and comparison of the experimental and theoretical cross sections is done in two
steps. At 6rst, we focus on fully resolved cross sections and analyse the experimental and theoretical
results as to reveal the underlying mechanisms of the electron-impact double ionization. In the next
step we consider integrated cross sections and point out which information can be extracted from
these quantities. In most cases we consider a helium atom as a target. This target is of a special
interest since the residual ion in the 6nal state has no relevant structure, as far as (e,3e) is considered.
Hence in the 6nal channel a “pure” four-body problem is achieved (which is reduced to a three-body
one in the perturbative regime).

5.1. Fully resolved cross sections for the electron-impact double ionization

Over the last decade a number of experimental and theoretical studies on (e,3e) from He(1Se) have
been conducted. For the analysis and the understanding of the complicated structure of the results of
these studies it is imperative to single out the features in the cross sections which are purely related
to the symmetry of either the initial bound state or/and to the properties of the transition operator.

5.1.1. Selection rules for the (e,3e) in the perturbative regime
Most of the (e,3e) experiments have been performed within the perturbative regime (whose range

has been speci6ed in Section 2.3). In this case the problem is reduced to the description of a
correlated three-body system (the two slow electrons and the residual ion) and a uniform motion of
the scattered projectile. The symmetry properties of the correlated three-body function  −

kb;kc
(rb; rc)

follow directly from the symmetry features of the SchrUodinger equation (3.1), e.g.

 −
kb;kc

(rb; rc) =  −
kc;kb

(rc; rb) ; (5.1)

 −
kb;kc

(rb; rc) =  −
−kb;−kc

(−rb;−rc) : (5.2)

Furthermore, since the He ground state is a singlet, its spatial wave function has to be invariant
under exchange of the two electrons. The FBA transition operator (i.e. the operator exp(iK · rb) +
exp(iK ·rc)−2 occurring in Eqs. (2.48)–(2.50)) is also symmetric under exchange of the two ejected
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electrons. Therefore, the three-body 6nal state has to satisfy

 −
kb;kc

(rb; rc) =  −
kb;kc

(rc; rb) =  −
kc;kb

(rb; rc) : (5.3)

From the symmetry relations (5.1)–(5.3) one can derive [35] several selection rules that are inde-
pendent of the approximations made to arrive at an approximate expression for the wave function
 −
kb;kc

(rb; rc) or/and for the transition matrix elements. For a formal derivation of these rules we
assume that the three-body initial and the 6nal-state wave functions ’(ra; rb) and  −

ka;kb
(ra; rb) are

known exact. In the perturbative regime the total transition matrix elements Tf i can be written as
(cf. Eqs. (2.48)–(2.50))

Tf i˙ 〈 −
kb;kc

(rb; rc)|cos(K · rb) + cos(K · rc)|’(rb; rc)〉
+ i〈 −

kb;kc
(rb; rc)|sin(K · rb) + sin(K · rc)|’(rb; rc)〉 : (5.4)

From the structure of this equation for the transition amplitude we deduce that the following minima
should appear in the cross sections:

(a) In the case kb = −kc the exact wave function  −
kb;kc

(rb; rc) has an even parity as can be seen
immediately from Eq. (5.3) and (5.1) when rewriting  −

kb;kc
(rb; rc) in the form

 −
kb;kc

(rb; rc) =
1
2
[ −

kb;kc
(rb; rc) +  −

−kc;−kb
(−rb;−rc)] ⇒

 −
kb;−kb

(rb; rc) =
1
2
[ −

kb;−kb
(rb; rc) +  −

kb;−kb
(−rb;−rc)] =  −

kb;−kb
(−rb;−rc) : (5.5)

Therefore, the second term in Eq. (5.4) vanishes for kc =−kb and the 6rst non-vanishing term
in Eq. (5.4) is proportional to K2. Only terms proportional to K2n and n= integer do contribute
to the measured cross sections. Hence, for a 6xed kb and a small but 6xed momentum transfer
K a minimum occurs at kc = −kb in the cross section when it is considered as a function of
kc. The same applies when the role of the two ejected electrons is interchanged.

(b) In the case of very high energies of the ejected electrons the position vectors of the ionized
electrons rc; rb are almost in the directions kc; kb. In this situation and for a 6xed K a zero
point in the angular distribution of ejected electrons is observed whenever kc ⊥ K and kb ⊥ K.
In general, this zero point turns into a minimum at moderate energies.

(c) The momentum distribution of the ionized electrons possesses a zero point at kc = kb due to
the electron–electron repulsion.

(d) In addition, a minimum appears if (kb + kc) ⊥ K since the optical transition is forbidden in
this case (cf. Refs. [126,101] and references therein).

All the minima listed above turn to zero points for optical transitions [126–128,101].

5.1.2. Numerical and experimental results
To contrast the positions of the minima predicted by the symmetry analysis with the experimental

6ndings we scan the angular distributions of one of the electrons say electron b while the other
ejected electron is detected under a 6xed angle  c (cf. Fig. 4.1).
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Fig. 5.1. The measured and calculated absolute (e,3e) 6vefold diHerential cross section for helium. The scattering angle
of the fast electron is 6xed  a = +0:45◦. The incident energy is 5:6 keV. The ejected electrons are detected with equal
energies Eb = Ec =10 eV. The angular distribution of one of the electrons (electron b) is scanned while the other ejected
electron is detected under a 6xed angle  c. The angle  c is indicated on the 6gures. The arrows labeled a; c; d mark the
angular positions of, respectively, the minima (a); (c); (d) as speci6ed in the text. The geometrical arrangement for the
minimum (d) is illustrated in (u). The normal to K is denoted by N. The momentum transfer vector K is indicated. Using
in the calculations the wave functions Eq. (3.39) and (5.6) lead to the results shown as solid curves. The dotted curves
represent the cross sections in the optical limit (2.52). The solid and dotted curves have been scaled down by a factor
10 for comparison. The dashed curve is the result for the (e,3e) cross section when employing (3.39) and a Slater-type
initial state to evaluate the cross sections.

The positions of the minima listed above are indicated by arrows labeled a; b; c; d corresponding
to the minima (a)–(d).

As clear from Eqs. (2.48)–(2.50), a representation of the (singlet) ground state of the helium
atom is required. For this purpose we employ a Hylleraas-type wave function of the form

’(rb; rc) ≈ N{exp[− Ccrc − Cbrb] + exp[− Cbrc − Ccrb]}exp[Ccb|rc − rb|] ; (5.6)

where N is a normalization factor and Cc; Cb and Ccb are positive real numbers used to minimize the
binding energy of He(1Se). If we set Cc ≡ Cb and Ccb ≡ 0 we retrieve a Slater-type wave function.
For the results depicted in Figs. 5.1(a)–(t) we used the C4FS model, as described in Section 3.3.3.

The general trends and shapes of the angular distributions are reproduced satisfactorily by the
theory. DiHerent representations of the initial state do not aHect the angular shape, however, the
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magnitudes of the cross sections are strongly dependent on the initial state description. Furthermore,
we observe substantial diHerences in absolute values of the theoretical and experimental cross sec-
tions. Similar behavior has also been noted for the case of one photon two-electron ionization [cf.
Ref. [101] and references therein]. One of the underlying reason for this trend is that the selection
rules introduced above are applicable to any treatment of the process, regardless of the approxima-
tions employed for the description of the scattering dynamics. On the other hand, these selection
rules determines the basic pattern of the electrons’ angular correlation (cf. discussion below), but
they do not inNuence the over-all magnitude of the cross sections.

It is worthwhile to remark that the (e,3e) cross sections shown in Figs. 5.1(f)–(t) reveal some
deviations from the optical limit, i.e. from the theoretical calculations with only the 6rst term in
Eq. (2.52). Generally however the optical limit seems to be reached in this geometry (and within the
present model). The deviations from the optical limits have two generic sources: (1) Considerable
contributions from higher mulipoles in the Born amplitude (i.e., multipoles other than the leading
order dipolar term). These contributions are usually called the non-dipolar contributions; or (2)
contributions from higher terms in the Born series which do not connect to optical transitions.

To analyze in detail the origin of the features in the cross sections as  c is changed from the
situations in Fig. 5.1(a) to that of Fig. 5.1(t), we recall the angular positions of the minima a; b; c; d
(these are zero points for photon impact):

(a) kb cos  b =−kc cos  c,
(b) k0 cos  b − kak̂a · k̂b = 0 and k0 cos  c − kak̂a · k̂c = 0,
(c) kc cos  c = kb cos  b,
(d) kb(k0 cos  b − kak̂a · k̂b) =−kc(k0 cos  c − kak̂a · k̂c).

The angular position of the minimum (d) seems complicated and therefore we included in Fig. 5.1(u)
as schematic illustration. We note that in our present case we choose Eb = Ec. Thus, the vectors
kb and kc have to be positioned symmetrically with respect to an axis normal to K̂ (axis N in
Fig. 5.1(u)).
In Figs. 5.1(a)–(t) we indicated by arrows the positions of the minima predicted above

(the label on the arrow correspond to the number of the minimum). Following the behavior of the
cross sections as the positions of the minima (a)–(d) vary, it become clear that these minima
are the determining factor of the shape of the electrons’ angular correlations. [exemption are no-
ticed when the (e,3e) cross sections diHer substantially from the photo-ionization cross sections
(cf. Figs. 5.1(f)–(t))]. The characteristic two-lobe structure is due to the fact that when Eb = Ec

the photo-ionization cross sections has the symmetry features: (i) For k̂c = ±K̂ (i.e. for  c ≈ 139◦
and for  c = 319◦), the angular distribution, as depicted in Figs. 5.1(a)–(t) must be cylindrically
symmetric with respect to K̂. This is the case in Figs. 5.1(i),(s). (ii) For K̂ · k̂c=0, (i.e. for  c ≈ 49o

and for  c ≈ 229◦) the angular distribution of electron b possess reNection symmetry with respect to
an axis normal to K̂ (this is due to the fact that the polarization vector for linearly polarized photon
enters bi-linearly in the photo-ionization cross section, i.e. it de6nes an axis rather than a vector).
This condition is approximately reached in Figs. 5.1(b), (c), (l), (m).
Thus, combining these symmetry properties and the positions of the minima imposed by the

symmetry selection rules (a)–(d) we conclude that the angular distributions can have an angular
pattern with three lobes. The three-lobe case is clearly observed in Fig. 5.1(q).
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Above we argued that the two lobes in Figs. 5.1(i),(s) and Figs. 5.1(b), (c), (m), (l) have to be
of approximately the same magnitudes due to the requirements (i) and (ii). The diminishing size
of the lobe located around  b ¿ 300◦ in the intermediate cases depicted in Figs. 5.1(c)–(h) occurs
because the minimum (d) passes through this lobe. Same observations and interpretations apply to
Figs. 5.1(j)–(t). The seemingly complicated behavior of the ratio of the magnitudes of the two
dominant lobes in Figs. 5.1 can be fully explained by tracing the position of the minimum (d) as
 c varies.

While the overall structure of the angular correlation can be explained by the rules (a)–(d)
which are most eHective in the regime of the optical limit, a more detailed analysis, in particular of
Figs. 5.1(f)–(t), reveals considerable deviations from the anticipations made on the basis of the rules
(a)–(d). E.g. the minima (a; d) are not present in the (e,3e) cross sections. These deviations seem to
be supported by the experimental results. As mentioned above deviations of this kind may arise due
to the contributions of higher-order multipoles in expansion (2.52) or from second or higher-order
terms in the Born series contribution. The former contributions are distinguishable from the latter in
that all FBA terms (dipolar and non-dipolar) have to show the typical FBA cylindrical symmetry
with respect to K. The calculations depicted in Figs. 5.1 show the FBA cylindrical symmetry so
that the deviations of the (e,3e) cross sections from the optical cross sections can be assigned to
higher-order multipoles in the FBA transition amplitudes. For a 6xed K (as is the case for Fig. 5.1)
the contributions of these multipoles to (2.52) depend not only on K but also dynamically on kb

and kc. This is the reason why, for a 6xed K , approaching the optical limit is very much dependent
on the geometrical arrangement of kb and kc. Clearly, with diminishing K the contributions of the
higher order multipoles are suppressed.

So far we discussed the occurrence of minima in the (e,3e) cross sections. Naturally the region
between two minima will be a maximum. Apart from this obvious statement one can expect the
appearance of peaks in the cross section from some general arguments. In Section 2.2 we discussed
a possible way to do that by pointing out that peaks should appear in the cross sections due to a
certain sequence of double ionization processes. The footprints of these mechanisms will be unrav-
elled below by analyzing further experimental and theoretical data. Another idea [35] to determine
the positions of peaks in the (e,3e) cross section is based on an analogy to single ionization cross
section [(e,2e)]: For the (e,2e) reaction and in the region of validity of the FBA one expects a
dominant peak when the projectile knocks out directly the bound electrons. This peak is called the
binary peak [65] and it appears at the direction of the momentum transfer vector K. The binary peak
is associated with a minimal momentum transfer to the ion. A further peak, called the recoil peak,
occurs in the opposite direction to the K. For the (e,3e) reaction one imposes thus the condition
that the recoil momentum of the ion should be minimal and determines thus the positions of the
momentum vectors of the two ejected electrons. This has been done in Ref. [35]. It turned out that
the positions of the “binary” peak are located on a sphere, the so-called the Bethe sphere Ref. [35].
It should be stressed that the determination of the (e,3e) binary peak does not imply any speci6c
mechanisms for the (e,3e) process (except for the energy and momentum conservation laws). In fact
various double ionization pathways may occur on the Bethe sphere, as explicitly demonstrated in
Ref. [35].

For the case of Fig. 5.1 it has been shown in Ref. [3] that the (e,3e) cross section near the
Bethe-sphere (where a peak is expected) is suppressed by the minima a − d which seems to have
higher priority than the Bethe-sphere maxima. However, if those restrictive minima are released, for
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reasons of geometry and/or not approaching the optical limit, the maxima due to the Bethe-sphere
condition show up.

Further evidence for the existence of the selection rules (a)–(d) and for the appearance of peak
structures associated with double ionization mechanisms comes from recent COLTRIMS experiments
[18–20]. In these experiments the fast projectile electron has an energy E0=2 keV and the two ejected
electrons escape with low 6nal state kinetic energies (Eb; Ec ¡ 30 eV). Thus one may expect the FBA
to be valid and exchange processes between the projectile electron and the slow electrons can be
neglected. The cross sections are presented in the angle scanning mode: For a given momentum
transfer and for 6xed energies of the ejected electrons the cross section is plotted as a function
of the ejected electrons emission angles. This allows a direct comparison with data presented in
Fig. 5.1. Here we would like however to exploit the strength of COLTRIMS in giving a global
view on the cross sections in order to highlight the dominant double ionization mechanisms. The
momentum transfer is fairly large K = 2 ± 0:4 a:u:, i.e. we are far oH the optical limit. While the
validity of the FBA and the optical limit may be questioned in this regime, the double ionization
mechanisms as discussed in Section 2.2.1 are still valid (this is no more the case when E0 is
comparable to the double ionization energy). For the experiment discussed here the relevant reaction
mechanisms and the corresponding matrix elements are: the shake-oH (SO), the two-step 1 (TS1)
and the two-step 2 (TS2) processes. We recall that in the shake-oH process only one target electron
acquires its momentum upon a direct ionizing collision with the projectile and is emitted into the
direction of K . The second (slow) electron is “shaken” into the continuum, i.e. it is emitted due
to the subsequent relaxation of the singly charged ionic core. The emission characteristic of this
low-energy electron is intimately related to the spatial distribution of the electronic charge from
which it is shaken oH, for He it is isotropic, i.e. in this case the electron should not be emitted into
a particular direction. Its energetic position is as well determined by the initial momentum distribution
(Compton pro6le) which sets a limit on the momentum of the shake-oH electrons. The recoiling ion
balances the momentum of the shake-oH electron [cf. Eq. (2.1)]. As discussed in Section 2.2.1 the
TS1 process means that the incident electron scatters from one target electron that in turn, on its
way out into the vacuum, collides from the second electron leaving the atom target doubly ionized
(cf. Fig. 2.2). From this picture it is clear the residual ion should have a small recoil momentum. As
shown in (cf. Fig. 2.2), if the two electrons as are fast they escape upon a TS1 process perpendicular
to each others. As pointed out in Section 2.2.1, both processes (SO) and (TS1) are of a 6rst order in
the projectile-target interaction and possess hence the typical FBA axial symmetry with respect to K .
In contrast, the TS2 is a second order scattering process in which the projectile interacts and ejects
into the continuum the two target electrons sequentially (cf. Fig. 2.1). A signature of a second- or
higher-order processes is a break of the FBA axial symmetry of the cross section with respect to K .
We recall however the statement of Section 2.2.1 that the double ionization mechanisms have their
origin in quantum mechanical transition amplitudes which may interfere if they have an appreciable
contribution and are of roughly the same order in magnitudes. In addition, the positions for the
appearance of the peaks have been determined purely on the ground of kinematical considerations.
Dynamical aspects, such as 6nal-state interactions have not been taken into account and may well
lead to serious modi6cation of the cross sections. These precautions are valid in the low velocity
regime of the continuum particles and become less important for swift electrons.

At 6rst we discuss the (e,3e) COLTRIMS cross sections in the coplanar scattering geometry as
illustrated in Fig. 4.1, i.e. when both target electrons are ejected in the scattering plane de6ned by the
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Fig. 5.2. Fivefold diHerential cross sections (FDCS) for the (e,3e) reaction using a He target. The incident energy is
E0 = 2 keV. The momentum transfer vector K (K =2 a:u:) is marked by an arrow and by the solid circle in the diagram.
The experiment is performed in the coplanar scattering geometry see 4.1. The dashed lines on the 6gures mark the
angular combinations for which the relative electron emission angle is | b −  c| = 180◦ and dotted linesmark relative
angles | b −  c| = 90◦. The angular range inside the solid circular lines is not aHected by the detector dead time. (a)
Shows the experimental cross section for Eb = Ec = 5 eV whereas in (b) Eb = Ec = 20 eV.

incoming and scattered projectile. In Fig. 5.2(a) the data for equal-energy electrons (Eb=Ec=5 eV)
are shown in a density plot representations of the cross sections in a substantial angular range of
 b and  c. The angular range is limited by the electron detectors dead-time. The region which is
not aHected by this limitation is marked to be inside the circular solid line. The cross sections in
Fig. 5.2(a) reveal four maxima: The two in the lower right part have to be equivalent to those in
the upper left part. This is because for Eb = Ec an interchange of  b =  c means an interchange
of the two electrons and therefore such an operation should leave the cross sections invariant. For
photo-double ionization (C; 2e) one observes the same structure of four-maxima in the cross sections
however the minima between these maxima turn into regions of vanishing intensity. The origin
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of these structures lies in the rules (a)–(d), as discussed above. As explained previously, for the
(C; 2e) reaction all four peaks must have the same shape and the same magnitude, since the linear
polarization vector de6nes only an axis but no direction. The positions of these peaks correspond to
both electrons being ejected at ∼ 60◦ with respect to the direction of the polarization vector. The
electron–electron relative angle is | b −  c| ≈ 120◦. As discussed above, in the case of (e,3e) there
is no forward–backward symmetry with respect to K and hence the four “hills” need not be of the
same height and shape [as for (C; 2e)].

When the momentum transfer becomes considerable (K =2 a:u: here) a diHerent emission pattern
emerged: The cross section maximum [marked (B) in Fig. 5.2] correspond to a con6guration where
one electron is emitted roughly along K whereas the second electron is emitted along −K, i.e. the
two slow electrons recede from the residual ion in back-to-back con6guration [18–20].

The two other peaks marked (A) have a lower magnitude and correspond to a situation where
both electrons are enclosing ∼ 60◦ with the momentum transfer direction K and having a relative
angle of | b −  c| ≈ 120◦. This basic angular shape is retained for diHerent energies of the electrons
but the relative intensities of the peaks are strongly dependent on Eb and Ec: If Eb = Ec = 20 eV
(Fig. 5.2(b)) the back-to-back emission [peaks (B)] becomes relatively unimportant compared to
emission of both target electrons into the half-plane of the momentum transfer [peaks (A)].

Fig. 5.3 shows the theoretical cross sections evaluated within the CCC method that has been
discussed in Section 3.2.2. The interaction of the fast projectile with the target is described within
the FBA while the interaction of the slow ejected electrons is treated non-perturbatively. The helium
ground state is described by a 20 parameters Hylleraas wave function. The calculations describe well
the experimental 6ndings with regard to the observed cross section patterns and the evolution of the
relative peak intensities is also correctly predicted. The absolute magnitudes of the cross sections are
not determined experimentally. However, in Figs. 5.2, 5.3 one observe some deviations of the theory
from the experimental data: the positions of the calculated peaks (B) are shifted with respect to what
is found experimentally. The CCC results which are performed within the FBA and therefore possess
a complete axial symmetry with respect to the momentum transfer direction K. That is the reason for
the invariance of the CCC cross sections under reNection of both electrons’ momentum vectors with
respect to K . In the experiments however [Figs. 5.2] this FBA axial symmetry is broken: according
to FBA symmetry the peak (B) has to appear when one electron is emitted along K and the other is
ejected along −K. Experimentally one observes a shift along the dashed diagonal line of this peak’s
position to smaller angles. As pointed out in the preceding discussion a description of such eHects
requires the calculations of higher-order terms in the Born series.

The origin of the peaks (A) can be attributed to the TS1 process [18–20]. This is concluded from
the observation that the relative electrons’ emission angles is ∼ 90◦ and from the fact that the recoil
ion momentum is small [cf. Fig. 2.2].

In Fig. 5.4 (e,3e) COLTRIMS results are displayed for a diHerent kind of scattering geometry,
namely for a non-coplanar scattering geometry: As schematically shown in Fig. 5.4 in the experiment
one electron is detected under 45◦ above the scattering plane (Hb=45◦) and the second emerges 45◦
below the scattering plane (Hb = 135◦). The electrons’ energies are Eb = Ec = 20 eV [18–20]. Also
shown in Fig. 5.4 are the theoretical CCC results which agree well with the experimental 6ndings.
For the case of Fig. 5.4 the electrons momentum sum vector kb + kc is always in the scattering
plane and lies parallel to K, if K is in the plane spanned by kb and kc. This is the case along
the dashed line in Figs. 5.4 where the two binary peaks in the cross sections are observed. The
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Fig. 5.3. The calculated FDCS for the same conditions as in Fig. 5.2 using the convergent close-coupling method (CCC)
for the treatment of the interaction of the slow ejected electrons non-perturbatively while the projectile electron moves
freely in the initial and 6nal state. The experimentally accessible angular range is indicated and lies within the solid
circular lines. (a) Shows the theoretical results for Eb = Ec = 5 eV and in (b) the (e,3e) theoretical cross sections for
Eb = Ec = 20 eV are depicted.

recoil ion momentum kion is minimal if  b =  c =  q [cf. scattering geometry depicted in Fig. 5.4].
Unfortunately, this angular region is not accessible experimentally due to detector dead-time but the
theory indicates a substantial cross section there (position is marked by a dot) as a consequence of
the reduced repulsion of the slow-electrons (compared to the coplanar geometry).

5.1.3. Beyond the Erst-Born approximation
In our discussion of the (e,3e) theoretical and experimental results we assigned certain discrep-

ancies between theory and experiments to the contributions of terms beyond the 6rst-order Born
approximation. Theories that account for such terms have been reported only recently [86,40,84].
Likewise, experiments that are exclusively devoted to such features are very recent [10]. One of the
non-perturbative methods is the Green-function approach that has been sketched in Section 3.3.4.
Signatures of the non-FBA terms are the break of the axial symmetry with respect to K. In addition,
within the FBA the cross section does not depend on the charge of the projectile. Therefore, we
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Fig. 5.4. The 6vefold diHerential cross section for the out-of-plane geometry as shown schematically in the upper drawing.
In (a) the experimental results are shown for a momentum transfer K = 2 ± 0:4 a:u: and the electrons’ energies are
Eb = Ec = 20 eV. In (b) the results of the CCC theory are depicted. The dashed lines mark angular combinations for
which the electron momentum sum is parallel to the momentum transfer direction.

consider in Figs. 5.5 the results for the electron and the positron impact double ionization of an
atomic helium target in the ground state along with the experimental data [3] and a full numerical
evaluation of the 6rst Born term within a convergent close coupling (CCC) method [36] (cf. Section
3.2.2). The FBA corresponds to one term in the GF expansion Eq. (3.47) where the (uniform)
projectile motion is decoupled from the rest of the system. The GF results show clear diHerence
between using positrons or electrons as a projectiles (the FBA results are insensitive to the projectile
charge). Above we explained at length the origin of the main peaks in the FBA spectrum. Thus
let us focus our attention on the additional structures predicted by the GF theory. From the level
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Fig. 5.5. The fully resolved double ionization cross section (FDCS) of He(1Se) following electron (solid lines) or positron
(dotted line) impact. The scattering geometry is shown by the inset in (d). k0 and ka are the initial and 6nal state momenta
of the projectile while kc and kb refer to the momenta of the two ejected electrons. The incident energy is 5:6 keV and
k2c =2 = k2b =2 = 10 eV. All angles are measured with respect to k̂0. The projectile is scattered through an angle of 0:45◦.
The emission angle  c of one of he electron is 6xed at the value indicated on the 6gures while the cross section is
scanned as function of the emission angle  b of the second electron. The thick solid (dotted) line is the result of the
present model for electron (positron impact) whereas the light solid curve is the outcome of the CCC method within the
6rst Born approximation [36]. The data (full square [3]) are on absolute scale. In (g)–(j) the ejected electron energies
are varied to Ec = Eb = 4:5 eV. In this case [i.e. for (g)–(j)] the experimental FDCS are relative.

of agreement between the FBA and the GF calculations shown in Figs. 5.5 we infer that the 6rst
Born limit is approached diHerently depending on the emission angles and energies of the ejected
electrons. The GF theory predicts additional subsidiary peaks in the spectrum shown in Figs. 5.5
which seems to be absent in the FBA (CCC) results (cf. also Refs. [3,36]). The cause of these
peaks can be traced down in the theoretical calculations. It lies in interferences between the various
terms in the sum (3.47) when evaluating the cross sections. It should be noted however that theories
beyond the FBA are still in their infancy, e.g. the GF results shown in Fig. 5.5 have been obtained
within the 6rst iteration of (3.46). The evaluation of higher-order terms have not been done yet.

6. Double ionization of many-electron atoms

6.1. The double ionization of noble gases

The theoretical treatment of the double ionization of the outer shell (np6) of noble gases is a
more di9cult problem than for the case of the ground-state He target. Even within the frozen-core
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approximation one has to deal with a six-electron problem instead of a two active electrons in case of
a helium or magnesium atom target. In a 6rst theoretical attempt [115], Dal Cappello and Le Rouzo
used the model proposed by Tweed [140] to calculate the 5DCS for (e,3e) reactions for noble gases.
This model, called the orthogonalized-Coulomb-wave model takes into account the mutual repulsion
between the two ejected electrons by using adjustable charges [141–143]. However, this theory is
in a gross disagreement with the (C; 2e) experiments of Schwarzkopf et al. [144] on helium. For up
to now, the best model to tackle the double ionization of noble gases seems to be the 3C model
[71]. While the CCC-FBA [145] as discussed above is providing good results, it is unfortunately
limited to the case of a helium target. The 3C model incorporates the 6nal-state correlation by
multiplying the product of two Coulomb waves, representing individual electrons being subject to
the full nuclear potential, by a conNuent hypergeometrical function which accounts for the mutual
repulsion. The Coulomb boundary conditions are exactly satis6ed in the asymptotic region. It is
important to note that the 3C model as discussed here is appropriate for the description of two slow
ejected electrons, while the scattered electron (which is very fast in the experiments) is considered as
a non-interactive particle, and hence is described by a plane wave. But this model is not easy to apply
when we consider orbitals such as 5p or 5d (which are present in an accurate initial wavefunction).
Dal Cappello et al. [146,147] have shown that the repulsive factor (Gamow factor) is often adequate
to describe angular correlation in the 6nal state, particularly for symmetric energy con6guration of
the two slow electrons. This simpli6ed approach, called the approximate 3C model, has been checked
in the case of helium and it has been observed that the angular distributions obtained by using this
approximation and the exact 3C wave function are often the same, the diHerence being mostly in
the amplitude of the 5DCS. The approximate 3C incorporates only the normalization factor (Gamow
factor) of the Coulomb wave corresponding to the interaction of the two slow electrons. Usually,
this procedure renders possible e9cient numerical evaluation of the cross sections. Moreover, it is
possible within this framework to consider the second Born approximation. Within the standard Born
approximation, the 5DCS can be written as (cf. Eq. (4.3))

d5�
d�sd�1d�2dE1dE2

=
4KsK1K2

Ki
|MB1 +MB2|2 ; (6.1)

where d�s; d�1 and d�2 denote, respectively, the elements of solid angle for the scattered and the
two ejected electrons. The energies of the two ejected electrons are E1 and E2: K1=2 are the momenta
of the two slow electrons whereas Ki, Ks are respectively the momenta of the incoming and the
scattered projectile. Here MB1 and MB2 are the matrix elements representing the 6rst and the second
Born approximation, respectively. By using the well-known frozen-core approximation we are able
to reduce the N -electron-target problem to a six-electron-target problem [148]. The matrix element
MB1 is given by

MB1 =
−1
2�

〈 −
f e

iKs:r0 |−6
r0

+
i=6∑
i=1

1
r0i

| ieiKi :r0〉 (6.2)

where  i is the wavefunction of the initial state (np6; n=2; 3; 4 and 5, respectively, for neon, argon,
krypton and xenon) and that of the 6nal state (np4 and the two ejected electrons). Considering low
momentum transfer (as in the experiments of the Orsay group [102,2,5,6,150]) and assuming that
the radial functions used to describe the ion (np4) are the same as the radial functions for electrons
in the initial state of the target (np6) we have been able to reduce this six-electron problem to
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a problem of two active electrons. In this case the matrix element is a linear combination of simple
matrix elements such as

MB1ij =
−2
K2 〈 −

f |eiK:r1 + eiK:r2 − 2|Hi(r1)Hj(r2)〉 ; (6.3)

where H represents the one-electron orbital of the initial wavefunction;

H(r) = Yml(r̂)R(n; G; r) (6.4)

and

R(n; G; r) = [(2n)!]−1=2(2G)n+1=2rn−1 exp(−Gr) : (6.5)

The initial wavefunction of the target used here is that of Hda et al. [148] and has been de6ned by Dal
Cappello et al. [151]. It is a correlated wave function calculated by superposition of con6gurations.
The 6nal-state wavefunction  −

f is the approximate 3C model. If we consider that the shake-oH
mechanism and the TS1 mechanism are included in the 6rst Born approximation [62,152], the second
Born approximation is necessary in order to include the contribution of the TS2 mechanism [45].
This last mechanism consists to take into account the interactions between the incoming (projectile)
electron and the target. The MB2 term will be given by

MB2ij =
−2
�2

∫
dk〈 −

f |eiKa:r1 + eiKa:r2 − 2|eiKb:r1 + eiKb:r2 − 2|Hi(r1)Hj(r2)〉
K2

aK
2
b (K

2
i − k2 − 2In)

; (6.6)

where Ka = Ki − k and Kb = k − Ks.
Here the closure approximation is used instead of adding all the intermediate states of the target

[45,40], and the term In is treated as a parameter. Because the incident energy is high the value of
MB2ij does not depend strongly on the parameter In. It is important to note that the MB2ij term is
the one responsible for the broken symmetry around the momentum transfer. A further possibility
would be to use an exact 3C which will treat the three 6nal state electrons on equal footing, or to
use the many-body Green function theory [86], but the calculations become very tedious in the case
of the double ionization of noble gases. The term MB2ij nevertheless needs a great amount of care
[84] since the integrand is singular when

K2
a = 0 (6.7)

or

K2
b = 0 (6.8)

or

k2 = K2
i − 2In : (6.9)

The measurements of Lahmam-Bennani et al. [102,2,5,6,150] have been obtained in a coplanar
con6guration (all vectors Ki; Ks; K1 and K2 lie in the same plane) at small scattering angles, high
incident energies (keV) and small ejected electrons energies (10–60 eV). Due to the very low (e,3e)
cross sections, the experiments were performed with modest energy resolution which did not allow
to distinguish the 3P; 1D and 1S states of the residual ion.

In such coplanar case, the scattering plane contains the vectors Ki and Ks. These vectors can be
characterized by an azimuthal angle ’s = 0. The other azimuthal angles ’1 and ’2 can take values
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Fig. 6.1. The FDCSs (6vefold diHerential cross sections) in atomic units for the double ionization of krypton. The
scattered electron energy is 5500 eV and the scattering angle is −1◦. The ejection energies of the 6rst and the second
ejected electrons are, respectively, 15 and 15 eV (a), 45 and 45 eV (b), 30 and 60 eV (c), and 60 and 60 eV (d). The
6rst-ejected-electron angles are 105◦. The curves are the 6rst-Born, approximate 3C calculations: solid line: 1S ion state;
dotted line 3P ion state; dashed line 1D ion state; dash-dotted line 1S + 3P + 1D ion state. Experimental data with error
bars are from Ref. [2]. The arrow indicates the direction of the 6rst ejected electron. The theoretical results are multiplied
by a factor of 1.3 (b), 0.5 (c) and 12.5 (d).

either 0 or �, while the polar angles  1 and  2 vary between 0◦ and 360◦ (by convention angles are
positive in the anti-clockwise direction).

6.1.1. Krypton measurements
This 6rst set of experimental results [2] (obtained at a scattering angle of 1◦ and a scattered

electron energy of 5500 eV) is compared in Fig. 6.1 [40] with the 6rst-Born, approximate 3C model
by Dal Cappello and co-workers [40,148]. The agreement is reasonable for all ejected electrons
energy values (between 15 and 60 eV). In particular, the shape of the experimental distributions
is generally well reproduced by the theory. However, the approximate 3C model is not able to
reproduce the correct magnitude of the cross sections (the theoretical results have been multiplied
by a factor varying between 0.5 and 12.5). Note that the contributions of the 3P 6nal ion state are
found to be dominant over those of the other states.
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Fig. 6.2. The FDCSs (6vefold diHerential cross sections) for the double ionization of neon. The electron energies of the
incoming, the 6rst and the second ejected electrons are respectively 5500, 10, and 10 eV. The scattering angle is 0:45◦.
The solid line is the 6rst-Born, approximate 3C calculations corresponding to the 1S + 3P + 1D ion state. Experimental
data with error bars are from Ref. [6]. The direction of the momentum transfer is indicated by the arrow. The horizontal
axis represents the incident direction. The 6xed electron direction corresponds to (a) the momentum transfer direction, or
(b) to its opposite. The theoretical results are divided by 8 in (a) and by 2.7 in (b).

6.1.2. Neon measurements
The second set of experimental results was obtained using comparable energies (5500 eV for the

scattered electron and 10 eV for each ejected electron) [6] but with a lower value for the scattering
angle (0:45◦). The aim of these experiments has been to test for the presence or absence of the
two-step mechanism. Dal Cappello and Le Rouzo [34] and Dal Cappello et al. [151] have shown
that, within the 6rst Born approximation, the direction of the momentum transfer is a symmetry axis
for the diHerential cross sections when one electron is ejected along this direction. If this symmetry
is destroyed it means that the two-step mechanism is present (or that the second or higher order Born
approximation is not negligible). The Fig. 6.2 [6] shows that the symmetry is eHectively broken.
However, unpublished calculations by Dal Cappello et al. show that the second Born approximation
with use of the closure approximation gives a negligible contribution under the present experimental
conditions. This disagreement may be due to the closure approximation itself, because Marchalant
et al. [154] have shown that for the same scattered electron energy the second Born approximation
is important in the process of simultaneous ionization-excitation of a helium target. We also note
that the neon target is a particular case because the most probable 6nal ion-state is 1D [155] instead
of 3P for the other noble gases. Experiments showed a backward emission of both ejected electrons
(as in the case of argon [5] and a forward emission of both ejected electrons (not present in the
case of argon [5]).

6.1.3. Argon measurements
We can distinguish the 6rst (e,3e) measurements [102] from the more recent ones [5] and the

latest ones [150]. The 6rst “historical” (e,3e) experiments [102] used electron energies of 5480,
20 and 10 eV, respectively, for the scattered and the ejected electrons, and 0:45◦ for the scattering
angle. A good agreement with the approximate 3C model has been found in this case [84,40]
[cf. Fig. 6.3].
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Fig. 6.3. The FDCSs (6vefold diHerential cross sections) in atomic units for the double ionization of argon. The electron
energies are 5480 eV (scattered electron), 20 eV (6rst ejected electron), and 10 eV (second ejected electron). The scattering
angle and the 6rst-ejected-electron angles are −0:45◦ and 255◦, respectively. The curves are: solid line: 1S ion state; dotted
line 3P ion state; dashed line 1D ion state; dash-dotted line 1S + 3P+ 1D ion state; Experimental data with error bars are
from Ref. [102]; The direction of the 6rst ejected electron is indicated by the arrow. The theoretical results are multiplied
by 0.4.

Fig. 6.4. The FDCSs (6vefold diHerential cross sections) for the double ionization of argon. The electron energies of the
incoming, the 6rst and the second ejected electrons are, respectively, 561:4; 9, and 9 eV. The scattering angle is 6:5◦.
The solid line corresponds to the 1S+3P+1D ion state; The experimental data with error bars are taken from Ref. [150].
The opposite direction of the momentum transfer is indicated by the arrow. The 6xed electron direction corresponds to
the opposite of the momentum transfer direction.

In the second set of experimental data [5] the same kinematical conditions as in the neon case
[6] were used. The main result is that the second Born approximation must be taken into account
because the symmetry (about the momentum transfer direction) is also broken [5], as in the Ne case.
The third set of experimental data [150] has been performed at lower incident energy (561:4 eV)
in order to further probe the importance of the two-step mechanism. The broken symmetry and the
appearance of a small structure near the main peak show clearly that the non-6rst order eHects (such
as TS2 mechanism) play an important role, more important that in the previous case [5]. Fig. 6.4
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[150] shows that the approximate 3C model used in the 6rst Born approximation is not su9cient
here, even though the disagreement between 6rst Born theory and experiments is generally speaking
not too bad: the approximate 3C model correctly predicts the position of the two main peaks but is
not able to explain the lack of symmetry and the small peak.

6.2. The double ionization of magnesium

The magnesium atom is a particularly attractive target for double ionization studies because it
is a quasi-two-electron atom 3 comparable with doubly excited states in He which exhibit strong
ground-state electron correlation.

Experimental studies on the double ionization of magnesium have been conducted by Coplan
and coworkers et al. [15,11] at College Park. The aim has been to obtain a direct information
on the correlated initial state wave function as proposed by several authors. It has been sug-
gested that certain experimental arrangement are most favorable for initial-state correlation studies, in
particular:

• Berakdar [67] showed that the condition kion=0 (where kion is the ion recoil momentum) which is
the counterpart condition of the single-particle electron–momentum spectroscopy [117], is reached
on a two-dimensional Bethe sphere in momentum space. Initial-state correlation studies has to be
performed such kion = 0.

• Srivastava et al. [137] have made some calculations with this “Bethe-sphere” condition by varying
the energies of the ejected electrons.

• Popov et al. [138] proposed to consider a situation where one ejected electron and the scattered
electron have the same energy (for instance 250 eV) while the second ejected electron is slower
(for instance 5 eV). This last situation is described by the shake-oH mechanism which leads to a
direct relationship between the diHerential cross section and the double Fourier transform of the
initial state wavefunction (as single-particle electron–momentum spectroscopy [117]).

Coplan et al. have chosen a non-coplanar scattering geometry where one ejected electron is detected
in a cone above the scattering plane while the second ejected electron is detected in another cone
below the scattering plane. In this out-of-plane geometry the shake-oH mechanism is not the most
probable. Nevertheless, Coplan et al. were able to observe an atomic two-electron momentum distri-
bution [11]. In fact, if we consider both ejected electrons as one single particle the double ionization
looks like a single ionization. This was recently established by Perumal et al. [139] in the double
ionization of helium by impact of Au53+ ions, and by Lahmam–Bennani et al. [7]. These results open
several questions about the mechanisms of the double ionization: the three mechanisms (shake-oH,
TS1 and TS2) are not able to give such a result, and we may consider another mechanism where
the two target electrons are ejected at same time (as in molecular dissociation) while sharing the
momentum transfer given by the incoming particle.

3 In magnesium the two active electrons are the two 3s electrons outside of a closed shell, i.e. the doubly ionized
ground state has an inert gas electronic con6guration.
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7. Integral cross sections

In the preceding sections we investigated the fully diHerential cross sections, i.e. the cross sections
where the momenta of all three 6nal state electrons are determined. The (e,3e) experiments can as
well be carried out in a less diHerential way by integrating over the kinematical parameters of one of
the continuum electrons. Thus in this case the vector momenta of only two electrons are determined
experimentally. This kind of measurements is called the (e,3-1e) experiments and constitutes a
valuable and a less tedious method for the energy and/or angular diHerential studies of the double
ionization process. In the following, we will 6rst focus on the energy partitioning between the two
slow escaping electrons at a given momentum and energy transfer to the target. Secondly, we will
discuss the angular correlations between two out of the three electrons which will be shown to be
of great utility in disentangling the diHerent types of pathways of the double ionization channel.

7.1. Energy partitioning

Duguet et al. [129] used the (e,3-1e) technique to measure the energy partitioning between the
two electrons ejected from an argon target, at a given momentum transfer and 6xed energy transfer
values. They detected the fast electron in coincidence with one slow electron at 6xed angles  a

and  b and variable energy Eb, measuring thus a four-fold diHerential cross section (4DCS). Their
results for the absolute 4DCS measurements are shown in Fig. 7.1, revealing two main features: (i)
A con6rmation is given that the energy partitioning between the two escaping electrons is far from
being even (with respect to the equal energy point). An almost vanishing probability is observed
for the equal-energy sharing case, Eb = Ec, while the highest cross section is recorded when one
electron emerges with almost all the available excess energy (the other is then very slow). (ii) A
remarkable feature of Fig. 7.1 is that the U-type energy distribution is found to be not symmetrical
about the mid-excess energy (Eb + Ec)=2. The relevance of this remark becomes clear when we

Fig. 7.1. The absolute fourfold diHerential cross section as function of the energy sharing between the two elec-
trons ejected from an argon atom. The error bars are one statistical standard deviation. Experimental parameters are
 a = 0:55◦;  b = 50◦; E0 = 5623 eV and Ea = 5500 eV, so that the excess energy above the double ionization threshold
is 6xed, Eb + Ec = 80 eV.
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compare with similar energy distributions measured in electron-impact single ionization [(e,2e)] [65]
or photon-impact double ionization [(C; 2e)] [131]; in both cases the 6nal channel consists of two
continuum electrons moving in the 6eld of an ionic core. There [65,131], the energy spectrum of the
outgoing electron is determined from the measurement of a singly diHerential cross section, d�=dE,
versus the electron energy E. Such cross section distributions must be symmetrical about a point
midway between zero and the maximum available energy for the electrons pair, Emax, for the two
electrons are indistinguishable and if one of the electrons possesses the energy Eb ¡Emax the other
electron must have the energy Ec = (Emax − Eb). When higher order diHerential cross sections are
measured as is the case in [129], the obtained U-type energy distribution should not be symmetrical
for two major reasons: (i) The 6rst one is of an intrinsic “physical” nature as the pair of emitted
electrons with complementary energies Eb and Ec might have a priori diHerent angular distributions.
Hence, diHerent intensities should be observed when both electrons are detected at a particular
angles, yielding a non-symmetrical energy distribution at these angles. (ii) The second reason is of
an “experimental” nature, due to the fact that Ec is not measured in [129]. Because of the diHerent
possible 6nal states of the Ar ion, there is at each Eb value not only one single possible energy for
the undetected c-electron, but several discrete Ec values in the case of double ionization, and a whole
continuum of energies in the case of triple ionization. (Nevertheless, the double ionization process
should be largely dominant over the triple and higher order processes [89].) Each of these 6nal
states contributes to the energy spectrum of Fig. 7.1 with its proper U-type distribution, extending
from Eb = 0 up to the corresponding threshold (i.e. Ec = 0). Obviously, the sum of all individual
U’s yields an asymmetric total distribution. To solve this ambiguity, an (e,3e) experiment involving
triple coincidences is needed to separately measure every individual distribution.

7.2. Angular correlations in integral cross sections

The energy partitioning discussed in the preceding section is studied by performing an (e,3-1e)
coincidence experiment where the electron pairs (ea) or (eb) are detected at 6xed outgoing angles.
A diHerent type of information concerning the double ionization mechanism is obtained if the coin-
cidence angular correlations are measured at 6xed energies. This can be done either in the cb-mode
(where the two slow electrons b and c are detected) [103,132,133] or in the ab-mode (where the
fast scattered electron a and one of the slow electrons b are detected) [102,10]. In both cases one
electron remains undetected. The cross section for the cb-mode is obtained as

�c;b :=
d6�

d�cd�bdEcdEb
=
∫

d8�
d�cd�bd�adEcdEb

d�a : (7.1)

Experiments in the cb-mode have shown that by adequately choosing the kinematical parameters
one may zoom in certain double ionization mechanisms. For instance, if the two slow electrons
are detected in opposite half planes with respect to the incoming beam, as done in [103], diHerent
ionization mechanisms yield diHerent angular distributions. In particular, if the emitted electrons share
unequally the available excess energy (i.e. when the speed of one electron is signi6cantly larger than
that of the other one), then the double ionization is predominantly the result of a SO process when
the incident energy is high (∼ 5:5 keV in the experiments discussed here). That is, the fast electron
is 6rst ejected in a “single-ionization (e,2e)-like” process, and is located at approximately ±80◦ from
the incident direction. Hence, its angular distribution for 6xed angular position  slow of the other
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Fig. 7.2. The relative four-fold diHerential cross section for double ejection from Ar at E0 = 5500 eV. (a) The slow
electron with energy Ec = 17:5 eV is detected at 6xed  c angle, and the fast one with Eb = 96 eV is mapped versus  b

in the opposite half-plane. (b) Same, with the fast electron angle,  b, 6xed, and the slow one,  c, variable.

very slow electron must be peaked and independent (both in shape and in intensity) of the 6xed
angle  slow. As discussed earlier the slow electron emitted in a SO process should have an isotropic
angular distribution independently of the emission angle of the second (fast) electron  fast. This is
what is observed in the 4DCS distributions measured by El Marji et al. [103], shown in Fig. 7.2.
The fast ejected electron is detected at an energy Eb =96 eV in the angular range 20◦6  b6 160◦,
whereas the slow one is detected at Ec = 17:5 eV in the range −160◦6  c6 − 20◦. The data are
displayed as a function of  b for 6xed  c, in Fig. 7.2(a), and as a function of  c for 6xed  b in
Fig. 7.2(b). The absolute scale was not determined for these experiments, however the data are all
given on the same relative scale. Clearly, the fast electron distribution in Fig. 7.2(a) is peaked at
 b ∼ 80◦ and is independent of the observation angle  c of the slow electron, both in shape and in
magnitude. Whereas the slow electron distribution in Fig. 7.2(b) is perhaps not fully isotropic but
at least much Natter at all  b angles, with an intensity which depends on the observation angle  b.
Both observations support the conclusion that under the kinematical conditions of these experiments,
the dominant DI mechanism is the SO mechanism.

As discussed below in details, a similar conclusion was also reached theoretically [134,130] when
investigating the mechanisms of double ionization in (e,3-1e) processes using a helium target. Similar
(e,3-1e) experiments were also performed in Maryland by Coplan et al. [15] on magnesium.

7.3. Angular correlation studies on He

In the (e,3-1e) process two electrons are detected simultaneously in the 6nal state [according to
Eq. (7.1)]. The relation of (e,3-1e) to other reactions where as well two electrons are detected in
coincidence ([e.g. (C; 2e)] depends however on how the (e,3-1e) is performed. E.g., the integration
over the scattered electron angle in Eq. (7.1) can be essentially transferred into an integration over
the momentum transfer vector K which runs in a some limited interval. To compare this kind
of (e,3-1e) measurements with the (C; 2e) process, using the optical limit [compare Eq. (2.52)],
one should thus conduct the (C; 2e) experiments using linear polarized light and then performs an
integration over the direction of the polarization vectors in some speci6ed region. On the other hand
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one can perform the (e,3-1e) experiment such that the momentum transfer vector K is 6xed and
fully determined experimentally. This facilitates then a direct comparison of (e,3-1e) experiments
with available (C; 2e) data using the relation [compare Eq. (2.52)]. This kind of experiments is
discussed in detailed following a brief survey of the theoretical and experimental studies of (e,3-1e)
performed according to Eq. (7.1)].
For a theoretical analysis of the �c;b we employ the FBA and use the 3C model, as discussed

in Sections 2.3 and 3.2.1. In addition, we use the orthogonalized form (2.51) of the wave function
 −
kb;kc

(rb; rc) for the description of the two slow escaping electrons in the 6eld of He2+. The singlet
ground state of helium is described by a Hylleraas-type wave function (5.6) which we introduced
in the preceding section. To be speci6c we concentrate on the experiments conducted in Ref. [130]
where the incident energy is 6xed to be E0 = 5525 eV and one electron, say electron c, is detected
at a 6xed angle perpendicular to the incident direction. The energy transferred to the target is 6xed
to Ec +Eb =35 eV. Furthermore, co-planar geometry is chosen. The angular distribution of electron
b has three limiting cases, namely Eb�Ec; Eb = Ec or Ec�Eb. Basically, in all cases a maximum
in the cross section �c;b is expected whenever the Bethe sphere [35] is approached, i.e. when the
energy and momentum transferred to the target are directly absorbed by the ionized electrons. As
we integrate (in a limited region) over K to obtain �c;b (Eq. (7.1)) the Bethe sphere conditions are
not directly applicable as introduced in Ref. [35]. However, the integrated quantity

kav(�c; �b; Ec; Eb) =
∫

kion(�a; �c; �b; Ec; Eb) d�a ; (7.2)

is well de6ned and indicates the average momentum transferred to the nucleus at a certain geometry.
Thus, a minimum in kav(�b) corresponds to a maximum in the angular distribution �c;b(�b). This
is demonstrated in Fig. 7.3(a) where Eb = 34:8 eV�Ec = 0:2 eV. The minimum of kav as function
of  b := cos−1(k̂0) · k̂b is located at  b ≈ 64◦. Correspondingly, the direct scattering oH electron b
which provides the main contribution to �c;b( b) peaks at  b ≈ 70◦ (cf. Fig. 7.3(b)). This means,
predominantly, the projectile electron scatters directly from electron b which escapes carrying away
almost the whole momentum transferred to the target. Electron c is then emitted upon the sudden
change in the eHective 6eld of target. Hence, the direct projectile scattering oH electron c is almost
structureless and yields a minor contribution to the binary peak (in the angular distribution of
electron b) located at  b ≈ 70◦ (compare Fig. 7.3(b)). Clearly, this mechanism depends strongly on
the description of the initial-state which decides the amount of shake-oH [120,62,131]. The 6nal-state
electronic correlations are of minor relevance in this case [35].

The shape of �c;b( b) is determined by the coherent sum of the amplitudes Tc and Tb as given
by Eq. (2.48) and (2.49). The interference of these amplitudes is appreciable due to the relatively
small energy separation Eb − Ec. The case Ec�Eb yields similar results with the interpretation as
above but the roles of electron c and electron b being interchanged. The quantity kav does not vanish
even on the Bethe sphere. This is because the momentum conservation law (Eq. (2.1)) is the result
of a translational invariance of the system and does not account for internal degrees of freedom
of the target initially at rest. The momentum distribution of the nucleus in the initially bound-state
is exactly cancelled to a zero linear momentum by the presence of the bound electrons. When the
electrons are directly ionized and no momentum is transferred to the nucleus during the collision
the nucleus recoils with a momentum equal to the initial binding momenta of the electrons before
the collision.
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Fig. 7.3. The average momentum transferred to the nucleus kav as function of  b = cos−1(k̂0 · k̂b). The collision geometry
is chosen as E0 =5525 eV, Ec +Eb=35 eV; Ec =0:2 eV; k0 ·kc =0 and (k0×kc) ·kb=0. The inset (b) show the angular
distribution �c;b( b) as function of  b, determined with respect to k̂0. An orthogonal 3C wave function is employed for
the 6nal state. The incoherent contributions of Tb, i.e. Tf i ≡ Tb, (dashed curve) and of Tc, i.e. Tf i ≡ Tc, (dotted) are
shown along with their coherent sum (solid curve) (cf. Eqs. (2.48) and (2.49)).

Now we consider the case of equal-energy secondary electrons Ec=Eb. In this case, the scattering
amplitudes Tc; Tb corresponding to the electrons c and b are of the same order and coincide at
 b = 90◦ due to symmetry (Fig. 7.4(a)). That means, in this case the projectile ionizes the two
target electrons simultaneously. The FBA leads to only single-particle perturbation operators for
the (e,3e) process, i.e. the projectile does not directly interact with the center-of-mass of the two
electrons. Therefore, the double ionization of the two electrons at the same time must proceed
via a coherent superposition of the amplitudes Tc and Tb (Fig. 7.4(a)). The cross section �c;b( b)
(Fig. 7.4(a)) exhibits a minimum at  b ≈ 72◦. This minimum is due to interference of Tc and Tb and
incidentally coincides with the minimum of the average momentum transferred to the nucleus kav at
 b ≈ 72◦ (Fig. 7.3(b)). This could be inferred from the structure of the incoherent contributions of
Tc and Tb which reveal broad maxima around  b = 94◦ and 84◦, respectively. At  b = 0 the cross
section vanishes due the electron–electron repulsion in the 6nal state. Obviously, in the case of
Fig. 7.4(a)–(c) the cross section is very sensitive to the weighting of the coherent amplitudes Tc

and Tb which is determined by the wave functions  −
ka;kb

(ra; rb) and ’(ra; rb). Therefore, the scattering
amplitude from the nucleus TT, which is mainly due to a poor description of the three-body state,
strongly aHects the cross section because it considerably alters the interference behavior (Fig. 7.3(c)).
Therefore, orthogonalized and non-orthogonalized 6nal-state wave functions yield in this case quite
diHerent results. The experimental 6nding is qualitatively reproduced by the orthogonalized form
which seems to better 6t the experimental data.

The intermediate situation between the cases displayed in Figs. 7.3(a) and 7.4(c) is shown in
Fig. 7.4(d). The agreement with the data is satisfactory. From the above arguments it is compre-
hensible that the term TT does not severely aHect the cross section as in Fig. 7.4(c). The ionization
amplitude Tb provides the major contribution to Tf i in the vicinity of the maximum. This leads
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Fig. 7.4. The same collision geometry as in Figs. 7.3, however Ec = Eb. Wave functions and curves are also the same
as in Fig. 7.3(b). Panel (b) shows the angular distribution of the average momentum kav whereas in (c) the results are
displayed of the orthogonalized (solid curve) and non-orthogonalized (dotted curve) 3C wave functions. Experimental data
(squares) are due to Ref. [130]. In (d) the angular distribution �c;b( b) is shown for the case Ec=7 eV. Calculations using
orthogonalized (solid curve) and non-orthogonalized (dotted curve) wave functions are depicted along with experimental
data (squares) Ref. [130].

to the interpretation as in Fig. 7.3(a) and (b). The scattering term Tc, although smaller than Tb

(i.e. |Tb|¿ |Tc|), still interferes considerably with Tb.

7.4. Asymmetry parameters for (e,3-1e) reactions

In this part of the article we explore the link of (e,3-1e) to (C; 2e) reactions through the optical
limit Eq. (2.52). To this end and to analyse the partial waves contributing to the (e,3-1e) cross
sections we consider situations where K is 6xed and the angular distribution of one secondary
electron is measured, i.e.

�K; c :=
d6�

d�cd�adEcdEa
=
∫

d8�
d�cd�bd�adEcdEa

d�b : (7.3)



J. Berakdar et al. / Physics Reports 374 (2003) 91–164 155

Hereafter all angles are measured with respect to K̂ which de6nes the z-axis. The cross section �K; c is
proportional to the cross sections d6�=(d�cd�adEcdEb) and d6�=(d3Kd�cdEc). The latter one reveals
the connection to (C; 2e) measurements with linear polarized light where only one photo electron
is resolved in energy and angle d3�DPI=(d�cdEc), the so-called asymmetry-parameter experiments
[127,135,136].

Due to the cylindrical symmetry of �K; c(�c) with respect to K the angular dependence of the
cross section �K; c (Eq. (7.3)) occurs though K̂ · k̂c only and therefore this cross section can be
parameterized in the form [134]

d6�
d�cd�adEcdEa

= 4�
∞∑
‘=0

B‘P‘(K̂ · k̂c) ; (7.4)

where B‘(K; Ec) are angle-independent coe9cients and P‘(K̂ · k̂c) are Legendre polynomials describ-
ing the angular dependence.

From the relations

d4�
d�adEcdEa

=4�
∞∑
‘=0

B‘
4�

2‘ + 1

‘∑
m=−‘

∫
d�cY‘m(k̂c)Y∗

‘m(K̂)

= 16�2
∞∑
‘=0

B‘

‘∑
m=−‘

1
2‘ + 1

�‘0�m0 ; (7.5)

we conclude that the coe9cient B0(K; Ec) is related to integrated cross sections, i.e.

B0(K; Ec) =
1

16�2

d4�
d�adEcdEa

: (7.6)

Since B0 is a constant with the dimension of a cross section we can renormalize all the expansion
coe9cients B‘ to B0 and obtain thus dimensionless generalized asymmetry parameters Bs

‘ = B‘=B0

which yields

�K; c =
1
4�

d4�
d�adEcdEa

∞∑
‘=1

[1 + Bs
‘P‘(cos  c)] : (7.7)

As well known we can do the same analysis in the case of (C; 2e) for the integrated cors section
d3�DPI=(d�cdEc). In this case the parametrization of d3�DPI=(d�cdEc) has only two terms. This
is a result of the de6nite angular momentum imparted to the system by the photon and because
polarization vector enter bi-linearly in the cross section. The expansion for d3�DPI=(d�cdEc) reads

d3�DPI

d�cdEc
= 4�

∞∑
‘=0

BDPI
‘ P‘(cos  c) =

1
4�

d�
dEc

[1 + KP2(cos  c)] ; (7.8)

here  c refers to the emission angle of the photoelectron with respect to the polarization vector
which can be chosen to coincide with K̂ . Hence, one single parameter, the asymmetry parameter
K∈ [− 1; 2], is su9cient to characterize the whole angular distributions of the photoelectrons. Thus,
instead of comparing the angular distributions for (e,3-1e) and (C; 2e) reaction to explore the regime
of the optical limit one needs only compare the asymmetry parameters Bs

‘ and K.
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A relation between B‘ and BDPI
‘ can be established by considering a situation where (e; 3−1e) and

(C; 2e) yield continuum electrons with the same vector momenta, i.e. kDPIc = kc and kDPIb = kb where
kDPIc ; kDPIb are the vector momenta of electrons emitted upon (C; 2e). Assuming length formulation
for the (C; 2e) reaction, the cross section, given by Eq. (7.8), reads

d3�DPI

d�cdEc
= 4�26!kckb

∫
|〈 −

kc;kb
(rc; rb)|K̂ · (rc + rb)|’(ra; rb)〉|2 d�b ; (7.9)

where ! is the light frequency and 6 is the 6ne-structure constant. From Eqs. (2.52) and (7.9) we
deduce that in the optical limit the parameters B‘ tends to scaled (C; 2e) coe9cients SBDPI

‘ , where

SBDPI
‘ = (2�)4

4kc
k0K26!

BDPI
‘ : (7.10)

Fig. 7.5(a) illustrates the above formulations. We choose the situation where (e,3-1e) and (C; 2e)
can be compared (small momentum transfer, high incident energy). We also recall that due to parity
arguments the use of orthogonalized (2.51) and non-orthogonalized 6nal-state wave functions must
lead to the same predictions when the optical limit applies. In Fig. 7.5(a) all angular distributions
are symmetric with respect to  c = �. Furthermore for (C; 2e) the cross sections d3�DPI=(d�cdEc)
are symmetric to the plane perpendicular to the linear polarization vector. This symmetry is absent
for the (e,3-1e) reaction since, in contrast to (C; 2e) where the polarization vector de6nes an axis
leading to the reNection symmetry at  c =90◦ and 270◦, the momentum transfer vector K is a polar
vector.

This fact is immediately reNected in the behavior of the asymmetry parameters: For (C; 2e) the
asymmetry parameter BDPI

1 is identically zero, whereas for (e,3-1e) the parameter B1 (Eq. (7.3))
is 6nite [Fig. 7.5(b)]. Therefore, we identify the physical meaning of the asymmetry parameter
Bs
1 = B1=B0 as an indicator for the “memory” of the ionized electrons to the initial direction of the

incident beam.
As we indicated above, the parameter Bs

2 in (e,3-1e) reaction is the counterpart of the asymmetry
parameter K in (C; 2e) which describes the angular distribution of the photoelectron.
Its physical meaning becomes apparent when we assume K�1; Bs

1�1. A vanishing K=0 (Bs
2=0)

means that the electron c has an isotropic angular distribution that reNects the symmetry of the initial
state of the target, i.e. this electron c is emitted in a shake-oH process whereas the other electron is
ejected upon a direct encounter with the projectile. This case occurs when Eb=Ec�1 (see Figs. 7.5(a)
and (b)). Reversal of the roles of the two secondary electrons, i.e. Ec=Eb�1 leads to K=2 (Bs

2 = 2)
which means that electron c is directly ionized by a binary collision with the projectile and is
emitted along the momentum transfer direction which in our case is chosen to be the quantization
axis. Clearly, in both case K=0; K=2 the two continuum electrons are well separated in momentum
space and therefore are weakly correlated.

In contrast to the case K=2 (Bs
2 =2) a negative value of K (Bs

2) means that the electron c appears
under a direction considerably diHerent from K [perpendicular to K for K = −1; (Bs

2 = −1)]. It is
in this situation where the electronic correlation plays the key role. This statement is endorsed by
comparing Fig. 7.5(a) and Fig. 7.5(c) and (d). In the latter case the two electrons emerge with
equal energies which means evidently that they are strongly correlated leading thus to a negative
value of Bs

2, as apposed to the case of Fig. 7.5(a) where electronic correlation is weak. We note
however that since the excess energy is relatively high Ec + Eb = 120 eV the electronic correlation
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Fig. 7.5. The cross section �K; c( c), as de6ned by Eq. (7.3), as function of  c = cos−1(K̂ · k̂c). The incident energy is
E0=8 keV. The scattered projectile is detected under 1◦ with respect to k0 and has an energy Ea=7:8 keV. The momentum
transfer is K=0:509 a:u: and Ec=0:01 eV. Results of orthogonalized (dashed curve) and non-orthogonalized (solid curve)
wave functions are shown. The dotted curve is the corresponding DPI-cross sections, as given by Eq. (7.8), but with coe9-
cients SBDPI

‘ (see Eq. (7.10)). The DPI-asymmetry parameter is K=0:29728. (b) Shows for the same arrangement as in (a) the
asymmetry coe9cient B‘ as function of ‘ (cf. Eq. (7.4)). For DPI we obtain BDPI

0 =4�=1:34×10−3; BDPI
2 =4�=0:3984×10−3,

(note K = BDPI
2 =BDPI

0 = 0:297). Panel (c) shows B‘ as function of ‘ for the same collision arrangement as in (a), but in
this case Ec = Eb. An orthogonalized wave function is used to describe the 6nal state. (d) Shows same quantity as (c),
however the 6nal-state wave function is not orthogonal to the initial bound state of He(1Se).

is less prominent when the two electrons are separated in angles. This situation changes drastically
for lower excess energies and Bs

2 tends to −1.
Obviously the parameters B‘; ‘¿ 2 exist only for the (e,3-1e) case. Their symmetry properties

are readily deduced from the respective ‘.
From Eq. (7.7) it is evident that the coe9cient B0 determines the absolute value of the cross

section and oHers a convenient way to compare (or to calibrate) the magnitude of the (e,3-1e) cross
sections to the (C; 2e) data [by comparing the numbers B0 and SBDPI

0 , as de6ned by Eq. (7.10)].
With an increasing divergence from the optical limit an increasing number of partial waves is

required to 6t the (e,3-1e) cross sections. If the deviations from the optical limit is moderate the
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signi6cant contributions to the series (7.7) is due to the 6rst three terms. Therefore, we assume in
this regime that Bs

‘ = 0; ∀‘¿ 2 and write the series Eq. (7.7) in the form

�K; c =
1
4�

d4�
d�adEcdEa

[1 + 6e3eP1(cos  c) + Ke3eP2(cos  c)] : (7.11)

To connect closely the (e,3-1e) reaction with the (C; 2e) process we introduced in Eq. (7.11) 6e3e ≡
Bs
1; Ke3e ≡ Bs

2. From Eq. (7.7) it is clear that, under the assumption Bs
‘=0; ∀‘¿ 2, only three mea-

surements are necessary to determine the parameters 6e3e; Ke3e and d4�=d�adEcdEa. These quantities
on their part parametrize completely the whole angular distribution �K; c(�c). Appropriate geometries
to conduct the measurements are: When the secondary electron c is detected under a direction per-
pendicular to K (�⊥ := �K; c(cos  = 0)), parallel to K (�↑↑ := �K; c(cos  = 1)) and antiparallel to
K (�↑↓ := �K; c(cos  =−1)). From algebraic relations we deduce then for the asymmetry parameters

Ke3e =
2− 2x
1 + 2x

; (7.12)

6e3e =
3
2

�↑↑ − �↑↓
�↑↑ + �↑↓ + 2�⊥

; (7.13)

d4�
d�adEcdEa

=
4�
3

�↑↑ + �↑↓ + 2�⊥ ; (7.14)

where x := 2�⊥=(�↑↑+�↑↓). We note that Eqs. (7.12)–(7.14) are also applicable to (C; 2e) processes.
From Eq. (7.13) it is obvious that 6e3e stands for the “memory” of the ejected electron to the incident
direction and thus vanishes identically for a (C; 2e) reaction (�↑↓ ≡ �↑↑). Eq. (7.12) indicates that
the asymmetry parameter Ke3e varies within the interval Ke3e ∈ [−1; 2]. When the secondary electron
is predominantly ejected along K (x → 0) we obtain Ke3e = 2 (double ionization by single-binary
collision of the projectile with electron b and a shake-oH of electron c). If electron c is shaken oH
from an S-state its angular distribution is isotropic and hence Ke3e=0, which is readily deduced from
Eq. (7.12). In both cases (Ke3e = 2; Ke3e = 0) emitted secondary electrons are weakly correlated. In
contrast, if x�1 (i.e. for �⊥�[�↑↓+�↑↑]). electron b is ejected mainly perpendicular to K indicating
strong correlation between secondary electrons and leading to Ke3e =−1 [cf. Eq. (7.12)].
The usefulness of the asymmetry parameters introduced above is demonstrated by Fig. 7.5(a)

and Fig. 7.5(b): On the one hand Fig. 7.5(a) indicates signi6cant diHerences between the (C; 2e)
and (e,3-1e) cross sections, i.e. the optical limit is not fully approached. On the other hand Fig.
7.5(b) oHers a detailed information on what is preventing the optical limit from being approached:
According to Fig. 7.5(b) the major diHerence between (C; 2e) and (e,3-1e) in the present case is
the existence of the direction K̂ associate with the polar momentum-transfer vector. This is signi6ed
by a non-vanishing value of B1 (or 6e3e) (cf. Eq. (7.13)). The similarities of the other asymmetry
parameters mean that apart from this diHerence, the magnitude of the cross sections and the strength
of electronic correlations (described respectively by B0 and B2) are similar both for (C; 2e) and
(e,3-1e) reactions.

Concluding this part we stress that the asymmetry parameters sketched above oHer an excellent
tool to illuminate the various respects of the relation between photon and electron-impact double
ionization.
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Fig. 7.6. The (e, 3-1e) cross sections measured in the ab mode, i.e. the slow electron c is not detected. The scattering
angle is  a = +15◦; Ea = 500 eV and Eb = 51 eV (which implies that Ec = 10 eV). The target is a helium atom in the
ground state and E0 = 640 eV. The experimental 4DCSs are compared with the predictions of the 3C model (within
the FBA) (full curve) and with the results of the C4FS theory (dotted) and its orthogonalized version (dashed curves).
The K direction is indicated.

7.5. Double ionization at low energies

As we have seen above, within the range of validity of the FBA, an appropriate parameterization
of the cross section leads to a precise quanti6cation of the individual contributions of the multipoles.
However, such a procedure and in fact the FBA as such break down at lower energies and new
methods are required to deal with the low-energy physics. Experimentally, the low energy regime has
recently been explored [10] in the ab-mode using a He target. The incident energy is 600 eV. The
data are shown in Fig. 7.6 in comparison with the results of some of the 6rst-order (FBA) theories
we discussed above. The most remarkable observation is that the calculated angular distributions
show the well-known binary and recoil lobe structures, characterized by their symmetry about the
momentum transfer direction ±K as expected from 6rst-order models. In the measured distributions
two lobes are also present, however with two diHerences: (i) the symmetry about ±K is broken, and
(ii) one observes a large shift in the angular position of the lobes (∼ 40–60◦). The eHect of this
shift is to rotate the experimental recoil lobe forward, while the binary lobe is rotated backward,
i.e. towards the incident (or the scattered) electron direction and away from it, respectively. This
means that such shift cannot be attributed to a 6nal state electron–electron repulsion between the
scattered and the fast ejected electrons, which would rotate both lobes backward. Also, from the
large disparity in the energies of these two electrons, 500 and 51 eV, one would not expect such
a large angular deviation. Moreover, it is reasonable to assume that the slow, unobserved electron
with energy 10 eV is emitted quasi-isotropically. Hence, the eHect of a possible 6nal-state interaction
between the two ejected electrons on the 4DCS distribution of the fast ejected electron should be
very small on average. Therefore, the observed shifts in Fig. 7.6 must be due to a dynamical eHect
which implies the participation of the unobserved slow ejected electron and/or of the residual doubly
charged ion. Moreover, the symmetry break clearly indicates that this eHect is a non-6rst-order eHect
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in the projectile–target interaction (not included in the FBA calculations shown in Fig. 7.6). In terms
of the double-ionization mechanisms, the shake-oH and the TS1 mechanisms are 6rst-order processes
that involve one single interaction of the projectile with the target, hence they are expected to yield
distributions with the typical axial symmetry with respect to K. Whereas the TS2 mechanism involves
two successive projectile–target interactions, resulting in a breaking of the symmetry about ±K. It
can thus be concluded from these observations that at the impact energy of 600 eV, the processes
beyond the 6rst order such as the TS2 play a crucial role in the dynamics of the double ionization.

8. Conclusions and future directions

In this article we gave an overview on the particle-impact double ionization of atoms as utilized
to study the dynamics of four interacting charged particles in the continuum. The foundations of the
theories that are currently applied to describe this process have been outlined and their results have
been analysed and compared with experiments. The experimental techniques have been sketched
and the merits of available approaches have been exposed and compared. A detailed analysis of
the theoretical and the experimental results have been employed to uncover the four-body scattering
dynamics. Furthermore, the signi6cance of the various integrated cross sections has been addressed. It
has been demonstrated that in the regime of small perturbations the pathways of double ionization are
fairly well understood and documented by various experiments and theories. In contrast, the regime of
low energies and/or for large perturbations is still to be explored. Currently, a number of experimental
and theoretical groups are aiming at the study of the double ionization with low-velocity, charged
projectiles where the treatment of the “true” four-body correlated system becomes unavoidable.

On the other hand the recent experimental developments on double ionization with highly charged
ions revealed a behavior of the cross sections which is at variance with the predictions of a 6rst-order
perturbation treatment, and call thus for further theoretical eHorts to understand the four-body scat-
tering mechanisms in the non-perturbative regime. Future investigations include the double ionization
dynamics with (spin and/or orbital) polarized collision partners, as well as the study of the four-body
Coulomb continuum problem in the presence of external 6elds, such as the double ionization in
a strong laser 6eld.
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