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Abstract. In this work we discuss the influence of electronic correlation in finite and extended
systems. In particular we stress the fact that the electronic correlation renormalizes the particle-
particle interaction in a characteristic way and interpolate these ideas, well-known for extended
systems, to small systems. We also sketch bricfly how the thermodynamics and critical phenomena
in finite systems may be treated.

INTRODUCTION

Over the past decade there has been an impressive progress in miniaturization tech-
niques that aim ultimately at the fabrication of atomic-size devices whose features are
controlled primarily by the quantal behaviour of a finite number of correlated particles
[1]. Therefore, it is of interest to develop microscopic theoretical models that connect
phenomena akin to few-body quantum systems to those occurring in the thermodynamic
limit (large volume V, larger number of particle N and finite particle density n = N/V).
In this work we explore differences and common features in the behaviour of small and
extended systems. Two aspects are emphasized: the cooperative response of a system to
an external perturbation and the treatment of critical phenomena in finite systems.

COLLECTIVE RESPONSE AND SHORT-RANGE DYNAMICS

The primary source of knowledge on a given system is provided by its characteristic
response to external perturbations. In many cases this response is dependent on the
collective behaviour of the constituents of the systems, as in the Faraday effect where
the delocalized electrons in a metallic surface re-arrange among them self as to shield
an external electric field. These correlated fluctuations of the density are determined by
the so-called polarization operator I1{q, ®) which depends on the momentum q and the
frequency . On the other hand the polarization of the medium modifies the properties
of the particle-particle interaction U(q,®). The modified potential U, is related to U
and I'1(q, ®) through the integral equation [2, 3]

Uy = U+ U, %))
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This relation can be formally written as

U
1 -UIT

The screening term K(q,®) := 1/(1 — UTI) is usually called the generalized diclectric
function [3] and plays a central role in a variety of phenomena. E.g. the electrical
conductivity o(q, ®) of a plasma is obtained from k(q, ®) as 6(q, ®) = io(1 —x). >From
Eq.(2) it is clear that the determination of the renormalized interaction U,y and of the
dielectric function ¥ requires the knowledge of the polarization function IT. In essence
I is a two-point Green function that describes the particle-hole excitations. Its lowest
order approximation ITp is provided by the random phase approximation (RPA) as

iMlo(a,0) = == [ dpdEGo(a~+p,0+E)Go(B,5). ®

(2m)?*
Here Gy is the free, single particle Green function. The evaluation of the integrals
(3) can be performed analytically for a homogeneous system [3]. In this work we
concentrate on the long wave-length limit (long-range screening) in which case one
obtains ITp =~ —2N(u) where N (u) is the density of states at the Fermi level p. If we are
dealing with an electronic system, like a metallic cluster, the naked interaction U(q) is
given U(q) = 41t/q* and according to Eq.(2) the screened interaction reads in the long
wave-length limit

4r

U=~
T (@ +8uN (W)
The form of this potential in conﬁguration space is obtdincd via a Fourier transform:

Uy = at it allows
a transparent discussion of the nature of collisions from many-particle systems: In a
charged two-particle scattering events with small momentum transfer (far collisions)
dominate as deduced from the form factor of the naked potential U = 1/42. In scattering
from a polarizable medium these events are cut out due to the finite range of the
renormalized scattering potential Uz, i.e. scattering occurs for close collisions where
the medium is not able to screen the external field. For a detailed discussion of this point
in the case of ionizing electron collisions from Cgy we refer the interested reader to the
work [5] of this volume. Here we would like to emphasize that in scattering processes
from many electron systems it is important to account for the cooperative behaviour of
the target electrons which results in screening. The reward for resolving the non-trivial
task of evaluating the screening effects is that the interactions are then of a short-range
and the description of the scattering dynamics can be done using standard methods of
scattering theory, such as the first order Born approximation (see the discussion below).
Thus, the real obstacle in describing low-energy collisions from many-particle systems
is in obtaining an adequate expression for the polarization propagator.

For a uniform dense electron gas one can employ the RPA to obtain useful approxi-
mate expression for I1. For a real system such as a metal or semi-conductor surface one
should however start with a realistic single particle Green function in Eq.(3) in order to
derive the particle-hole excitations. Such a starting Green function can be obtained from

)
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FIGURE 1. The calculated imaginary part of the (bulk) dielectric functions of Cu and the loss function
of Ni are compared to the experimental values as deduced from the electron-energy loss spectra [6]. For
Ni the experiment is done for a wave vector value of ¢ = (0.25,0,0) "L—" where the lattice constant a is
a = 6.65ap (ap is the Bohr radius).

density-functional theory within the local-density approximation. The strategy adopted
here is the so-called GW method [4] which is conceptually well-known for a long time
but computationally still poses a challenge, in particular in the case of surfaces. Accord-
ing to this method one derives first the dynamical response 7, of the system. From this
we deduce the screened interaction U,g, as done above which in turn determine the so-
called self-energy Z and, via the Dyson equation, the interacting single-particle Green
function. In matrix form this can be written as

x(r,r',1) = —iG(r,r',7)G(,r,T) (5)
Uggr(r,v',7). = U(r,r’)+/.d3xfd3x’(](r,x)x(x,x',*c)Ueﬁ(x',r’,t) (6)
E(r,r',1) = iG(r,r',T)Ugp(r,r',1) — 8(r — r')Vy(r) (7N
G(r,¥) = Gol(r,¥)+ / &x f 43 Go(r,x)E(x,x')G(x',1'). ®)

In these equations we operate in the configuration space and in the time domain. In
principle, Eqs.(5-8) has to be solved self consistently starting from the Kohn-Sham
Green function in Eq.(5) to arrive at the Green function (8) which is then inserted
in Eq.(5). In this procedure, as done in Eq.(7), one should subtract the exchange and
correlation potential to arrive at the correct self-energy.

Fig.1 shows the imaginary part of the dielectric function of Cu and the loss function
of Ni as obtained from the above GW scheme [6]. As indicated by the results of Fig.!
the GW approach provides in some cases a reasonable description of the response of a
many-body system.

The simple analytical form (3) of the polarization is based on the RPA expression
for a uniform medium. The range of validity of such a treatment is estimated from its
physical meaning: The interaction creates virtual electron-hole pairs. Within the RPA
one considers these events to be incoherent, i.e. the phase of the electron-hole pair is lost
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right after it’s creation and does not affect the creation of the next pair. This assumption is
reasonable for systems with a large density of particles, for it is more probable to scatter
from different particles consecutively than to undergo multiple scattering from the same
scatterer. For a dilute system the RPA is no longer valid and one has to resort to other
methods such as the ladder approximation for the polarization propagator [3] in which
case the virtual electron-hole pair interacts repeatedly before it disappears. A similar
situation of multiple coherent scattering is encountered for systems with few-interacting
particles, say three or four electrons. The basic ideas concerning the renormalization of
particle-particle interactions are still however valid. This can be seen from the following
argument: The fundamental quantity that describes the dynamic of the system is the N-
particle Green function GM. Formally it satisfies the algebraic (Lippmann-Schwinger)
relation

G™) = Gy + GoUG™) = Gy + GoU Gy + GoUGoU G + -+ - (9)

where Gy is a reference (solvable) system and the interaction U is given by U =
G, '~ (GIM))~!. Usually, one aims at evaluating a limited number of certain terms of
the perturbation series (9) involving the naked interaction U. However, Eq.(9) can also
be written formally as

G(N) =Gy + Gy Go=Gp+ G()Uq,ng(). (10)

U

| —GyU
The operator 1/(1—GoU) plays the role of the dielectric function in the RPA (cf. Eq.(2)).
The essence of its effect is that it renormalizes the interaction U. As evident from Eq.(9)
this renormalization procedure amounts to a sub-sum of all terms in the perturbation
series up to the first order (Born) term. In practice Gy is a diagonal many-body matrix,
which is appropriately chosen. Analogous to the many-body case where one has to
evaluate the polarization propagator, one needs to invert the matrix 1 — GoU. Having
done that the particle-particle interactions can be renormalized and a first-order (Born)
treatment of the scattering dynamics is then sufficient.

THERMODYNAMICS PROPERTIES AND PHASE TRANSITIONS
IN FINITE SYSTEMS

As stated above the properties of a system are encompassed in the Green function. In this
section we point out that thermodynamic properties and critical phenomena and the cross
over from the thermodynamic limit to confined small systems can also be described with
the help Green function techniques. Strictly speaking, finite systems do not expose phase
transitions [7]. However, one expect to observe the onset of a critical behaviour when
the system approaches the thermodynamic limit. The traditional theory concerned with
these questions is finite-size scaling theory [9]. Here we take another route, originally
due to Yang and Lee[7] and Grossmann et al. [8] developed to treat critical phenomena
in macroscopic systems.

The argument of Yang and Lee[7] is the following: Thermodynamical quantities, such
as the specific heat Cy are obtained as a derivative with respect to the inverse temperature
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Cv = B*o5InZ(B) = f(B,Z(B))/Z(B)-

Here f is some analytical function and for the Boltzmann constant we assume k = 1.
Therefore, divergences in the thermodynamic quantities, which signify phase transitions
are connected to the zero points of Z(). These zero points are generally complex valued.

Grossman et al. [8] applied the concept of Yang and Lee to the canonical ensemble. In
this case the inverse temperature p = 1/7 is continued analytically to B = R(B) + i3 ().
The phase transitions are then the crossings of the zero points line of Z(B) with the
real B axis. The crucial point is that in the thermodynamic limit N — oo, V — <= and
v=V/N < oo (V is the volume, N is the number of particles) the zero points approach
to an infinitesimal small distance the real axis. For this reason, the characteristic phase-
transition divergences appear in the thermodynamical quantities. For finite systems Z B)
has only finite zero points which can not lie necessarily infinitely close the real axis.
Therefore, the thermodynamic quantities show smooth peaks rather then divergences.
The positions and widths of these peaks can be obtained from the real and imaginary
parts of the zero points laying closest to the real axis [9].

To apply this approach to quantum finite systems, such as a Bose-Einstein condensate
we consider a system of N interacting particles. The canonical partition function of a
correlated system can be expressed in terms of the many-body Green function as

Z(p) = f dE Q(E) e PE. (11)

Here Q(E) is the density of states which is related to the imaginary part of the trace of
G™) via l
Q(E) = —ES’I‘rG(N)(E). (12)

Therefore, as in the preceding sections the problem reduces to find appropriate expres-
sions for the many-body Green functions. Recently it has been shown that the N-body
Green function satisfies a recursion relation where the strength of interaction is succes-
sively reduced [10]:

N
M = ZGE,-N_])w(N— 1)Go. (13)

For a brief discussion of the limitations of this relation we refer to Ref.[10]. C =1 is the
Green function of a system in which only N — 1 particles are interacting whlle particle f
is independent of all other particles. Gy is a reference Green function of an independent-
particle system. With the help of Eq.(13) one can construct flow equations to map the
interacting system onto a non-interacting one in N — 1 steps [11].

>From Eqgs.(11,13) we deduce for the partition function the recursion relation

S 71 _
Z —1)Zp. (14)
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Here Z, is the partition function of the independent particle system (taken as a reference)

while =" is the canonical partition function of a system in which the interaction
strength is diluted by cutting all interaction lines that connect to particle j.

Eq(14) allows to study the thermodynamic properties of finite systems on a micro-
scopic level as well as to investigate the inter-relation between the thermodynamics and
the strength of correlations. Critical phenomena can be studied using the idea put for-
ward by Yang and Lee. For example if we are interested in the onset of condensation in
a quantum Bose gas one should look at the ground-state occupation number 1o(N, ).
This is given by

_1 anZ '(B)
BZCT R
O (G0 e D320

e 5 (15)

T]O(Nv B)

Here g is the ground-state energy. By means of this equation one can study systemati-
cally the influence of the interaction on the onset of the critical regime or one may chose
to find the roots of Eq.(14) in the complex B plane and to identify the zero point that sys-
tematically approach the real B axis signifying the transition point in the thermodynamic
limit.
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