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Abstract :

We propose two new methods to describe the ferromagnetic field-dependent susceptibility within the mean-field theory.
A parametric approach valid for any value of temperature, applied field, and spin quantum number is developed; within this
approach, the scaling functions for magnetization and susceptibility are determined for values of the reduced field, smaller
than 1073, A simple analytic derivation of the scaling functions is also given. As the susceptibility maximum is found to
occur at a value of the relevant scaling variable which is of the order of unity, it cannot be accurately described by series
expansions of the scaling function. A nonlocal parabolic approximant to the scaling function is constructed which reproduces
its main features exactly. The methods of this paper are relevant to the study of the field-dependent susceptibility of any
ferromagnet in which long-range forces are known to dominate. It is suggested that the analysis be tested on the examples of
the ‘mean-field’ ferromagnets HoRh, B, and ZrZn,. The whole scheme should be regarded as contributing to the
elaboration of the advantageous procedure for the determination of two independent critical exponents, which is based on
general scaling analysis for the field-dependent susceptibility and which avoids painstaking measurements of the exact Curie

temperature.

1. Scaling theory predictions for the field-depen- where m and & are the reduced magnetization and
dent susceptibility of a ferromagnet applied magnetic field, respectively, while 7= (T —
T.)/T., with T, being the Curie temperature; s =

According to scaling theory, the thermodynamic h/|7| P70 is the scaling variable for the scaling func-
potential of a ferromagnet close to its critical point is tion g. The latter has two branches, g, and g_,
a generalized homogeneous function of the relevant corresponding to temperatures above and below Tg;
thermodynamic variables [1,2]. As a corollary, one 3 and & are the critical exponents for the sponta-
obtains for the magnetization the scaling form neous magnetization [1]. Alternatively, the scaling

form for the magnetization can also be given as

m(t,h)=|’r[’8'gi(|7|;;,a)=|T|'B‘gi(S), (1) A )
m(t’h)=h1/6'fi(0')> ' ‘ . (2)
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susceptibility derive from its definition and Egs. (1)
and (2):

x=[ 3| <H 6L () = E (o),
@)

where 7y is the critical exponent for the susceptibil-
ity, while the functions G ,(s) and F, (o) can be
easily obtained from g, (s) and f (o), respec-
tively, via straightforward differentiation. In particu-
lar,

1
Fi(a-)=E{fi(0)_1/18'0'f/i(0)}' (4)

In deriving Eq. (3), use was made of Widom’s
relation, y= B(8 — 1).

In zero applied field, y diverges at T, ie. at
7=40. In a finite field, this divergence is smeared to
a maximum Y, of finite height, which is located at
some temperature T, above T.. If the field is in-
creased, x,, falls off while T, increases. Both quan-
tities scale with applied field, but with different
exponents.

One way to see how this scaling arises is to
simply consider the necessary condition for the exis-
tence of a maximum of y(r,4) in one of the equiva-
lent forms. Working with T > T, and neglecting the
subscript ‘+ of @(s), it follows that
x_ JL/0)=1-0/ B9) . () (5)
or ’
and, in finite fields, this can only be zero for F'(o)
= 0 or, equivalently, for

o f'(a) +(1=B) f(c) =0, (6)
The simple and crucial observation is that the terms
on the left-hand side in Eq. (6) are functions of the
scaling variable ¢ only, and not of its constituent
variables separately. The maximum is then at o;, =
/B P ie. at

T.=0, kP, (7

where o, is the solution of Eq. (6). Inserting T
into Eq. (3), one gets

Xu(h) = X (7, k) =H/°71- F(0y,). (®)

In other words, one obtains that the maximum of the

susceptibility x,, and its location 7, = (T, — T.) /T,
scale with field as

X ~ RO, (9)
T~ h'/Pe, (10)

The usefulness of, and the advantages offered by,
these scaling relations have been discussed and ex-
ploited in a number of studies [3—7]. The relations
(9)—(10) imply, for instance, that by measuring the
well-pronounced experimental feature (the maximum
of the susceptibility) and its location, one can deter-
mine the values of two scaling, exponents 3 and 8,
and then all the other critical exponents can be
derived by virtue of simple scaling relations [1,2].
Moreover, one does not need to know the value of
T to determine 8 and &, and it is well known that
other types of scaling fits depend crucially on the
experimental estimate of T, [8,9].

Furthermore, it has been observed [10] that a plot
of the susceptibility (measured in a number of fixed
fields as a function of temperature and normalized to
its peak value) against the scaling variable o=
7/h*/ #®  should help construct the normalized scal-
ing function F(o):

_ T,h F(o
Hlo) = ;<(Tm,h)> - F<(o-m)> ' (1)

In a later section, we construct this function in the
mean-field (MF) approximation by using two differ-
ent and new approaches.

It must be emphasized here that the ease with
which the scaling relations for the maximum of the
susceptibility are derived in the general, unspecified
case is rather delusive and is in a way ‘inversely
proportional’ to the care which must be exercised in
a specific case such as the MF approximation. The
point is that straightforward expansions of the scal-
ing functions for small values of their respective
arguments are often considered as trivial and plausi-
ble because of the analyticity of the scaling func-
tions, the singularities being factored out as in Egs.
(3). However, if we consider for instance the vari-
able ¢ and its related functions f(o) and F(o), at
the maximum of the susceptibility one has

o=a,=1,/k P ~0(h), (12)

which is what follows by virtue of Eq. (10). Hence, a
perturbative treatment of the scaling functions f(o)




Y.T. Millev et al. / Journal of Magnetism and Magnetic Materials 152 (j996) 293-304 295

and F(o) cannot be justified if one is interested, as
we are, in a feature occurring at values of the
expansion variable of the order of unity. Even if the
existence of the extremum is not destroyed during
such a procedure, its location is certainly quite inex-
act. Besides, one cannot rely on accidental smallness
of o;, stemming, eventually, from the spin factors
involved. We find that o, is not small for any § in
the MF case (cf. Eq. 35).

2. Mean-field analysis of the field-dependent sus-
ceptibility

While the implications of the above scaling analy-
sis for the experimental study of different ferromag-
netic materials have been appreciated and success-
fully implemented [3-5], the theoretical computation
of g(s) or f(o) and, consequently, of G(s) or F(o)
for any nontrivial interacting model is still an open
problem. To our knowledge, only the somewhat
academic, though instructive, case of a paramagnet
with a conditional phase transition at T, = 0 [11] and
the MF analysis for y,, and 7, as functions of 4 for
spin + [7] have been tackled.

It is therefore necessary to study in sufficient
detail and rigor the maximum of the susceptibility
X, and its location 7, as functions of applied field
for any spin quantum number S in the MF approxi-
mation. On the one hand, this would fill a gap in the
theoretical understanding of these features of critical-
ity by using a model of interacting magnetic mo-
ments. In fact, this model describes exactly some
exemplary cases of ‘mean-field” ferromagnets such
as HoRh,B, [12], where, presumably, the interac-
tions responsible for the ferromagnetic ordering are
of long range. It would be of great value to carry out
the experimental measurements for x,,, 7, and g(s)
or f(o) in this and similar materials. On the other
hand, the results obtained below provide for a delin-
eation of the scaling regime in the presence of an
external field, a problem which has not been satisfac-
torily treated so far, despite of its great theoretical
and experimental significance [13,14].

In the MF approximation, one thinks of any indi-
vidual magnetic moment as being immersed in the
averaged effective field created by all the other
moments plus the applied field. The entangled
many-body interactions are thus reduced to the basic

dipole interaction of a moment with a field. Calculat-
ing the average magnetic moment by standard statis-
tical mechanical means leads to a self-consistent
equation for the magnetization (Eq. 13). Solving the
self-consistent equation would give, in principle, the
temperature and external field dependence of magne-
tization and, consequently, of susceptibility and of
other magnetization-related quantities.

The well-known self-consistent equation for the
FM magnetization per magnetic site of spin S is

m=Bg(x), (13)
where
B = acoth(ax) — b coth( bx) (14)

is the Brillouin function with a =(2S+ 1)/2S and
b=1/28, while
cn+h

» (15)
is the generalized effective field [15}; ¢ = 35 /(S + 1)
is another spin-dependent constant. In contrast with
the qualitative discussion of the scaling relations, we
need to specify the natural reduced quantities: m =
M /M, with the magnetic moment M of the system
and its saturation value M, =Ng, ugS (g, is the
spin-only Landé factor and g is the Bohr magne-
ton, while N is the number of magnetic ions), =
T/T. is the reduced temperature; and h =
g, wpSB,/kgT is the reduced external magnetic
field in which B, is the flux density of the applied
field and kg is Boltzmann’s constant. Note the
difference between the temperature variables ¢ and
Tit=1+T.

The difference between relations (1) and (13) is,
of course, that the first one gives the function m(t,h),
though with an unknown scaling function involved,
while the latter is the equation which has to be
solved to find m(t,h) for all ¢ and h. Besides,
although the second relation is not a scaling one and
is therefore applicable for any ¢ and h within the
MF approximation, it may provide information about
the MF scaling region which is characterized by the
set of MF critical exponents [1].

With the definition (3), and by carrying out the
necessary chain differentiation in Eq. (13), one finds
for the MF differential susceptibility

dm t -t
=5 -lzm 1o

x=
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where Bg(x) is the derivative of Bg(x) with respect
to x.

One may easily derive the asymptotic behavior of
m and y on the critical isotherm (7= T.). By Egs.
(13) and (16), one obtains

m,=m(r=0,k) =my-h/° (h-0). (17)
In the MF approximation, one finds 8= 3 and
1/ 15 \'?
=~ B3, 18
Mg c ( 2+ bz) (18)
Similarly for (7= 0,h),
1 5 1/3

=0,h ~| == B3 (h-0).

X(T )_>C|:9(a2+b2) ( - )

(19)
For arbitrary 7 and h, the standard methods of
solving Eq. (13) involve a numerical solution or a
graphical procedure. Both of these have proven cum-
bersome enough; in particular, this seems to explain
why the problem with the MF field-dependent sus-
ceptibility has not been studied exhaustively until
now. A particularly simple and effective parametric
realization of the MF objectives in computing the
temperature and field dependences of static suscepti-
bility has been suggested and implemented for both
ferro- and antiferromagnetic cases [16], whereby use
was made of the physically most appealing version
from among a variety of parametrizing opportunities
[17]. The salient features of the parametric approach
amount to expressing all relevant physical quantities
as explicit functions of a single parameter. The
parameter is then allowed to sweep the range of its
physically allowed values and the quantities of inter-
est are computed independently. The results for
whatever dependence might be interesting are ob-
tained by collecting pairs of points corresponding to
the same value of the flowing parameter. The output
can subsequently be cast into a tabular or graphical
form. The suitable choice for a flow parameter was
found to be the generalized effective field x which,
by its definition (15), sweeps between zero and
infinity. L
Both cases of fixed temperature or fixed external
field can be treated equally easily with m = m(x)
and y= x(x) being explicit functions of x. For
fixed ¢, one uses

h=tx—c-m(x)="h(x), (20)

with ¢ and S as known input parameters, while for
fixed &
c-m(x)+h
t= ———— ={(x), (21)
x
with /2 and S as input parameters. One possible way
to carry out the study of x,, and ¢, as functions of
applied field would be to collect the corresponding
data from a sufficient number of plots for different
values of # in order to construct the said field
dependence in a tabular and, consequently, graphical
form. One could, however, do much better than that.

3.'Novel parametric approach to study the maxi-
mum of the field-dependent susceptibility in the
MF approximation

Some experience with the proposed parametric
approach [16,17] and the possibility for its extension
to treat highly non-trivial problems, such as the
temperature dependence of magnetic anisotropy in
cubic ferromagnets within the random-phase approx-
imation [18], has led us to another extension of the
scheme in order to study the field dependence of y,,
and ¢;. The idea is that one could avoid bookkeep-
ing activities for collecting sets of data from separate
parametric sweeps; instead, one could derive and
scrutinize the MF equations for ¢,, and x,, to find a
shortcut. From the condition (3y/9¢), =0 and with
the expression for y(¢,x(¢,h)) already given in Eq.
(16), one finds that the following equation must be
satisfied at the point ¢, of maximal susceptibility:

Bg-x-t

B; -— =0, 22
S(x) c-B_'g(x)—t ( )

The lucky circumstance is that this equation can be

solved to find ¢, and, hence, x,, as functions of

X =X, explicitly:

[ Bi(x )V
S P 2 1CY) WP
BS(xm)-I-xm'BS(xm)

t -t
c) . (24)

By(x,)

The crucial observation is that one can get y, (k)
and (k) by using the parametric method with x_,

XmEX(t=tm’h)=(
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as the sweeping parameter, thus compensating for,
and indeed making use of, our ignorance of

c-m(t,,h)+h

=-—, 25
Xn ; (25)

m

where m is the value of the magnetization at 1 =1¢_.
To carry out this scheme, one needs also the variable
h as a function of the prospective sweeping parame-
ter x_. By Eq. (20) taken at t =17,

h=xm'tm—c‘m=xm'tm(xm) —C'Bs(xm)'
(26)

Egs. (23)—(26) provide the basis for the parametric
solution of the problem. Indeed, these equations
amount to explicit expressions for

Xm = X ¥m) (27)
tn = tn(Xn), (28)
h=h(x,). (29)

Letting x, sweep between zero and infinity, one
collects pairs of points to plot or tabulate x,,(%) and
t.(h) for any given value of S. The identification of
a suitable sweeping parameter lies at the heart of the
proposed solution. It must be emphasized that the
parametric approach described in principle above
effectively reduces the problem with solving the
self-consistent equation for m(¢,k) to a purely com-
putational procedure with explicitly known func-
tions. Thus the method overrides the implicit charac-
ter of Eq. (13) and allows one to proceed as if one
has an explicitly known function m(#,%).

4. Analysis of the MF scaling regime for the
susceptibility in applied field

4.1. x,, and 7,, as functions of field

The results from the application of the method are
easily obtained for x,, (%) and 7,(h) =1 -1 (k) for
various values of spin. In order to uncover the
expected MF scaling behavior and the domain of its
validity, double logarithmic plots have been used in
both cases. The dependence y, (h) for any given S
represents the crossover line between the low- and
high-temperature domains [19]. The straight parallel

parts for small # < 107 in the plots (which are easy
to generate and are not given here for the sake of
brevity) indicate the existence of a region that ex-
tends over many decades of values of A, where x,,
and 7, scale with some power of 4. With slopes of
(—2/3) and (2/3) for any S, one concludes unam-
biguously that there y, ~#%"2/% and 7, ~ h*>
This region is thus the domain where MF scaling
holds, in agreement with Egs. (9) and (10), and with
the MF scaling exponents 3=1/2 and §=3.

At this stage, some further information about the
maximum of the susceptibility in small fields can be
worked out easily. With the realization that the
maximum has its origin in the critical divergence of
x at T=T. in zero field, one concludes that in
small fields y,, must occur for T,, = T¢. In other
words, 7, =(T, —T.)/T.— 0 for h— 0. This
means that x_=(cm+h)/(1+7,)—0 as well,
since m =m(r,) also tends to zero in this regime.
By Egs. (23) and (24), one easily finds that

5 1

T ) R =0
and
Ty = 3(a’ +0%)xg, (31)
whereby |

1 S+1
Xm'Tm—)Z=F (h—>0). (32)

This is an interesting result which complies with the
general predictions of scaling theory, for it follows
from Eqs. (7) and (8) that the product y,, - 7,,, When
computed with the MF critical exponent y =1, and
provided that the Widom relation holds, regardless of
the values of B and 6, must be asymptotically
constant in /. Interestingly, the value of this constant
is precisely equal to the value of the maximum of the
MF antiferromagnetic susceptibility in small applied
fields [16]. In Fig. 1, we give the product x,, * T,
normalized against its asymptotic value of Zc, as a
function of % for various values of spin. To cover a
larger variation of field, the product is plotted versus
log(h).

For (unphysically) large h, one finds once again
scaling of y,, and 7, with field, this time with
slopes of (—1) and (+1), respectively. Thus one
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0.8

2 10 -6 4 -2 0 2
logh

Fig. 1. The product -7, for different values of spin S normal-
ized against $¢=(S +1)/6S (cf. Eq. 32). For & — 0, it is unity.
The onset of deviations from the MF scaling predictions with
increasing field is easily observable.

detects the paramagnetic scaling regime described in
Ref. [11], which has been characterized by the patho-
logical critical exponents 6= and B=1/8=0.
These values of the ‘paramagnetic’ exponents com-
ply with the slopes we find in this high-field regime.
In the intermediate region % ~ (1073-10%), no scal-
ing with a simple power-law dependence in A is
found.

4.2. Scope of validity of MF scaling in an applied
field

There is further important information that can be
deduced from the implementation of the proposed
parametric method for the calculation of the field
dependences of y, and 7. It concerns the width of
the MF scaling region in the presence of an applied
magnetic field. It is clear that the MF scaling region
extends as far as the linear regime for small % in the
double logarithmic plot. It is very easy to extract
from the corresponding plots the values of /, which
limit the linear scaling dependence for any given S.
One finds that &, = 1072, To see what this estimate
means physically, we restore the physical quantities
according to the specification following Eq. (15).
Inserting the values of the fundamental constants

involved, one gets for the limiting value By, of the
induction of the applied field

By.= (1 5)—Tih = (1 s)ixw'3 (33)
Oc . gS c . gS '

It is interesting to see, within the framework of the
MF theory, whether the result (33) is a specific
outcome of the particular quantities studied. With the
help of the parametric method, one is in the position
to check, for instance, the state of matters with the
MF scaling as seen on the critical isotherm. In this
way one can compare the extent of the scaling region
in external field as judged from the calculation of
different quantities. To this end, one applies the ‘old’
parametric approach as described above with the
general effective field x as a sweeping parameter
(18] and computes m(h). 1t is then found that the MF
scaling region m, ~ h'/3 once again extends as far
as h, = 107 This suggests that the extent of the MF
scaling region in applied field is virtually insensitive
to the choice of the field-dependent quantity which
would be referred to when estimating the said region.
This is in contrast with the estimates for the fluctua-
tion-dominated region, which have been shown to be
sensitive to the choice of the reference quantity
[13,14].

There is an important point which has to be
elucidated here. The perturbative estimates in Refs.
[13,14] are based on the idea underlying the deriva-
tion of the Ginzburg—-Levanyuk criterion [20],
namely, that the MF approximation breaks down
when the system is so close to the critical point
(T =T, H=0) that the fluctuation contribution to a
given relevant quantity (susceptibility, specific heat,
etc.) becomes comparable to the MF (no-fluctuation)
prediction. The field 4™ which limits the fluctua-
tion-dominated region at T = T, has to be contrasted
with the field #MF considered in the present paper,
which limits the scaling regime of the MF theory,
ie. the regime where the MF solution for m(r,k)
may be well represented by Eq. (1). The quantity
A1t was estimated in Ref. [14] from the series
expansion for the field dependence of the magnetiza-
tion on the critical isotherm, from the spherical
model, and from the Gaussian model. For ordinary
ferromagnets such as Fe, Ni and Co, theé Gaussian
model yields the estimate A1 = 1073, ie. AT is
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of the same order of magnitude as AYF from Eq.
(33). This coincidence for the above ferromagnets
means that there is no domain of values of # over
which MF scaling in applied field can be observed.
In other words, M and AT are two characteristic
fields, the latter of which has to be estimated in each
particular case. MF scaling behavior in the presence
of external field could be expected to be observable
only in the case when hf}““ < hIC“F; in fact, in view of
the experimental difficulties in probing the asymp-
totic critical region, it should be required that a
‘much less’ inequality should hold. There are cer-
tainly cases where this inequality is expected to hold.
Apart from HoRh,B,, as mentioned above [12], very
recent careful measurements carried out in the
asymptotic critical region of ZrZn, have led to the
unambiguous estimate that the critical exponents v,
B and & in this system have the MF values of 1,
1/2 and 3, to within an experimental error of 5%
[21]. It would be of great value if measurements and
analysis of the maximum of the field-dependent sus-
ceptibility were carried out for these two ‘mean-field’
systems; in particular, this would contribute to the
elaboration of the advantageous method of determin-
ing the critical exponents via such measurements
[3-5,7,8]. ‘

A detailed description of the possible crossovers
between different regimes must necessarily resort to
the introduction and eventual computation of effec-
tive critical exponents in crystalline and amorphous
ferromagnets [21-25]. However, this lies beyond the
scope and purpose of the present paper.

4.3. The susceptibility MF scaling function for any S

Let us emphasize once again that the parametric
method allows one to study the MF field-dependent
susceptibility for any values of spin, temperature,
and field and not only in the scaling region. More-
over, the parametric method enabled us to estimate
the limiting value of applied field above which devi-
ations from scaling laws set in. For example, it is
just as easy to obtain the susceptibility as a function
of temperature in fixed field and for different values
of S. This is illustrated in Fig. 2, where we give the
normalized susceptibility for # = 107> and different
S. Bearing in mind the proximity of T, and T for
small fields, the sensitivity of the location of ¢z, to

XX

2 . .
0.98 1.00 1.02 1.04

Fig. 2. Normalized susceptibility above and below T in fixed
field £ =1073. Thick lines are limiting cases of S=% (whose
maximum is to the right) and S =, In between: $=1, 2, { and Z.

changes in the spin value is astonishingly large. It
should also be mentioned in passing that the analysis
of the classical case of S = o proceeds quite analo-
gously to what has been given so far for finite values
of S. One must simply substitute the Langevin func-
tion L(x)=coth(x)—1/x and its derivatives for
the Brillouin function Bg(x) and its derivatives;
besides, the limiting (S — <) values of the spin-de-
pendent constants a(S) = 1, b(S) — 0, and ¢(S) —> 3
have to be inserted wherever appropriate.

The normalized MF scaling function for the
field-dependent susceptibility can now be obtained
by normalizing x(r,k) against x(7,,h) as pre-
scribed by Eq. (11). At T, and for 4 # 0, one finds

0,k 1
—XE—) = —— = (.7937.

£0) = X(rh) 3

(34)

Note that F(0) is a universal, spin-independent con-
stant. The implementation of the parametric ap-
proach to compute F(o) according to Eq. (11) is
straightforward. However, one must be careful to use
the information obtained in Sections 4.1 and 4.2
concerning the limitations to MF scaling, imposed by
the applied field. By criterion (33), values of %
smaller than 10~ have to be chosen in the paramet-
ric sweep. Otherwise, non-universal behavior for
F(o) would show up, signaling that one is no longer
in the asymptotic MF regime. In practice, the compu-
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19
08
- 0}
F(o)
0.4
02 |
0.0 - -
0.0 20 40 240 8.0 10.0
o=1/Mh
B 105
100
0.95 |
F(o) a90
0s8s |
0.80
0.75 : -
0.0 0.5 10 s 15 20
o=1/h

Fig. 3. (a) Critical scaling functions F(r/h%°) for the MF
susceptibility in applied field as found by means of the parametric
approach. Thick lines: §=4 (right) and S =00 (left); in between:
S§=1, %, £ and L. (b) Enlargement of the scaling function F(o)
in the vicinity of its maximum, Curves arranged as in (a).

tation of the scaling function in different sweeps
with £=107%, 10™* and 107>, respectively, gives
identical curves, for a given value of S, for the
spin-specific scaling function F(o ) for values of o
which encompass the most interesting domain with
the maximum of.the susceptibility.

The MF scaling function F(r/h%*3) for different
values of spin § as found by the parametric method
and including the limiting values of § = % and § = «,
is presented for the first time in Fig. 3(a,b). All

— 3
curves coalesce at the value of F(0)=1/Y2 at

T'=T,, ie. at 0= 7=0. The location of the maxi-
mum in Fig. 3(a,b) is found to be

80

g \1/3

5
This decreases monotonically with increasing S from
513.(9/80)/% at § = % to (9/80)'/° at § =, The
shift of o;, from the classical limit to the extreme
quantum limit is thus by a factor of 5'/3,

The form of the scaling function F(o) in the
vicinity of its maximum suggests that a quadratic
approximation may be quite successful in this region.
To test this possibility, we construct the quadratic
approximant F(o)=cy+c; o+c, o2 by re-
quiring that it match F(o) at zero and o, and that
the latter point be the location of the maximum of
F (o) as well. These three conditions provide for
three independent algebraic equations for the coeffi-
cients of the approximant and lead to

9 13 2 1/3
o.=|=]| (&*+5?
282 +28+1\/°

o (59)

F(o)=cy(o—a)+1, (36)
with
¢, =(F(0) —1)/q;2. (37)

0.8

0.7

0.0 0:5 1:0 ll.S 2.0
o

Fig. 4. Nonlocal parabolic approximants for § ={ (maximum to

the right) and S=1 to the critical scaling function (cf. Eqgs. 36,

37). Thick lines: exact scaling function F(c); dotted lines: ap-

proximant & (¢ ).
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Note that the approximation is nonlocal in that it is
pinpointed at two distinct values of the argument for
which the scaling function F(o) is exactly known.
The approximation is only reasonably successful and
is illustrated in Fig. 4 for § = and 2. Obviously,
local quadratic matches for the vicinities of o=0
and o= g, may be better, but would surely be
satisfactory only sufficiently close to the respective
points. This is a corollary of the fact, emphasized
above, that o, ~O(1); hence, a local expansion
around o =0 with only a few terms kept would
~ widely miss the maximum, while a similar expansion
about o= g, would widely miss the correct value
of the scaling function at o= 0. This point is further
illuminated in Section 5. A further possibility is to
construct higher-order approximants to match the
scaling function globally. In fact, we now proceed to
propose an analytic insight which, among other
things, allows one to control such higher-order ap-
proximants, should they be required.

5. A complementary approach to the explicit de-
termination of the MF scaling functions for the
magnetization and the susceptibility

- A decisive advantage of the parametric approach

reported above is that it is effective with any values
of the thermodynamic parameters # and 7. The
scaling function for the susceptibility was found as a
particular and, in fact, asymptotic case for h <A
=102 and the determination of 4F was based on
observations of the extent of validity of MF scaling
for quantities whose field dependence was generated
within the parametric approach.

The problem now is whether some sort of analytic
handling of the MF scaling region can be suggested
that would go so far as to produce reliable informa-
tion about the maximum of the susceptibility which
lies in a region, inaccessible with sufficient accuracy
to few-term expansions of the scaling function. We
have found a very simple possibility that seems to
have escaped attention.

One starts with the MF equation for the magneti-
zation (13). Once again, keeping track of the orders
of magnitude of the variables involved is paramount
to the correct description of the maximum of the
susceptibility. For sufficiently small fields # and

above T, the generalized effective field x = (cm +
h)/(1+ ) is small, too. Expanding the Brillouin
function to the first non-trivial order gives

m=A-x—B-x*+0(x%), (38)
where

a+b (a+b)(a*+b%)
R 45

A=1/c .
(39)

In order to proceed further, one is forced to make an
assumption about the order of magnitude of the
temperature variable 7 in terms of the applied mag-
netic field. Otherwise, one is not in the position to
know whether an expansion of the denominator 1 + 7
in the generalized effective field is allowed and, if
s0, how many terms of it have to be kept. Indeed, the
necessity of binding the two otherwise independent
thermodynamic variables 7 and % anticipates the
relevance of only their scaling combinations or o in
the scaling region; this combination is trivially the
ratio /7 in the paramagnetic case only [11]. As-
suming that 7 is small and recalling that m ~ #'/?
on the critical isotherm, one sees that a systematic
expansion of x and, hence, of the whole problem,
requires that 7 be of the order of 4%/>. Under these
explicitly formulated assumptions, one finds to the
lowest non-trivial order, and this is O(h?), that

Bc*m? +tm—Ah=0. (40)

Now divide both sides of the equation by (Bc®) -,
define 7 =m/hY? and recall that o= 7/h*3, so
that
o — o 0 41
m+—o-m——=0.

Bc? Bc? (41)
This equation for 7 has a unique positive real root
by virtue of Descartes’ criterion [26]. Moreover,
since the root of this cubic depends on its coeffi-
cients only with A, B, ¢ and o being spin-depen-
dent constants, one finds immediately that

i =f(c;S), hence m=Hh7"?-f(o;S), (42)

where, of course, the root f(o;S) is just the scaling
function for the magnetization as defined in Eq. (2).
We have thus found an explicit expression for the
scaling function for the magnetization. Defining p =
o/Bc’ and g= —A/Bc?®, we come to the reduced
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form of the cubic 7°+p-# +q=0, hence, the
scaling function is given explicitly by

f(o38) = (=gq/2+ 02"

+(-a/2-0")", (43)
with

0=(p/3)"+(a/2)". (44)
If one is interested in the scaling function g(s) in
terms of the scaling variable s, one can use the
connection between s and o or, even more easily,
one can straightforwardly manipulate Eq. (40) in the
same fashion as above, this time dividing both sides
by 71/? and introducing naturally the variable s =
h/73/2,

As particular cases one can find the magnetization
on the critical isotherm and, indeed, its related criti-
cal exponent 8= 3 by setting o=0 in the scaling
function f(o); just as easily, one deduces the MF
critical behavior and the expoment §=3 in zero
field by setting s = 0 in the explicit scaling function
g(s). The scaling functions for the susceptibility in
the form F(o) or G(s) are trivially obtained by
differentiating the corresponding explicit functions
for the magnetization with respect to the field. As a
simple corollary, one obtains, from the form with the
function G(s), the critical MF singularity with expo-
nent vy of the susceptibility in zero field. Finally, the
maximum of susceptibility can be studied quite eas-
ily by using the scaling form with the function
F(o). The asymptotic scaling functions obtained in
both described approaches are the same, i.e. the plots
generated in both ways literally coincide.

Now that we have the explicit analytic expression
(43) for the asymptotic regime, we return to the point
of studying the error incurred by attempting to de-
scribe the maximum of the susceptibility by keeping
only a few terms in an expansion of the scaling
function. The effect is illustrated in Fig. 5, where
one can see the plots for the successive approxima-
tions to the asymptotic scaling functions for the
susceptibility for spin S = 1 (series approximations
for the function F(o) from Eq. (11). As the expan-
sions have been taken about the point o =0, we
have series of local approximations about the said
point. It is hardly necessary to comment further on
the substantial deviations that occur even with terms

20
13 2
~
A
/ 'I
) /5
?(0) 10 . /—Q" ///
) 1
05 3]
A
Imn.o "5 1o 18 %0
[

Fig. 5. Insufficiency of few-term cxpansions about o =0 to
describe the scaling function in the region o ~ O(1) where the
maximum of susceptibility occurs. Successive series expansions
for the susceptibility scaling function F(c): the thick curve is the
exact function for § = 4. The enumeration of curves corresponds
to the inclusion of successive non-vanishing terms in the expan-
sion.

of O(c®) taken into account. The local approxima-
tions for F(o) can be compared with the nonlocal
approximant proposed in the previous section (see
also Fig. 4). The expectation that the expansions
would also fail to detect to a satisfactory accuracy
the location of the maximum is also fulfilled: in the
example of § = 3, the exact value of o as given by
Eq. (35) is 0.8255, while working by expanding Eq.
(6) for o — 0 gives 0.9302, 0.7242 or 0.7898 when
keeping one, two, or three o-dependent terms in the
expansion, respectively.

6. Summary

We have presented an exhaustive analysis of the
field-dependent susceptibility of ferromagnets in
mean-field theory. Special attention has been dedi-
cated to the description of the scaling with field of
the susceptibility maximum occurring above T and
of its location on the temperature scale. The consid-
erable interest to analyze the MF predictions is
twofold: (i) theoretically, only the trivial and aca-
demic case of the field-dependent susceptibility of a
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paramagnet had been described so far; (i) experi-
mentally, a method based on the general scaling
theory predictions which allows us to measure two
critical exponents independently has been success-
fully implemented [3-8,19] with the very serious
advantage over alternative methods that, with it, the
critical temperature T, does not need to be known
very precisely.

Two different novel methods of analysis of the
field-dependent quantities in the MF theory are pre-
sented. The parametric method is related to similar
ones recently proposed to study different aspects of
ferromagnetism, antiferromagnetism, and magnetic
anisotropy [16—18]. It provides an unbeatable and
easy-to-implement tool for the study of all aspects of
MF field-dependent magnetization and susceptibility
for any spin value S and for any field and tempera-
ture. The asymptotic scaling functions are obtained
within this method as particular cases for sufficiently
small fields, # <1073, The analytic method ad-
dresses the description of the MF asymptotic region
only and is seen to result from a very simple manipu-
lation of the self-consistent equation for the magneti-
zation which seems to have escaped attention, even
though it provides for a unified description of the
scaling function involved.

The central results of the paper are grouped around
the determination of the scaling functions f(o) for
the magnetization and F(o) for the susceptibility.
They are explicitly given and analyzed. Special em-
phasis was laid on the description of the most pro-
nounced experimental feature, the maximum of sus-
ceptibility. We have shown that the fact that it occurs
at a value of the scaling variable o, which is of the
order of unity, regardless of the spin value, has the
consequence that the maximum and its location can-
not be adequately described by means of series
expansions of the scaling functions about o=0.
Among other things, we have proposed a nonlocal
parabolic approximant to the susceptibility scaling
function. While it is not a match or substitute for the
parametric solution, for instance, its simplicity may
offer expedience in analytic estimates with the exact
location and height of the susceptibility maximum.

It is further suggested that experimentally known
cases of ‘mean-field’ ferromagnets such as HoRh,B,
[12] and ZrZn, [21] are studied with the purpose of
determining the scaling functions experimentally.

Furthermore, the methods of this paper could tenta-
tively be used in the study of other ferromagnetic
materials in which long-range forces are suspected to
dominate and, hence, to lead to MF scaling behavior.
Apart from this, the parametric method has en-
abled us to estimate the width of the MF scaling
region in an applied field, thus providing a reference
case for comparison of the results of theories ac-
counting for the fluctuations of the order parameter
(magnetization) in the critical region.
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