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L. INTRODUCTION

If an extended condensed-matter system is reduced in its di-

mensionality, it can exhibit novel physical properties. These

finite-size or quantum-size effects are fascinating from a fun-

damental point of view as being likewise important with regard
~ totechnological applications. For example, quantum wells and
Superlattices build up by semiconductors or magnetic metals
€ prominent examples for intensively investigated and applied
stems [1, 2]. '

om the “bulk” system to an “ultra-thin” film. For the latter,
e €Xtension in one dimension is small compared to those in
1€ two other dimensions. What, however, actually is meant by
tra-thin” depends on the physical quantity under considera-
QH. Because this chapter is on electron spectroscopies, ultra-

0my sons Kai-Hendrik and Jan-Malte.
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When reducing the dimension from three to two, one goes

thin films can be regarded as of a few nanometer thickness. The
properties of ultra-thin films are obviously determined by the
material of the “bulk” system. However, because films are (usu-
ally) realized by evaporation on a substrate, their properties can
significantly be influenced by the film—substrate interface, es-
pecially for films a few angstroms thick.

Probably the most striking fact of films is that electrons can
become confined to the film and thus show discrete energy lev-
els; that is, the electron energies become quantized with respect
to the direction normal to the film. Many properties of films can
be attributed to these quantum-well states (QWSs). For exam-
ple, the giant magnetoresistance (GMR) effect [3], that is, the
change of the resistance of a stack of magnetic films (usually
named multilayer or superlattice) due to the arrangement of the
magnetic moments within each film, can be explained in terms
of QWSs. The GMR is still of interest in fundamental science
as well as it is applied in modern computer hard disks [4, 5].

The key to the understanding of the various physical phe-
nomena in these systems lies in a detailed knowledge of both
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their electronic and geometric structures, which are intimately
related. Two prominent experimental techniques that allow
for detailed investigations of these properties are low-energy
electron diffraction (LEED) and angle-resolved photoelectron
spectroscopy (ARPES). Both have been very successfully ap-
plied to semi-infinite systems. However, applied to an ultra-thin
film on a substrate, features in the spectra occur that are closely
related to the particular electronic states within the film; that
is, they are direct manifestations of QWSs in the spectra.
Therefore, these signatures give access to the electronic and
geometrical structures of the film—substrate system and can fur-
ther be related to more fundamental quantities, for example, the
thickness and the magnetization of the film.

Because the interpretation of experimentally obtained LEED
and ARPES data is rather difficult without theoretical aid, there
is need for a theoretical description of the electronic structure
of the film—substrate system and, based on this, of the spectro-
scopies. Basic physical properties can be obtained by ab initio
total-energy calculations. But these often do not provide a di-
rect link to spectroscopically measured quantities, such as, for
example, LEED intensities or photocurrents. Therefore, theo-
retical methods have to be developed that are based on ab initio
results and yield spectroscopic quantities that can directly be
compared to experimental data.

This chapter first introduces the geometrical and electronic
description of ultra-thin films (Section 2). In Section 3, theories
of LEED at various levels of sophistication together with some
applicaﬁons are presented. Subsequently, theories of ARPES
are given (Section 4). A complete coverage of ARPES is clearly
beyond the scope of this chapter. Therefore, it focuses on pho-
toemission from valence states that are excited by light within
the vacuum-ultraviolet (VUV) range of photon energies, the lat-
ter being well suited for the study of QWSs. Further, important
experimental results are used to illustrate the theoretical find-
ings. Of particular interest are films formed either by normal
or by magnetic metals. A description of magnetic systems is
best given by means of a relativistic theory, rather than incor-
porating the electron’s spin into a nonrelativistic theory. In this
way, exchange and spin-orbit interaction are treated on an equal
footing (which is essential for understanding some of the ef-
fects). Therefore, multiple-scattering theory is introduced in its
relativistic form. This requires some background knowledge of
quantum and solid-state physics. For the reader interested in
more details, references to review articles and books as well as
to important original articles are given.

2. THIN FILMS AND QUANTIZED
ELECTRONIC STATES

In this section, we introduce the geometry of films on a sub-
strate (Section 2.1) and describe electronic states within a film
(Section 2.2).
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Fig. 1. Geometrical arrangement of an ultra-thin film grown on a substrate.
The film consists of layers (vertical lines) j = 0, ..., 3 connected by translation
vectors d ;. The substrate is made up by all layers j > 4. Sites are represented
by black (film) or gray (substrate) circles.

2.1. Films, Substrates, and Lattices

Before turning to the description of electrons confined to an
ultra-thin film, one has to consider the geometry of the sys--
tem under consideration. An ultra-thin film can be regarded as
stack of layers, the basic object, grown on a substrate. Each
layer consists of sites (circles in Fig. 1) that form a lattice.! In
principle, these two-dimensional lattices may vary from layer to
layer. This is schematically depicted in Figure 1: The distance
between next-nearest sites in the film and the substrate layers
differs. Especially at the surface (layer index j = 0), sites can
be rearranged in such a way that the two-dimensional lattice
at the surface differs from those of the other layers. For exam-
ple, the (110) surface of Pt shows a reconstruction where each
second row of Pt atoms is missing [the “missing-row” recon-
struction of Pt(110)1 x 2 [6]].

Each layer j is connected to the next-nearest layer j + 1
by a translation vector d;. The latter may be different for each
layer, in particular, at the surface where usually do can differ
considerably from that of the other layers; that is, there is layer
relaxation.

Geometrical rearrangements such as relaxation and recon-
struction usually take place near the surface. Deep in the interior
of the system, all layers are identical; that is, they show the same
lattice and the same translation vector d. We take this feature as
the definition of the bulk systemi (i.e., an infinitely repeated ar-
rangement of identical layers). Note that for some systems the
repeated entity does not consist of a single layer but of a stack
of layers. One can comprise this stack into a principal layer anfi
use this as the basic quantity. For example, in Figure 1 a princl-
pal layer would consist of two substrate layers.

hat can

1A two-dimensional (three-dimensional) lattice is a set of vectors ! "
) bast

be expressed as the set of all integral linear combinations of two (three
vectors, not all along the same direction (in the same plane).
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After considering the basic geometry of film and substrate,
we can turn to the structure of the layers (i.e., the two-dimen-
sional lattices).

2.1.1. Two-Dimensional Crystal Structures

Because the surface breaks the three-dimensional periodicity of
the bulk, the 14 Bravais lattices [7] of the latter are no longer
suitable for the description of semi-infinite systems. Instead,
one is concerned with five types of two-dimensional nets, the
translation vectors of which connect identical positions (see,
e.g., [6, Chap. 3]).

Consider the unit cell? of the substrate spanned by the vec-
tors a; and a3 [8, 9],

a; = ajie; +ajze; (1a)

ay = az1e; + axpe; (1b)

where €; and e; are orthonormal vectors. The preceding equa-
tions establish the matrix A,

A= (au al2> @)
az1 ay
It can easily be verified that the area of the unit cell F is given
by the determinant of A, det(A).3 Note that each translational
vector reads t = ma; + nay with m and n integers, that is,
m,n € Z. The set of vectors t defines the two-dimensional
lattice. The five two-dimensional Bravais lattices are shown in
Figure 2.
The unit cell of the film layers is spanned by the vectors b
and by, which, in analogy to Eq. (1), gives rise to a matrix B.
Both sets of vectors are connected linearly by

by = nna; + npap (3a)
by = nz1a; + nya; (3b)

which establishes the matrix N. The areas of the unit cells are
related by Fp = F, det(N).

All periodic lattice structures can be cast into the following
three categories [9, 12]:

Simply related structures have all nij € Z. Thus, det(N) is
also an integer. For example, commensurate adsorbate
layers belong to this class.

Coincident structures have rational n;j. Incommensurate
adsorbed layers belong to this class.

Incoherent structures have irrational ni;. In contrast to the
other two cases, there is no common periodicity of substrate
and film.

A unit céll is a region that fills space without overlapping when translated
ough some subset of the vectors of a Bravais lattice [7).
_ A general definition of the area which is valid for all spatial dimensions
5 given by the outer product aj A ay of the corresponding geometric algebra
[.10’ 1]. In two dimensions, it corresponds to the determinant, in three dimen-
81005 to the cross product |a; x ap].

a; 2
a) b)
a

Fig. 2. Two-dimensional Bravais lattices: (a) square (J]aj] = {ay|, @ = 90°),
(b) primitive (la;] # lag], @ = 90°), (c) centered rectangular (la;| # |ap),
o = 90°), (d) hexagonal (ja;| = laz], @ = 60°), and (e) oblique (lay] # |ap),
« arbitrary), with o = Z(ay, ap).

7}

A lattice can be represented either in direct space (covariant
representation, a;) or in reciprocal space (contravariant repre-
sentation, g;). Both are related by

g,--aj=8,~j i,j=1,2 (4)

The vectors g; from the basis of the reciprocal lattice. Introduc-
ing a matrix G by

g1 = ejgn +exgy (5a)
g2 = e1gnn+exgn (5b)

gives, using Eq. (4), G = A~!/Fy. Thus, the area of the unit
cell of the reciprocal lattice is Fg = 1/Fj. Defining in anal-
ogy to Eq. (5) the reciprocal net of the film layers, that is,
the matri)l( H, and the relating matrix M, the latter is given by
M=N",

As we have seen, the space can be filled with (conventional)
unit cells. One can also fill the space by cells with the full sym-
metry of the Bravais lattice, for example, with Wigner-Seitz
cells. The latter are defined as regions in space about a lattice
point that are closer to that particular point than to any other
lattice point. The Wigner-Seitz cell of the reciprocal lattice is
called the (first) Brillouin zone [7].

2.2. Quantum-Well States

In 1928, Bloch showed that the energy spectrum of an electron
in a solid consists of continuous stripes of allowed ener-
gies that are separated by regions of forbidden energies [13].
These stripes are called energy bands; correspondingly, the
forbidden intervals are named bandgaps. The energy E of an
electron within a band is continuous with respect to the mo-
mentum K, which gives rise to the concept of band structure,
E (k). Undoubtedly, this concept is one of the most successful
in condensed-matter physics. In the following, we discuss the
energy spectrum of electrons confined to a film.

Because the geometrical structure and the electronic struc-
ture are closely related, several descriptions of electrons con-
fined to a film will be presented (for an introduction, see [14]).
In Section 2.2.1, the simple free-electron model will be intro-
duced. The envelope picture presented in Section 2.2.2 can be
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regarded as a refinement of the preceding. A tight-binding de-
scription is given in Section 2.2.3.

2.2.1. Free-Electron Description of Quantum-Well States

As a preliminary, we recall the well-known basics of the elec-
tronic structure of an electron in a potential with rectangular
shape, the so-called rectangular well (see, e.g., [15]). The well
is assumed to be infinitely extended in the xy plane and to ex-
tend from —a /2 to a/2 along the z axis. Thus, it can be regarded
as a simple representation of a film. According to the model of
a quantum well, the film is structureless in the xy plane, and,
thus, the potential function V (r) depends exclusively on z,

U z<-—af2
Vi={0 —af2<z<a/2 (6)
U a2 <z

The three different regions along the z axis are denoted I, II,
and I (cf. Fig. 3). For convenience, we introduce the in-plane
vector @ = (x, y). Therefore, r = (g, z). Because the potential
is symmetric with respect to the plane z = 0, thatis, V (g, z) =
V (@, —2), the electronic wave functions W (g, z) have to have
either even (+) or odd (—) parity: ¥ (g, z) = +¥ (e, —z). Fur-
ther, due to the translational invariance of the potential in the
xy plane, that is, V (g, z) = V(¢', z) for all g and @, the wave
functions obey Floquet’s theorem, ¥ (g +¢’, z) = A(@")¥ (g, 2).
Obviously, A(0) = 1 and A(g + @) = A(@)A(g"), which is
the functional equation of the exponential function. Because
|W(r)|? is the probability of finding an electron at r, the wave
functions have to be square integrable (¥ € L), that is,
[1¥@))2dr}® < co. With a normalized ¥ (ie., [¥] = 1),
it follows that |A(g)] = 1 for all g. Therefore, one can write
A(e) as A(g) = exp(ik) - @). In conclusion, the wave functions
can be written as

U(p, z) = exp(ik; - @W¥ (0, 2) @)

which (i) establishes a classification of the wave functions with
respect to ky and (ii) reduces the initially three-dimensional
problem to a one-dimensional problem [which has to be solved
for W(0, z); the in-plane wave vector K| acts as a parameter in
reciprocal space].

— W —

- -af2 0 a2
Fig. 3. Quantum well of rectangular shape. The potential V (z) is given as in

Eq. (6) with U > 0. In the three regions I, II, and III, representatives of the
wave functions with energy 0 < E < U are shown schematically in addition.

Z

We now solve the time-independent Schrédinger equation®
for the potential of Eq. (6),

(_%VZ + V(r))wr) = EV(r) (®)

which reduces, using Eq. (7), to the one-dimensional problem?
1 1
(“5"’3 + V(z))\Il(O, ?) = (E - Ekﬁ)wo, SINO)
In region II, the potential vanishes and one is left with
1 1
-5%vP0,9 = (E - Ekﬁ)w“n(o, z)  rell (10)

which is immediately solved by plane waves,
YD) = AD exp(iky - @) exp(ik{Vz) (11)

The z component of the wave vector, kﬂD, is related to the en-

ergy by
an
k) =\ 2E-x} (12)

In region I, the Schrodinger equation reads
1 1
~5900,2) = (E - ki - U)\I/(D(O, z) rel(13)

and, using the preceding results, Eqgs. (11) and (12),
YD) = AD exp(ik; - o) exp(ikz) (14)

KD = J2(E-U) - (15)

Note that k" can be either real [2(E — U) > kﬁ] or imaginary
[2(E -U) < kﬁ]. For region III, one obtains the same results
as for region I.

The next step is to construct the wave function of the entire
system. Therefore, one has to match both the wave function and
its derivative at the region boundaries, z = -:a/2, for a given
energy E and k). Because we are interested in bound states,
that is, those confined to the well, we choose U > 0 and assume
0 < 2E — kﬁ < 2U.5 In this case, kg) and kfl) are imaginary

and real, respectively. Setting «D = ; k(lD > 0, the ansatz for
the wave function reads, using Eqs. (11) and (14),

with

AD exp(cDz) rel
¥(0,2) = 1 A®(expikPz) texp(—ik{Pz)) rell
+AD exp(—kDz) relll
(16)

4We use atomic units throughout (ie., ¢ = h = m = 1). Lengths are
in bohrs (lag = 0.529177 A), energies in hartrees (1H = 2 Ry, 1 Ry =
13.6058 eV). The speed of light is given by the reciprocal fine-structure €on”
stant, ¢ = 137.036.

SThe notation 8, (32) is short for d/dz (d2/dz?).

6There is at least one bound state in this case [16].
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where the upper signs are for even parity, the lower ones for odd
parity. Note that in region II the two linearly independent solu-

tions exp(ﬂ:ikin) z) were superposed. In regions I and III, one
would have had the two solutions exp(+« ®Pz) but only one of
them is square integrable in the respective region. The matching
conditions at z = a/2 yield
+AO exp(—kVa/2)
= AD(exp(ika/2) + exp(—ikWa/2))
q:A(I)K(D exp(——K(I)a/Z)
= i AP (exp(ikPa/2) F exp(-ik™as2)) (17b)

(17a)

(The conditions for z = —a/2 give no additional equations.)
Because the coefficients A and AD remain arbitrary until W
is normalized, the two conditions are equivalent to the require-
ment that the logarithmic derivative of W, (3, W (0, z))/ ¥ (0, z),
is continuous at z = a/2. Using Euler’s formulas, one eventu-
ally obtains transcendental equations in the wave numbers,

x® cos(kPa/2) = kM sin(kMays2)
—«OsinkPa/2) = k™ cosk{Pa/2)

even parity (18a)
odd parity (18b)

which can be solved numerically.

At this point, it it illustrative to consider a well with infinitely
high barriers. The limit U — oo implies k@ — 0, and, there-
fore, the wave function vanishes in regions I and III. Thus, there
is no requirement for the z derivative of W (0, z), and the re-
maining matching condition (0, +:a/2) = 0 immediately
gives

m 7@+l neNy even parity
k) == . (19)
a | 2n) neN odd parity
which can be combined to
KD - 17 N 20
1m = _a_ me (20)
Therefore, the energy levels E,, are given by
1[(mn\? 2

The lowest energy level is for an even-parity state, and levels
of even and odd states alternate. Because the Hamiltonian is in-
variant under time reversal,” both W and W* are solutions of the
Schrédinger equation (8) to the same energy.® This is expressed
by the fact that both k and —k lead to the same energy, or, more
specifically, E,, = E_,,. Therefore, it is sufficient to consider
only positive wave numbers k(ﬁ,),

In comparison to the case of free electrons, thatis, V(r) =0
for all r, with energy band E = k2/2, the energy of the elec-
trons confined to the well is quantized. In other words: the
Spectrum E,, is discrete, as is shown in Figure 4. The electronic

The nonrelativistic time-reversal operator is complex conjugation, Ko. Its
Telativistic counterpart reads —igy Ko, o being a Pauli matrix.

This is cailed Kramer’s degeneracy [17].

states Wy, are called quantum-well states (QWSs) and have even
(odd) parity for even (odd) m.

If one identifies the width a of the quantum well with a cer-
tain number N of layers with thickness d, ¢ = Nd, the energy
levels are given by

1[ [ ma\? 2
En(N) = 5[(@) +k"] meN (22)
These are shown in Figure 5. Connecting energy levels with
identical quantum number m gives the typical 1/N? behav-

100

80 Fd e

(=]
(=1

Energy (arb. units)
s
(=]

20 P2, .

o] 2 4 6 8 10 12 14

k 18
Fig. 4. Quantization of energy levels of an electron confined to a quantum
well with infinitely high barriers (U = 00). The solid line is the parabolic free-
electron band, E = ki /2. Filled circles represent the discrete spectrum of the
confined electron. The allowed wave numbers k Lm = mx/a are equidistant,
cf. Eq. (20), and marked by dotted lines. The quantum number m is given at the
left. The width of the well is 4.

Energy (arb. units)

12 3 4 5 e
Thickness (layer)

7 8 9 10

Fig. 5. Energy levels of an electron confined to a quantum well versus well
thickness a. The latter is given in layers, a = Nd, d being the interlayer
distance. Empty circles indicate energy levels for a well with infinitely high bar-
riers. Solid lines connect levels with the same quantum number m, cf. E,, (N)
in Eq. (22). Dashed lines, however, connect levels with identical m — N. Filled
circles indicate energy levels for a well with finite barriers, U = 4.5 (8 = 1.5).
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Fig. 6. Experimental photoelectron spectroscopy from quantum-well states of Cu films on fcc Co(100) for
kj = 0. Left: photoemission for 16.85 eV photon energy. The lowest spectrum shows the intensity for the un-
covered substrate [fcc Co(100)], the uppermost that of semi-infinite Cu(100). Spectra for Cu film thicknesses
from 1 layer up to 10 layers are shown in between. Intensity maxima that are related to quantum-well states are
labeled by numbers. Right: inverse photoemission with 11.5 eV initial energy. The same quantum-well states as
in the left panel are detected but above the Fermi energy Ef (cf. the numbers associated with the intensity max-
ima). Reprinted with permission from J. E. Ortega, F. J. Himpsel, G. J. Mankey, and R. F. Willis, Phys. Rev. B

47, 1540 (1993). Copyright 1993, by the American Physical Society.

ior (solid lines in Fig. 5). If levels with identical m — N are
connected (dashed lines in Fig. 5), one obtains a more tight-
binding-like visualization, as we will see later.

We now return to the well with finite barriers. Defining £ =
ka2, p = ay/UJZ, and n = cot£, the matching conditions
Eq. (18) can be written as

£ ‘v
n= even parity (23a)
B> —£
/82 _ £2
= ié—g— odd parity (23b)

From this, one can extract that (1) all bound states are nonde-
generate, (ii) even and odd solutions alternate with increasing
energy, and (iii) the number of bound states is finite and equals
M+1if Mn < 28 < (M + ). The first two statements
have already been observed for the case of infinitely high bar-
riers (U — o0, B — 00). Note that the well is sufficiently
characterized by the dimensionless parameter S. :

The energy levels for a well with finite 8 (finite height) are
shown in Figure 5 as filled circles. For the parameters chosen,

the number of states is equal to the number of layers. The global
behavior in dependence on the film thickness is close to that for
a well with 8 = oo.

The preceding dispersion relations E,, (N) for the QWSs can
be experimentally determined by ARPES and angle-resolved
inverse photoelectron spectroscopy (ARIPES); see Section 4.
As a prototypical example, we address Cu films grown on face-
centered cubic (fcc) Co(100). The photoelectron spectra taken
for emission normal to the surface (i.e., k| = 0) are shown
in Figure 6. The intensity maxima related to the QWSs are
labelled by the quantum numbers m (ARPES has access t0
the initial states below the Fermi energy Ef, whereas ARIPES
probes states above Eg). The energy dispersion En, (N) as ob-
tained from the spectra is shown in Figure 7. The dependence of
the energy position on film thickness follows the theoretically
determined one in very good agreement (lines in Fig. 7). These
lines correspond to those for m — N as obtained for the simple
“rectangular-well” model (dashed lines in Fig. 5). Note that the
bulk-band structure of Cu, in particular, the sp valence baf‘d’
plays the same role as the free-electron band in the precedmg
quantum-well model (cf. Figs. 4 and 5).
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Fig. 7. Quantum-well states of Cu films on fcc Co(100) as obtained by angle-
resolved photoelectron spectroscopy for k = 0. Shown are energy positions
of quantum-well states versus film thickness—as obtained from the spectra in
Figure 6 (filled circles). Lines are theoretically predicted values using the bulk-
band structure of Cu along the '~A-X direction (cf. also Fig. 5). Reprinted
with permission from J. E. Ortega, F. J. Himpsel, G. J. Mankey, and R. F. Willis,
Phys. Rev. B 47, 1540 (1993). Copyright 1993, by the American Physical Soci-

ety.

In the basic theory discussed previously, we assumed a sym-
metric quantum well, V(g, z) = V(p, —z), thus ignoring any
effects of the substrate that would affect the potential of the film
at the film—substrate interface. It is straightforward to enhance
the model to a different barrier height at the film—substrate
boundary with respect to that at the vacuum-film boundary.
Further, one can introduce additional potential steps in order
to mimic polarization effects due to the substrate.

2.2.2. Envelope Picture of Quantum-Well States

In the preceding section, we employed a description of quan-
tum-well states based on plane waves; for example, we assumed
free electrons in the three regions of the system and neglected
any “internal structure” of the potential in the film region. Now
we take into account the crystal potential in an approximation,
which was originally introduced for semiconductor superlat-
tices [18, 19].

We start with the Schrodinger equation (8) for the infinitely
extended system, the so-called bulk system, where V (r) is now
the potential of the bulk. The latter can be written as a sum
over site, potentials V(r) = Y, V(r — R;), where the vec-
tors R; form a lattice; that is they can be expressed in terms
of basic translation vectors a;, j=1,2,3:R; = Z;=1 n;jaj,
Mj € Z (cf. Section 2.1.1). Therefore, the crystal potential
is translationally invariant with respect to lattice vectors R,
V(r) = V(r+R). Following the argumentation in Section 2.2.1
[Fquuet’s theorem,; cf. also Eq. (7)], the wave functions fulfill
the Bloch condition

¥ (r + R; k) = exp(ik - R)¥(r; k) (24)

Because the wave functions have to be square integrable, the
Wave vector k has to be real. These wave functions are called
Bloch states and can be classified with respect to k. Their en-
trgy eigenvalues, the bulk-band structure, are denoted E k).
The electrons have to be confined to the film, which is again
Considered as infinitely extended in the xy plane. We therefore

introduce two boundaries, the vacuum—film interface (i) and the
film—substrate interface (s). The interfaces are assumed only to
change the boundary conditions with respect to the bulk case
but to leave the potential in the film region unaltered; that is,
effects due to the substrate or the vacuum region are ignored.
Therefore, the effect of the interfaces on the wave functions
can be described by reflectivities Ry and R; as well as phase
shifts ¢; and ¢ (Ry, R;, &5, ¢i € R). For kj = 0, fixed g,
and a film of thickness Nd (d being the interlayer distance), a
‘round trip’ of a Bloch wave in the film region yields a total
interference factor of

I'= ReR; expli 2k L Nd + ¢; + ¢1)] (25)

Assuming complete reflection at the interfaces, R;R; = 1, con-
structive interference requires that the exponential factor in the
preceding equation be equal unity. Or, equivalently,
2kuNd+¢s+¢;i=2nr’ neZ (26)
Introducing ¢ = ¢, + ¢;, one arrives at the condition

2nmw — ¢
" 2Nd
In conclusion, the boundary conditions at the interface restrict
the allowed values of &, to those compatible with the “round-
trip” criterion. The energies of the QWSs are therefore given
by E(k1) with k from Eq. (27). For a rectangular well with
infinitely high barriers, the phase shift ¢ is either 0 (odd par-
ity, ¢s = ¢ = 0) or 21 (even parity, ¢; = ¢; = ), which
immediately yields Eq. (22).

The preceding & quantization allows for an accurate deter-
mination of the bulk-band structure E (k1) by ARPES [20-22].
For fixed k|, one measures photoemission intensities for films
with different numbers of layers N and thus determines E k).
For semi-infinite systems, this method does not work because
there is no restriction for k 1; that is, it is not conserved in the
photoemission process and therefore remains unknown.

Now consider a Bloch state with energy E(k) ) in the range
of a bulk band. Its wave function can be written as

W(z; k1) = exp(iky z)u(z) (28)

where u(z) is periodic with the interlayer distance, u(z + d) =
u(d), which follows immediately, from Eq. (24). We now as-
sume that k; takes a value kidge close to a band edge; for

kL nelZ @7)

example, kidge = O or n/d. A wave function at another en-
ergy than the bulk-band edge but within the bulk-band range,

and therefore k) £ k_eLdge, can be approximated by

W(z; k1) ~ F@)W(z; k) (29)

where F(z) is slowly varying: The wave function W is given by
v (k_eLdge) but modulated by the envelope F(z). According to the
previous consideration on interference within a film, the enve-
lope is given by exp(ik%™z). Thus, the total wave number & 1
reads k| = KT+ kidge. Note that, a Bloch state with k_eLdge
can occur as QWS if it fulfills the boundary conditions, that
is, kjfjge = k1. In this case, F(z) = 1. Further, the envelope
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accounts for the correct boundary condition at the interfaces
and obviously, according to Eq. (27), k9" depends on the phase

shift . If k°°° is given by /d, we have

2(n—Nym — ¢
2Nd

It is worth noting again that the microscopic details at the
interfaces are “smeared out” in the preceding envelope approx-
imation. Therefore, it should be applied only in cases of thick
films in which there is a bulklike potential of considerable spa-
tial extent. In very thin films, for example, those in which the
interfaces are very close, the previous approximation becomes
questionable.

kY = nez (30)

2.2.3. Tight-Binding Description of Quantum-Well States:
Rare-Gas Films on a Metallic Substrate

We now address a description of quantum-well states based on
the envelope theory. This model has been introduced by Griine
and co-workers in order to describe photoemission experiments
of rare-gas films on metallic substrates [22]. Due to the inert
behavior of the rare gases, bulk- as well as surface-band struc-
tures can be described very well within tight-binding theory.
For example, the Xe 5p states are split due to spin-orbit cou-
pling (SOC) into 5pj=1/2 and 5pj—3/2 states, j denoting the
total angular momentum. In layered structures (as well as in the
bulk of fcc-Xe), the 5p;—3/2 states are further split due to lat-
eral interactions, for example, the overlap of orbitals located at
different Xe sites [23-25]. Tight-binding models have proven
to reproduce the experimentally determined energy dispersions
very well [26, 27].

The main problem in describing the energy dispersion of Xe
states on a metal substrate measured by means of ARPES is
to account for the change in the Xe binding energy in depen-
dence on the amount of adsorbed Xe. In particular, the binding
energies of states located at the Xe—metal interface are substan-
tially smaller than those of states in the other Xe layers. This
behavior can be attributed either to a change in the work func-
tion,? which is due to the adsorption of Xe, or to the image force
acting on the hole, which has been created in the photoemission
process (cf. Section 4). The first effect is a so-called initial-state
effect because it is present in the ground state of the system.
The second is a final-state effect because it occurs in the excited
system, that is, in the state with the photoelectron missing. To
account for these effects, the simple rectangular well has to be
extended as shown in Figure 8. Instead of three regions (I, II,
and III), we now have four (A, B, C, and D). In the initial-
state model, the change of the work function is Vg, which is
known from experiment. The Fermi energy EF is fixed by the
substrate. The binding energies are E = Vp + Vp — Oy — Ef
and E = Vp + ®pr — Er in the initial-state and the final-state
model, respectively.

9The work function is the energy difference between the vacuum level and
the Fermi level.
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Fig. 8. Quantum-well models for rare-gas films on a metallic substrate (left,
initial-state model; right, final-state model). £ is the electron energy and @ M
the work function of the substrate (no film present). The four regions A, B, C,
and D are the substrate, the rare-gas layer next to the substrate, the remaining
rare-gas layers, and the vacuum, respectively. Reprinted with permission from
M. Griine, T. Pelzer, K. Wandelt, and I. T. Steinberger, J. Electron Spectrosc,
Relat. Phenom. 98-99, 121 (1999). Copyright 1999, by Elsevier Science.

Due to the confinement of the electrons to the Xe film, one
assumes exponentially decaying plane waves in regions A (sub-
strate) and D (vacuum) with constants k4 and «p [cf. Eq. (16)].
The latter are given by

kA = v/2(Vp+ Vg — @y — E) (31a)
Kp = \/Z(VD - E) (31b)

in the initial-state model, which we focus on in the following
discussion. In region C, the Xe film, one writes the wave func-
tion according to the envelope theory as

We(z) = Csinlkcz + 6c.)u(z) (32)

where sin(kcz + 8¢) is the envelope and u(z) is periodic with
respect to the interlayer spacing d: u(z) = u(z + d). One fur-
ther assumes that u is symmetric with respect to the Xe layers,
u(z) =0atz =nd,n =0,..., N, where N is the num-
ber of Xe layers. In region B, the wave function takes the same
form as in Eq. (32) but with labels B. Note that u(z) need not
be explicitly specified. The band structure E(k) of bulk Xe is
approximated by

E(kp) = —yg[1 + cos(kpd)] + Vs — 2(ys — yc) (332)
E(kc) = —yc[1+ cos(kcd)] (33b)

that is, one uses the energy dispersion of a simple tight-binding
model. Note that yp and yc are allowed to differ. As in the
case of a rectangular quantum well, the dispersion relation is
obtained via matching the wave functions at the interfaces. This
yields the transcendental equation

ke tan[de + arctan(kB/KA)]
= —kg tan[(N — Dkcd + arctan(kc/xp)] (34

which is used to determine the energies of the QWSs. Aftef
eliminating x4, kp, and kg, one eventually obtains an equation
in k¢ with adjustable parameters yp, yc, and Vp that have to })C
determined by comparing the experimental QWS energies with
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Fig. 9. Experimental photoelectron spectroscopy from Xe films on Cu(100)
in normal emission (ky = 0) and unpolarized light with 21.22 eV photon
energy He(I). The Xe dose in langmuirs (L) is denoted on the right of each spec-
trum. Arrows indicate intensity maxima attributed to spin-orbit split 5p j=1/2
and 5p 3,2 quantum-well states. Reprinted with permission from M. Griine,
T. Pelzer, K. Wandelt, and 1. T. Steinberger, J. Electron Spectrosc. Relat. Phe-
nom. 98-99, 121 (1999). Copyright 1999, by Elsevier Science.

that obtained by theory for all film thicknesses. Note that the
adjustable parameters do not depend on the number of layers N.

The experimental photoelectron spectra for Xe films on
Cu(100) are shown in Figure 9. For very low Xe coverage
(cf. the lowest spectrum), one observes two Xe-derived max-
ima with binding energies that differ considerably from those
at higher coverages. This can be attributed to the different po-
tentials in regions B and C. At higher Xe coverages, the number
of QWSs increases, as can be seen in Figure 10. For all three
Substrates, the pattern of energy positions is similar except
for the specific binding energies. Each pattern can be divided
into two groups, one for the 5 pj=1;2 states, the other for the
5Pj=3/2 states. This separation accomplishes the fitting pro-
Cedure because each group can be fitted separately. For film
thicknesses N > 2, each pattern is almost symmetric in en-
ergy, which can be attributed to the underlying tight-binding
band-structure of Xe, Eq. (33) (see also Section 4.2.4). How-
ever, distinct deviations from the symmetry occur: Open circles
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Fig. 10. Energies of quantum-well states of Xe films on metallic substrates
[from bottom to top, Xe/Pt(100), Xe/Ru(0001), and Xe/Cu(100)]. Circles
and triangles indicate experimentally determined values [for Xe/Cu(100),
cf. Fig. 9]. Vertical lines mark values obtained from the theory of Sec-
tion 2.2.3. Reprinted with permission from M. Griine, T. Pelzer, K. Wandelt,
and L. T. Steinberger, J. Electron Spectrosc. Relat. Phenom. 98-99, 121 (1999).
Copyright 1999, by Elsevier Science.

0 84

in Figure 10 denote so-called extra peaks. For a film N layers
thick, N — 1 energy positions follow closely that of a quantum
well with infinitely high barriers and tight-binding band struc-
ture [cf. Eq. (27)]. The behavior of the Nth value can also be
attributed to the potential difference between regions B and C.
In conclusion, the sophisticated quantum-well model presented
before is able to reproduce and to explain most, if not all, of
the features found in experiment. Finally, it should be noted
that initial-state and final-state models yield almost identical
QWS dispersions. Therefore, one cannot judge from the pre-
ceding analysis whether the effects appear in the ground state
or in the final state.

3. LOW-ENERGY ELECTRON DIFFRACTION

3.1. Introduction and History

Scattering of electrons from solid surfaces is one of the
paradigms of quantum physics. The pioneering experiments
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were performed by Davisson and Germer [28, 29] on a Ni sin-
gle crystal with (111) orientation and confirmed de Broglie’s
concept of the wave nature of particles [30-32], a concept at
the very heart of quantum mechanics (wave-particle dualism).
Already in these early works they recognized the potential of
low-energy electron diffraction (LEED) as a tool for the de-
termination of surface structures [33, 34] and applied it to
gas-adsorbate layers on Ni(111) [35]. This success was only
possible due to two important properties of LEED: surface sen-
sitivity and interference.

The schematical setup of a LEED experiment is shown in
Figure 11. A monoenergetic beam of electrons with kinetic en-
ergy E impinges on the sample. The reflected electron beams
are detected and analyzed with respect to their direction and
energy. Usually, one detects only elastically reflected electrons
(for which the energy is conserved) and uses incidence nor-
mal to the surface. Therefore, set of LEED spectra—or I (E)
curves—represents the current I of each reflected beam ver-
sus the initial energy E. Note that the reflected intensities are
roughly as large as 1/1000 of the incoming intensity.

Surface Sensitivity. 1n 1928, Davisson and Germer observed
an attenuation of the electron-beam intensity with sample thick-
ness [36]. Electrons in a LEED experiment have a typical
kinetic energy in the range of 20 to 500 V.10 Due to the interac-
tion of the incoming electron with the electrons in the sample,
the former penetrates into the solid only a few angstroms. Typ-
ical penetration lengths taken from the “universal curve” (see,
e.g., Fig. 12) range from 5 to 10 A [38, 39]. Therefore, LEED
spectra usually carry less information about the geometrical
structure of the volume of the solid, that is, the bulk, than of
the solid’s surface region.
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Fig. 11. Scheme of the LEED setup. An incoming beam of electrons e~ is
elastically scattered by the solid. The latter is considered as a compound of the
substrate (gray circles) and a thin film (black circles). A reflected electron beam
is detected. The dashed—dotted arrow represents the surface normal.

10Experiments with energies below this range are called very low energy elec-
tron diffraction (VLEED), those with higher energies medium-energy electron
diffraction (MEED). At even higher energies, one uses gracing electron inci-
dence and emission to obtain surface sensitivity, that is, reflecting high-energy
electron diffraction (RHEED).

Interference. De Broglie showed that a particle with momen-
tum p can be associated with a wave with wavelength A =

2n/p (p = |pl). For example, an electron in vacuum can be
described by a plane wave
W(r,¢) =expli(k-r— wh)] (35)

with wave number k = 2 /A and energy E = o = k?/2. De
Broglie’s picture of electrons as waves and the interpretation
of the Davisson—-Germer LEED experiments lead to the ques-
tion: Are electrons waves? [40]. Comparison was made to X-ray
scattering in view of the determination of structural information
and Davisson came to the conclusion that if X-rays are waves
then electrons are, too. However, he admitted that the picture
of electrons as particles is better suited for the explanation of
the Compton effect or the photoelectric effect (cf. Section 4 on
angle-resolved photoelectron spectroscopy).

In the wave picture of electrons, the LEED experiment can
be regarded as follows. An incoming plane wave, the incident
beam, is scattered at each site and the outgoing plane waves,
the outgoing beams, are measured. Both amplitude and phase of
each outgoing wave are determined by the scattering properties
and the position of each scatterer. For example, a change in the
position of a scatterer will change the wave pattern in the solid
and, therefore, will affect both amplitudes and phases of the
outgoing waves. Because the LEED current of a beam is given
by the wave amplitude, it carries information on both positions
and scattering properties of the sites. This mechanism can be
used, for instance, to obtain images of the geometrical structure
in configuration space by LEED holography [41].

Although LEED is sensitive to the outermost region of the
sample, it is capable of detecting fingerprints of the electronic
states of the film-substrate system. As mentioned previously,

1000

100

Energy (eV)

Fig. 12. Compilation for elements of the inelastic mean free path Am (dots)
in monolayers as a function of energy above the Fermi level. This “universal
curve” is almost independent of the solid, for example, surface orientation Of
elemental composition. The solid line serves as a guide to the eye. For details,
see [37). Reprinted with permission from M. P. Seah and W. A. Dench, Surf
Interface Anal. 1, 2 (1979). Copyright 1979, by John Wiley & Sons.
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the LEED intensities depend on the electronic structure of the
sample above the vacuum level and, therefore, contain informa-
tion of the electronic structure of the entire film. In particular,
quantized states that are confined to the film have a pronounced
effect on the LEED spectra.

It took considerable time to develop theories that include
multiple scattering of the LEED electron [42-44], which ob-
viously is necessary for a proper description of LEED spectra.
Textbooks that introduce to the field and present computer
codes for the calculation of I(E) spectra were written by
Pendry [45] as well as van Hove et al. [46]. Van Hove and Tong
also provide review articles [47, 48].

Additional information can be obtained if one uses a spin-
polarized beam of incoming electrons, that is, spin-polarized
low-energy electron diffraction (SPLEED), and uses a spin-
sensitive detector, for example a Mott detector or a SPLEED
detector. Interestingly, the latter exploits the LEED mecha-
nism itself for a spin resolution in the experiment. Pioneering
works were made by Feder [49—51] on the theoretical and by
Kirschner [52] on the experimental side.

3.2. Theories

In the following, a theoretical description of LEED from semi-
infinite solids covered by thin films (cf. Fig. 11) is presented.
The kinematical theory focuses mainly on interference effects
(Section 3.2.1), whereas in the pseudopotential theory a close
connection of LEED intensities to the electronic structure is es-
tablished (Section 3.2.2). The multiple-scattering theory gives
an introduction to state-of-the-art calculations of LEED from
layered systems (Section 3.2.3).

3.2.1. Kinematical Theory

According to de Broglie’s wave picture of electrons, we con-
sider as an introduction elastic scattering of a plane wave by a
one-dimensional periodic structure (cf. Fig. 13). Constructive
interference occurs if the phase difference between outgoing
beams scattered from neighboring sites is an integer multiple of
the wavelength A,

a(sing — sin@g) = hi heZ (36)

o———9o ®
Fig.13, Scattering from a one-dimensional periodic structure with lattice con-
Stant a. The incoming plane wave impinges with a polar angle of gy relative to
the normal axis (dashed line). The diffracted wave is outgoing with an angle ¢.

This is the so-called Laue condition, and % is the order of
diffraction. Note that the hth order of diffraction corresponds
to the nhth order of the same periodic structure but with lattice
constant na.

The preceding consideration can easily be applied to two-
dimensional periodic structures, that is, a two-dimensional
lattice with basis vectors a; and ay; cf. Section 2.1.1. The Laue
condition then reads

sing — singp = A/dp 37

with dp = |ha; + kay| denoting the length of a vector of the
direct (covariant) lattice. In other words, the diffraction pattern,
that is, the set of angles ¢ and g for which there is constructive
interference, yields the geometry of the direct lattice. / and k
are referred to as the Miller indices. The Laue conditions can
further be written as

(s —sp)-a; = hiA i=1,2 heZ (38

where the vectors s and sy specify the directions of the incoming
beam and the diffracted beams, respectively. Expanding As =
S — s in the basis of the reciprocal lattice, As = g1+ g202,
one sees immediately that As = (g1h1 + g2ho)A. Or, in other
words, the diffraction pattern is directly a representation of the
reciprocal (contravariant) lattice. Because the Laue conditions
pick out discrete directions of reflection, each of which is as-
sociated with a pair of Miller indices (4, k), one usually calls
the reflected wave functions LEED beams and indicates them
by (h, k). The results obtained so far can be cast into the sketch
of a LEED experiment as shown in Figure 14.

Up to now, only the diffraction pattern has been considered;
intensities of the diffracted beams have been ignored. A first
approach for calculating intensities is the kinematical theory,

Fig. 14.  Scheme of a LEED experiment. An incoming beam of electrons spec-
ified by its wave vector k (incoming arrow) is scattered by the solid (gray area).
The elastically reflected electron beams are indicated by their Miller indices
and & of the surface-reciprocal lattice vectors, their wave vector denoted as kpy
(outgoing arrows). Filled circles represent atoms at the surface. The surface
normal is given by the dashed-dotted arrow. Because the electrons are reflected
elastically, the lengths of the individual wave vectors are identical (cf. the dotted
semicircle).
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which assumes that the interaction of the LEED electron with
the solid is weak. Therefore, only single-scattering events have
to be considered; multiple scattering is neglected. This approxi-
mation gives reasonable results for scattering of X-rays and fast
electrons (e.g., for Compton profiles), but worse results for slow
electrons (e.g., for LEED or VLEED). However, the basic idea
can be regarded as the starting point for a dynamical theory, that
is, a theory that takes into account multiple scattering.
Consider a LEED experiment from a semi-infinite solid that
consists of a substrate covered by a thin film (cf. Fig. 11).
The incoming LEED beam with incidence direction sp is rep-
resented by the plane wave Wisc = Woexp(iko - r), where the
momentum kg = 2mso/A. An outgoing wave scattered from
site R’ and detected at R is given by
v = U PR ¢ kg R explitk— ko) - R (39)

[k ——
1 2 3

The first term {denoted 1 in Eq. (39)] is a spherical wave; the
second is the atomic structure factor and describes scattering of
plane waves at site R’. In a dynamical theory, it depends on both
directions k and ko, whereas in the kinematical theory it is as-
sumed to depend only on k—Ko: f(k, ko; R") = f(k—ko; R).
The third term takes care of the phase difference relative to
the origin of the coordinate system. Note that the detector is
assumed to be positioned at a large distance away from the sam-
ple. Therefore, the spherical waves outgoing from each scatterer
can be replaced in good approximation by plane waves at the
detector position.

Because only single scattering is considered, the total out-
going wave function is the sum of those outgoing from the
substrate and those from the film, Woy = WS + WAM We
first consider the substrate, the lattice of which is defined by
the basis vectors a;, az, and as. The first two are parallel to
the surface (a1; = az; = 0), and the latter points from one
layer to the neighboring one (a3, # 0; a3 corresponds to the in-
terlayer vector d introduced previously). Further, the structure
factor is assumed as identical for all sites: f sub(k — ko; R') =
f59b(k — ko). The outgoing wave then reads
WD~ FSU(k—Ko) ) expli(k—ko)-(n1a1+n2ax+n3as)]

out
nynan3

(40)
and is the product of a single-site structure factor (f suby and
a geometrical part that depends only on the lattice structure.
This feature—the separation of scattering properties and the ge-
ometrical arrangement of the scatterers—is also present in the
Korringa-Kohn-Rostoker (KKR) multiple-scattering approach
presented in Section 3.2.3. With the definitions

S¥(k —ko) = Y _exp[ini(k—ko)-a;] =123 (4])

ni

the intensity 7°°° at the detector position R solely from the sub-
strate reads

3
1 ~ (el ~ | £ — ko) P TTIs7k - ko)[* - (42)

i=1

One now has to consider the sums Sis“b, i = 1,2,3. As
Davisson and Germer observed [36], the electron beams are at-
tenuated in a direction normal to the surface. Thus, an empirical
attenuation factor u is introduced, which takes care of the sur-
face sensitivity of the LEED experiment (see Fig 12). Then Sg“b
reads

S50k —ko) = ) exp[ij(k—ko)-a3 — ju]  (43)

j=0

Summing up the geometrical series yields
|53k — ko)|* = {1 — 2exp(—1) cos[(k — ko) - 23]

-1
+ exp(—2w) ) (44)

which is maximal if cos[(k — ko) - a3] = 1 or, equivalently, if
(k — ko) - a3 = 2 h3 with integer k3. This establishes the third
Laue condition; cf. Eq. (38). Analogously, the sums S and S,
give the two Laue conditions for planar diffraction.

The effect of the attenuation on the third Laue condition is
shown in Figure 15a, where |S3(k — ko)|? is presented for sev-
eral values of 1. An increase of the latter reduces the ratio of the
maxima at 2T i3 to the minima at 7w /3. In other words, strong
attenuation weakens the third Laue condition.

Now we consider the effect of the film on the electron
diffraction. For a film with N3 layers, the outgoing wave func-

40 T T T T 40
(a) — p=00 ® i cN=2
- p=02 NI N=4
st | e =041 i ~—— N=8 {35
S p=10 | ~— N=o0o
30 'il 30
i
i
i
251 25
o o
9"’20 F 20 Q"‘
15 ! 15
10} k. 110
t
st \ 5
0 Sxzal
-x -xf2 o w2 T -7 w2 0 /2 "
phase shift phase shift

Fig. 15. Weakening of Laue conditions. (a) Effect of attenuation on the Laue
condition. The lattice factor |53 |2, cf. Eq. (44), is shown for attenuation factors
u = 0.0, 0.2, 0.4, and 1.0 versus the phase shift (k —kg) - a3. The lattice factor
is maximal at multiples of 27, in accordance with the third Laue condition. An
increase in 4 leads to weakening of the latter. (b) Effect of a finite number of
layers on the Laue condition. The lattice factor |S3 |2, cf. Eq. (47), is shown for
N =2, 4,8, and oo layers versus the phase shift (k — kg) - b3. The lattice factor
is maximal at multiples of 27, in accordance with the third Laue condition but
additional maxima occur for finite N. A decrease in N leads to weakening of
the Laue condition. The attenuation factor chosen is u = 0.01.
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tion is
3
Youl ~ f1"(k ~ ko) [ ] ™ (45)
i=1
with the definition
Sk —ko) = ) _ explini(k—ko) - by]

n;

i=1,2,3 (46)

The lattice factors Sf‘m and Sglm establish the first two Laue
conditions for the film structure, (k—kg)-b; = 2mh;, h; integer.
In Sglm, one has to sum over the finite number N3 of film layers,
which yields

|sfim ( — k)|
_ 1 —2exp(—=uN3) cos[ N3(k — ko) - b3] + exp(—2uN3)
- 1 — 2exp(—p) cos[(k — ko) - b3] + exp(—2p)
47

Obviously, for N3 = 1 there is no third Laue condition
[ISg““‘(k —ko)|?2 = 1] because there is no interference in the
direction normal to the film. The effect of finite N3 on 18312 is
shown in Figure 15b. A large number of layers leads to sharp
global maxima in the lattice factor (compare the cases N3 = 8
and N3 = 00); however, N3 — 2 additional maxima occur in
[0,27]. A decrease of N3 weakens the third Lauve condition
considerably (cf. the case N3 = 2). In the LEED 7 (F) spectra,
this would lead to broad maxima of the “kinematical peaks”.

Finally, consider the total intensity /' of the entire film—
substrate system. Because the outgoing wave function is the
sum of that arising from the substrate and that of the film,
Wour = WS + WAlm the intensity reads

Itot ~ stub_}__ wﬁllt'lll2

out oul

~ ISUb+Iﬁlm+2Re[(‘I’SUb)*\pgll‘in

out

(48a)
(48b)

The third term is due to interference of the electron’s wave
between the film and the substrate structure. Its effect on the
LEED intensity is shown in Figure 16 for a film with N3 =4
layers and a simply related structure (b3 = 3as; cf. panel a).
Obviously, the total LEED intensity is not the sum of the film
and substrate intensity, as is evident from the maxima at multi-
ples of 2. If the structures are incoherently related (panel b),
the LEED intensity becomes irregular, in particular, that of the
substrate-related maxima. In a polar plot (shown as insets in
Fig. 16), a simply related structure shows 7 clubs if b; = na;,
which, for the case shown here, leads to three clubs. If the film
and the substrate structure are incoherently related, that is, the
Tatio n is irrational, the pattern becomes dense in the polar plot.
For n = 24/3 ~ 3.4641, the substrate-related maxima at 27zn
dominate (cf. the club aligned along the x axis in the upper right
inset of Fig. 16).

The periodicity at the surface or in the film must not be iden-
tical to that of the substrate (cf. Section 2.1.1). But because the
Periodicity of the latter can easily be recognized in the LEED
Pattern, it is convenient to use it as the reference [cf. the ma-
trix G in Eq. (5)]. A spot in the surface reciprocal net, which

has integer indices n; and ns, can be expressed in the substrate
reciprocal net via (my, m3)G = (ny, ny) H, which yields the
indices (m1, m2) = (ny, ny) M.

If there are N scatterers in the unit cell located at ¢ e J =
1,..., N, the kinematical structure factor is given by

N
Fk—ko; R) =) | f;(k —ko; R) expli(k ~ ko) - 7;] (49)
Jj=1

Again, multiple scattering has been neglected, in contrast to a
dynamical theory. Therefore, in order to treat several scatterers
in the unit cell, one has to replace f(k—ko; R) by F(k—ko; R).

In the kinematical theory, the electronic structure of the
sample enters via the atomic form factors, that is, more or
less indirectly because these do not provide access to details
of the electronic structure of both substrate and sample [e.g.,
band structure E(K) and density of states (DOS)]. To illustrate
the close connection between LEED intensities and electronic
structure, we introduce a LEED theory based on empirical pseu-
dopotentials.

3.2.2. Pseudopotential Description of Low-Energy
Electron Diffraction

The following approach to LEED calculations is based on the
considerations that (i) the scattering of the electrons inside the
solid can be calculated with well-established band structure
methods; (ii) the LEED state inside the sample is expanded
into Bloch waves of the infinite solid, taking into account the
correct boundary conditions in both the vacuum and the bulk;
and (iii) lifetime effects can easily be incorporated via complex
energies [53]. Employing the band structure of the solid can
help to interpret LEED spectra or—the other way round—to
determine the band structure by adjusting the potential parame-
ters used in the calculations in such way that experimental and
theoretical LEED, VLEED, or target-current spectra” come as
close as possible. The latter band structure mapping has been
proven to give good results for both metals and layered semi-
conductors [54] (for a short review, see [55]).

One approach for calculating LEED intensities is based on
empirical local pseudopotentials. If the scattering of the elec-
trons is weak, as can be expected because the band structure
at typical LEED energies is more or less free-electron-like (cf.
also the preceding kinematical treatment), the Coulomb part of
the atomic potentials can be neglected, because it is screened
by the core-level electrons. In the bulk of the solid, the poten-
tial is expanded in a Fourier series with a few reciprocal lattice
vectors,

V) =) Vgexp(—iG -r) (50)
G

”Target-current spectroscopy (TCS) measures the current flowing through
the sample that is due to the incident electron beam. It can therefore be re-
garded as complementary to LEED because in TCS the transmitted current is
measured, whereas in LEED it is the reflected current.
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Fig. 16. Interference effect on the LEED intensity from a thin film with N3 = 4 layers. (a) Simply related
structure (b3 = 3a3) and (b) incoherent structure (b3 = 2+/3a3). Shown are the total intensity (I'®, solid
line), the film intensity (/ film_ gotred line), and the substrate intensity (1 sub_ dashed line) versus the phase
factor. Atomic form factors f film 4ng f sub were chosen as identical. The attenuation factor is 4 = 0.1. The
insets on the right show the same data as in (a) and (b) but as polar plots and within an extended range of

the phase shift.

where G is a vector of the bulk reciprocal lattice. For a given
wave vector k, the wave function is also expanded in a Fourier
series,

(k) = Y ok exp[ik +G) - 1] 1)

G

Inserting ¢ (r; k) and V(r) into the Schridinger equation, one
arrives at the secular equation

> {[&+6y*—2E]56e +2Ve-q Jec® =0 V6’ (52)
G

which can be solved numerically using standard eigenproblem
routines. The preceding equation is not very well suited for
LEED calculations, because in LEED one wants to know the
bulk-band structure for given energy E and k. In other words,
we do not want to compute E (ky, k1) but k) (E, ky). Rewriting
Eq. (52) as

[(kL+ G')* — 2E]ag

+) [2Ve-c + (& + Gp)?see]ec =0 VG’ (53)
G

and defining
Acg' = (G1 ~V2E)éce (54a)
Bge' = (GL +V2E)ége (54b)
Cog = (kj + Gy)*Sce +2Vo—g (54¢)
one arrives at the matrix equation
(7 5)G)-=(G) e

Instead of an eigenvalue problem of a hermitian matrix, one
eventually is dealing with one that is twice the size and non-
hermitian. Therefore, the number of eigenfunctions and eigen-
values is twice the number of vectors G taken into account.

We now have to consider the boundary conditions. In the
bulk, each eigenfunction fulfills Floquet’s theorem,

YO+ R) = A DRI VR (56)

where R is a translation vector of the bulk. Because we are
interested in the band structure for given k|, the proportion-
ality factor A() can conveniently be written as A(V(R) =
exp(i(ky - Ry + kY)R 1)) (cf. Section 2.2.1). And because the
eigenvalue problem is no longer hermitian, k; can be complex
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even for real energies E. This feature gave rise to Heine’s con-
cept of the complex band structure [56].

According to Chang [57], the bands associated with k{? can
be cast into the following categories:

Real bands correspond to the conventional band structure and
have Im k(lj) = 0. Thus, IA(j )I = 1 and the wave functions

W) are the Bloch states [13]. _
Imaginary bands of the first kind have Re ki’) = 0 and

mk{” 0.

Imaginary bands of the second kind have Re k(lj) =k max
and Imk$” # 0.

Complex bands have Rek'” # 0, Rek'” 3 k max, and
mk' s 0.

Here, k) max refers to the boundary of the (first) Brillouin zone
in the z direction. In the infinite solid, all wave functions ¥ )
have to be square integrable (W) € ;). That means only
Bloch states are proper solutions of the Schrodinger equation.
Due to the surface, the integration range can be taken as one
half-space, say z > 0, and the set of proper wave functions can
be extended to those the amplitude of which decays in direc-
tion toward the bulk. Thus, all imaginary and complex bands
with Im k_(LJ) < 0 have to be considered in addition to the real
bands. The wave functions associated with these bands are usu-
ally called evanescent states.

The next step is to construct the wave function of the LEED
electron, the LEED state. In the vacuum, which is characterized
by the fact that the potential is, the incoming beam is repre-
sented by an incoming plane wave with surface-parallel wave
vector

k) = +2E sin 9, ( ‘;ﬁfg“' ) 7)
(<]

where E is the kinetic energy of the incident electron. 9, and ¢,
are the polar and the azimuthal angles of electron incidence,
respectively. The wave function in the vacuum thus reads

o (ky; E) = expli(ky - @ + x02)]

incoming
+ Y wgexpli[(ky +g) - @ — xg2]) (58)
g
th;)ing

Here, we have again decomposed the spatial vector r into a
surface-parallel component @ = (x,y) and a perpendicular
component z. The perpendicular component of the wave vec-

tor is given by
kg = /2E — (kj + )2 (59

Note that for beams that cannot escape from the solid into the
vacuum «g is imaginary and their wave functions are damped
in direction toward the vacuum. The intensities of the re-
flected beams, which are indicated by surface-reciprocal lattice

vectors g, are proportional to Igog|2. Inside the solid, proper so-
lutions of the half-space problem can be expanded into Bloch
and evanescent states,

Wik E) =Y DD, E; kD) (60)
j

To determine the coefficients gg and ¢, one requires that at a
certain coordinate zo both the wave function and its derivative
with respect to z are continuous. In matrix form, this require-
ment can be written as a relation between the coefficients of the
bulk states (t(/)) and those of the incoming (¢g) and outgoing

(gog‘ ) LEED beams,

Bt = Atot 4+ A= ¢~
B't = AVt 4+ A7y~

(61a)
(61b)

with
Bgj = Z“((;j ) expli(k{ + Gz0]0ge,  (62a)
G

Agy = exp(ikgz0)dgy (62b)

and analogous expressions for the matrices of the z derivatives,
the latter being indicated by a prime (A%, B’). The incoming
amplitudes ¢ are represented by the vector that contains a 1
at the row of the (0,0) beam and Os otherwise. After some
manipulation, one arrives at relations between the incoming
amplitude ¢+ and the coefficients t of the solid’s eigenfunc-
tions as well as coefficients ¢~ of the outgoing beams,

t=[B-a@u)'m™"

x[AY — A~ (A7) at]pt (63a)
o = [ -B® a4
x [AY - B'(B) ' At]pt (63b)

Note that one equation can be obtained by the other by simulta-
neously replacing A~ with B as well as A~ with B’.

With regard to the symmetry of the setup, not all of the wave
functions W) can couple to the LEED beams. Because the
incident plane wave is totally symmetric at the detector [58],
it belongs to the trivial representation of the “small group”
of ky [59]. Thus, only those coefficients t/) of wave func-
tions W) that belong to the same representation are nonzero.!?
This can easily be seen by the matching procedure which in-
volves integration over the surface plane z = zg.

The relation of the coefficients ¢) and the amplitudes of the
outgoing beams gg allows a first interpretation of LEED I (E)
spectra. For example, if there is a bandgap at the energy of the
incident beam, the latter cannot couple to Bloch states but to
evanescent states inside the solid and thus has to be strongly
reflected. This leads to a maximum in the 7 (E) spectrum. In
turn, if the incoming beam can couple very well to Bloch states,

2por example, if the incident beam impinges in a mirror plane of the solid,
its plane wave is even under the associated reflection. Therefore, only wave
functions () that are also even have nonvanishing expansion coefficients #(/) .
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the current is propagating toward the interior of the solid and
the reflected intensity drops. This establishes a close connection
between LEED intensities and electronic structure.

This method of wave function matching was first applied to
LEED by Pendry [60-62]. It can also be applied for the de-
termination of the band structure above the vacuum level, as
has been demonstrated for Cu and semiconductors by Strocov
and co-workers [63, 64]. Because the LEED wave functions ap-
pear also in photoemission as the final state (see Section 4), this
method can be used in photoemission calculations [65-67]. On
the mathematical problems related to this technique, we refer
the reader to [68, 69].

The advantages of this method include the following: (i) In
a LEED calculation, one is looking for the intensity for a given
primary energy E and wave vector ky of the incoming beam.
Due to the broken translational symmetry perpendicular to the
surface, k) is not a “good quantum number;” that is, it is not
conserved. (ii) Inelastic effects can be taken into account by
an “optical potential,” the imaginary part of which leads to
broadening of the maxima in the I (E) spectra (cf. Fig. 15 and
Section 3.3).

However, problems occur in cases of ultra-thin films. Due to
the confinement of the electronic states, the energy levels can
become quantized (quantum-well states) and the description of
LEED in terms of the bulk-band structure may not be appropri-
ate. In the next section, we will introduce an approach that is by
far better suited to the description of ultra-thin films and their
electronic properties.

3.2.3. Dynamical Theory

In contrast to a kinematical theory (see Section 3.2.1), a dy-
namical theory considers multiple scattering of electrons inside
the solid. Here, we can only give a brief survey and refer for
a comprehensive description to textbooks by Mertig et al. [70],
Weinberger [71], and Gonis [72].

The main task of a multiple-scattering theory for LEED is
to determine the scattering properties of the whole semi-infinite
solid. This is achieved by consecutive calculations of the scat-
tering properties of a single site (sometimes loosely denoted as
an “atom”), a single layer, stacks of layers, and eventually the
entire solid. This step-by-step procedure gives a great flexibil-
ity concerning the actual arrangement of scatterers. Connected
with these steps is a change of the basis in which the calcula-
tions are performed. For example, scattering from a single site
is conveniently formulated in an angular-momentum basis that
gives rise to so-called partial waves. Or scattering from layers
is conveniently formulated in a plane wave basis.

The multiple-scattering theory as formulated in the follow-
ing can be traced back to the original work of Korringa [73]
as well as that of Kohn and Rostoker [74] who formulated it
for three-dimensional systems. Because for surface problems
a formulation in terms of layers is often more appropriate, the
method that uses layers as an essential object is known as layer-
KKR (see, e.g., [75]), where KKR stands for the initials of the
inventors, Korringa, Kohn, and Rostoker.

Angular Momenta. Before turning to the multiple-scattering
theory, a brief review of the basic properties of the angular-
momentum operator 1 = (Iy, Iy, l;) and the spin operator s =
(8x, 8y, 57) is given. With the “ladder operators” [ = I, =+ i Ly,
s+ = 55 £ isy, and the total angular momentum j = 1 + s, one
has 21 - s = 2I,s; + lys_ + I_s; and the commutational rules
e s-11=0,[j2,s- 11 =0,and [s;,s - 1] = —[I, s - .

Spherical harmonics are eigenfunctions of 12 and I, I "=
I+ DY" and L,Y]" = mY;". They obey the relation (¥;")* =
(=1)™Y,”™. Further, one has

lzszYlu_TXr = (u~— T)fYIH_rXt (64a)
=t _r 1 3
l.,.S_Yl X = l(l+1)-—- ,u,+§ IL+§

x ¥y (64b)
-t _z 1 1
I_S+Yl X = l(l+1)— [,l,—l—— w—=
2 2

x ¥/ iy te, (64c)

with the Pauli spinors
=, 65
X = 0 (65a)
X = (?) (65b)

The latter are quantized with respect to the z direction; that is,
they obey o, x* = 1x%, T = +. p is half-integer and runs from
-l —1/2to! + 1/2. The Pauli matrices 0;, { = x, y, z, read

01
Oy = ( 1 0) (66a)
oy = (? ]f) (66%)
o = ( . _01) (66¢)

The relativistic “companions” of the spherical harmonics are
obtained by coupling 1 and o = 2s and are given by {76]

1
= ;L -7
x,’f—ZC(lij,u—r,t)Yl x° 67)
They are eigenfunctions of o - 14 1 with eigenvalues k = (j +

1/ 2)2—1(I+1). The coefficients C are the well-known Clebsch-
Gordan coefficients,

1
C(lij;p,—t,r)

T =+ T =
1 Vitr+s I—p+3
= = j=1+3 (68)
~Jimptl o Jltutd
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TableI.  Relationship between Relativistic Quantum Numbers x and
Nonrelativistic Ones / and j
K -5 —4 -3 -2 -1 +1 +2 +3 +4
! 4 3 2 1 0 1 2 3 4
I 5 4 3 2 1 0 1 2 3
: 9 7 S 3 1 1 3 5 7
J 2 2 2 2 2 2 2 2 2

Note:Positive values of « correspond to j = I—(1/2), negative to j = I+(1/2).

Fig. 17. Schematic view of scattering by a single potential (gray circle). The
incoming and the outgoing partial waves are visualized by arrows and arcs.

Forj=14{1/2)(G =1-(1/2),onehask = — -1
(¢ = I); cf. Table 1. With ro, = E,-:x,y'z rio, itis o, xt =
—x,. Where possible, angular-momentum quantum numbers
are combined to give a compound quantum number, in the non-
relativistic case L = (I, m), in the relativistic case A = (x, ).
Finally, we define Sy = «/|x|,] =1 — S, and A = (—«, p).

Scattering by a Single Site. The first step in a multiple-
scattering calculation is to determine the scattering properties
of a single site. The basic idea is to expand both the incom-
ing wave function and the scattered wave function with respect
to angular momentum. For spherical potentials, the scattering
problem is then solved for each angular momentum separately,
giving rise to partial waves (cf. Fig. 17).

We assume that the potential inside the solid Viojiq can be
written as a sum over site-dependent potentials V;,

Vsotid(®) = ) Vi(r — Ry) (69)

where the sum is over all sites. Usually, the site potentials are
considered to be muffin-tin shape; that is, they are nonzero in-
~ side a sphere, spherically symmetric,
Vi(r)

0 otherwise

r < rmt

Vi(r;) = l

and the spheres of different sites do not overlap. Here, ryy is the
muffin-tin radius. Further, we assume that lim,_,or2V (r) = 0

(70)

[71]. Of course, generalizations to nonspherical as well as
space-filling potentials have been developed (see, e.g., [77, 78]).
In particular, the effect of nonspherical potentials on SPLEED
intensities has been investigated by Krewer and Feder [79, 80].

Now the calculation of scattering phase shifts and of the
single-site scattering matrix, which is a central quantity in
multiple-scattering theory, is presented for the nonrelativistic
case; that is, the radial Schrodinger equation is solved. For
a free particle, the potential function vanishes in the whole
space, V(r) = 0. Because the potential is obviously spheri-
cally symmetric, the angular momentum / is conserved, / being
a “good” quantum number. Therefore, the solutions of the ra-
dial Schrodinger equation can be characterized and indexed
by [. For a particular value of I, the radial Schrédinger equa-
tion reads

(63 - l(l:; b, pz)Pmr) ~0 (71)

where p2 = 2E, E > 0. P, is-connected to the radial solu-
tion R; by P, = rR;. Thus, the differential equation for Ry
reads

2 I0+1
(3,2+—8,+p2— (J; )
r r

)Rz (=0 (72)

The solutions R;(r) can be characterized as follows:

Regular solutions are finite in the limit » — 0. For example,
Ry, being proportional to a spherical Bessel function ji(pr)
(discucced later), is regular. In other words, for r — 0,

R; behaves like r! and P; correspondingly like r/+1.

Irregular solutions diverge for r — 0. R;, which is
proportional to a spherical Neumann function n; (pr)
(discussed later), is irregular; that is, for r — 0, R; behaves
like r=!=1 and P, like r .

Incoming and outgoing solutions. For large r, the
“centrifugal” term /(I + 1)/r2 vanishes. Therefore,
solutions should behave asymptotically as plane waves
exp(zipr). By linear combination of regular and irregular
solutions, the required asymptotical behavior can be
obtained. Spherical Hankel functions (discussed later) are
these solutions. The incoming (outgoing) solution is given
by zh,'" (zh;"), z = pr. Note that both Hankel functions are
irregular.

For negative energy, E < 0, p is imaginary. Using the substi-
tution p = ip, p > 0, the radial Schrodinger equation can
be transformed into that for E > 0, Eq. (71) or Eq. (72),
respectively. The solutions that can be obtained from the pre-
ceding but with argument pr are the modified Bessel (i;),
Neumann (m;), and Hankel functions (k;). The latter obey the
relations i(pr) = (i) ji(ipr), m(pr) = (—i)*'ni(ipr),
and kl+( pr)y=(—i )'lh;"(i pr), respectively [81].

For a nonvanishing potential V (r) of muffin-tin shape, it is
convenient to match the solutions inside the sphere to those out-
side the sphere (free space) at the muffin-tin radius rp; that is,
one requires that both the wave function and its r derivative
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should be continuous. For E > 0 this yields, at rp,,

Y RiYL(FY =) [Anji(pr) + Biu(pr)]YL(F)  (73a)
L L
Y % RYL(E) = Y_[A1d:i(r) + Bidemu(pr) YL (F) (73b)
L L
with regular R; and T = r/r. The unknown coefficients A,
and B are traditionally chosen as cos §; and — sin §;. Thus, one
has, using the orthonormality of spherical harmonics,

Ri(r) = cosdyji(pr) — singin;(pr) (74a)
9, Ri(r) = cos 8,8, ji(pr) — sin§;8,n;(pr) (74b)
After some manipulations, one arrives at
& R)J1 — Ri(8,)
tan 8, = (- R1) ji — Ri(3r i) 75)

"~ (3, Ri)ny — Ri(@ny)

§; is called the scattering phase shift of angular momen-
tum [.> With the Wronskian W(f,g) = fd,.g — g3, f,
the preceding equation can be compactly written as tang; =
W(ji, Ri)/ W(n;, R;). Using incoming Hankel functions in-
stead of Neumann functions, that is,

Ri(r) = (ji(pr) — ipth (pr)) exp(~i&)  (76)
one obtains the relation between the scattering phase shifts and
the (/-diagonal) single-site scattering matrix ¢,

1
ty = ——sind;exp(iéd;) an
p

from which follows the “optical theorem” Im(#;) = —pu# ¢t
The real and imaginary parts of the ¢ matrix fulfill Re(s) =
—(sin28;)/(2p) and Im(y) = —(sin?é&;)/p. Instead of the
¢t matrix, sometimes the scattering amplitude f; = —pt; or the
reactance K; = —(tan §;)/p is used.

Scattering by a Single Site: The Relativistic Case. The Dirac
equation for a single site with an effective magnetic field B(r)
included reads

[ca-p+ Bmc? + v(x) + fo - B@]¥() = E¥() (78)

with
_ (0 o
“=ls 0

7= (o 5)

13The required derivatives of the spherical Bessel and Neumann functions can
be calculated via the relations

1 m
(zaz) [Zn+1fn] = Zn-m+lfn-m

(79a)

(79b)

1 m
(;az) 7"l = D727 fagm

for m = 1. fy is one of j, ny, or kit [81].

Here, a and B are 4 x 4 matrices and ¥ is a Dirac spinor
(4-spinor). The potential matrix V(r) is defined by

_(v® +o - -B@ 0
V(r)—( 0 v(r)_a_B(r)> (80)

The solution of the Dirac equation for general potentials has
been addressed by Tamura [82]. However, we restrict ourselves
again to muffin-tin potentials. Thus, the direction of the effec-
tive magnetic field can be chosen conveniently along the z axis,
that is, v(r) = v(r) and B(r) = B(r)e,. Because the effective
magnetic field is coupled only to the spin, one can introduce
spin-dependent potentials, v4 (r) = v(r) & B(r). The potential

matrix then reads
_ [ v+ (r) 0
V(r) - ( O v—(r)) (81)

For the wave function, we make the ansatz

I [ Sa@)(Flxa) WA (Flxa)
\y = - =
i) ';(igzx(r)(?lxﬂ) ;(“DA(’)(?IXX)>
82

that is, WA(r) = fa(r)/r and ®5(r) = ga(r)/r. The in-
dex A combines the relativistic angular-momentum quantum
numbers k and u, A = (k, u) and A = (—«, u) (discussed

previously). Inserting the preceding ansatz into the Dirac equa-
tion yields a set of coupled equations for £ and g,

cdr fa = == fa
+(E+c*—v)ga+B Y (xzlozlxglea (83a)
v
cdrga = Ci:'gA
—(E—c*=v)fa+B) (xaloglxw)fn (83b)
=
Note that in the nonmagnetic case (B = 0), one has

Cop fa = —cg fa + (E +c* — v)ga (84a)

K
cdga = c—gn — (E —c’ ~ v) f (84b)
that is, the solutions f and g, are independent of the magnetic
quantum number .

The matrix elements of g, can easily be obtained from the
definition of xA . From the restriction I’ = 1, one has two cases,

k" =« and &’ = —k — 1, which give
2
P i ] forx' =«
Xalozlxar) = 2 2 (85)
( ‘ ) 1- L ) forx' = —k — 1
2k + 1
0 otherwise

Inserting Eq. (85) into Eq. (83), one finds terms that couple an-
gular momenta! and I+2. As Ackermann has shown [83], these
can be neglected due to the missing singularity of B(r) at the
origin. Thus, only partial waves with total angular momentum
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J =14+ (1/2) and j =1 — (1/2) are coupled. Eventually, one
arrives at a system of four coupled differential equations of first
order,

K
CaerI.L = "C;fkﬂ

2
+ (E +?—v+ Bﬁ)g,m (86a)

2k +1

2u 2
—B,j1-— (2/( — 1) f—x—l,u

k+1

K . 2u
COrgep = c;—g,m - (E -2 —y— B——)fw

(86b)

Carf—k—l,p, = —C f—K—I,p.

+(E+c?-v—-B

—k— 6
2K+3)g x—1,u (86¢)

k+1

COrg—k—1,u = —C 8—«k—1,u

2
_ (E __c2 —U+B—lt_)f—x-—l,u

2k +1
2 2
—Bf1— (=) 1.
2k +1 ’

As in the nonrelativistic case, two types of solutions can be
distinguished due to their behavior in the vicinity of the origin,
that is, regular and irregular solutions. Regular and irregular
partial waves can be written as

(86d)

) = Z( ViaO(Flx) ) ‘= regin )

A iq)klA (r) (?IXF)
and show the asymptotics
(rlwy®)
[i1(kr)éara + hf (kr)easa J(F Ixar)
> 2| g,k [70er)sn s + Bt ()t a](F lxg)
l x'm JIKr)opa 7 \RTYEATA XA

Al
(88a)
Ryt (kr)Sara(Flxa)
; 3
(rivy) - o C - (88b)
%: iS¢ +02h;—f(kr)5A'A(r|XW)
for r — 00. The Wronskian is given by
{(Wa% 19X} = D er® (Wt @it ) ~
AI/
DA (DY A1) (89a)
.2
i1c
= ——San/ 89b
k(E +c?) 4 (896)

which is independent of r.

Now one can calculate the single-site ¢t matrix. The incoming
partial wave is given by

Jitkr)(T1xa)

=1 s, %ji(kr)(?lxx) 0
With
(rIHY) = ’jk(kr) (.?'XA) i=+ (1)
P\ iSeg 0 (Fixg)
the total wave function is given by
(W) =Y (Aa(rlda) + BA(lHSY)  (92)

A

The coefficients Ap (incoming) and B, (outgoing) are con-
nected by the single-site t matrix,

Ba=) tanAp 93)
AI

and can be obtained either by wave function matching [71] or
by exploiting the Wronskians [82]. Due to the potential con-
sidered here, only those elements of ¢ that belong to partial
waves coupled by the radial Dirac equation are nonzero; that
is, tan = 0if &’ ¢ {k, —k — 1} or i’ # . In the nonmagnetic
case, the ¢ matrix is diagonal in «.

Many effects in electron spectroscopies of magnetic sys-
tems rely on the simultaneous presence of magnetization and
spin-orbit coupling (SOC). For some purposes (e.g., testing and
model calculations), it is desirable to vary the strengths of these.
In nonrelativistic theories that include SOC as a perturbation,
its strength can easily be changed by scaling the respective
coupling constant. In relativistic theories, one usually sets
the speed of light ¢ to a rather large value, with the draw-
back that all relativistic effects (mass term, Darwin term) are
changed, too. However, based on the scalar-relativistic approx-
imation [84-86], one can derive an equation that interpolates
between the fully relativistic (Dirac) and the scalar-relativistic
Schrédinger equation [87-89].

Scattering by a Single Layer.  After having solved the single-
site problem, for example, having obtained the single-site
t matrix, we now have to calculate the scattering properties of a
single layer, the essential object in layer-KKR. In the following,
only the case of one site per layer unit cell will be addressed.
For each beam that is characterized by the reciprocal lattice vec-
tor g, define the wave vector k;b by

= kj+g 04
fo\E /K- (g + g

with ¢?k? = E2 — ¢%. The + (-) sign refers to plane waves
propagating or decaying in the +z (—z) direction. The wave
fields incident on (Wj,c) and outgoing from (Vo) the layer can
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Fig. 18. Schematic view of scattering by a layer, that is, a two-dimensional
periodic arrangement of scatterers (circles). The reference scatterer is repre-
sented as a gray circle. Incoming (outgoing) beams are labeled ut (vF) with
respect to the propagation direction (+z).

be written as
Wine(r) = Z[u;} exp(iky - 1) + ug, exp(iky - r]x® (95a)
gr
Wou(r) = Y_[vg; expliky - 1) + v, exp(ikg - 1)]x" (95b)
gT

Arranging the coefficients ugi, and vé; into column vectors, the

connection between these is defined in terms of the scattering
matrix M of the layer (see Fig. 18),

vt M++ M+— ut
D))

Thus, the M matrix corresponds to the single-site z matrix but
for an entire layer; cf. Eq. (93).

To calculate the M matrix, one expands the incoming wave
into spherical waves. Using

exp(ik-Dx" = ¥ _arnc®jknxa(®) t=% O
A
with coefficients {cf. Eq. (67)]

~ 1 o~
aA,(k)=4yri’C(l§j;,u—r, r)(Y," ) t==

(98)
one obtains for the wave field
3w explky mxT =Y AR aknxa(®)  t==
g A
99)

with AX® = ¥ ap.(kE)ug, and k = v2E + E2/c?. The
incoming wave is multiply scattered at each site of the layer,
which leads to the wave field Y, Aar ji(kr) xa(T) incident at
the reference atom. The wave field incident at site R; is given

by

Y Aacjithr))xa(F)) exp(iky - R;) (100)

A

with r; = r — R;. The outgoing wave field from this site is

Z Bachi (krj)xa(Fj) exp(iky - R;) (101)

A

and the coefficients B/, and A, are connected by the ¢ ma-
trix, Eq. (93). The total incident wave field at the reference atom
can be separated into a direct part, which stems from the non-
layer region (incident onto the layer), and a layer part, which is
due to multiple scattering within the layer. The latter reads

1 . o~
Y A jitkr) xa(F)
A

!
= exp(iky-R;) Y Bachf (rj)xa(F))  (102)
J A

where the first sum (indicated by a prime) is over all sites within
the layer except the reference atom. The coefficients A{f\”fr
can be obtained with the help of the layer structure constant
Gan(—R;) (for a detailed discussion, see [42, 72]), which
obeys :

hf (krj)xa @) = Z Gan (=R jr(krj) xa ()
AI

(103)

The relativistic structure constant is related to the nonrelativistic
one by Clebsch—Gordan coefficients,

1,
GAA’(_Rj) = Zc(lil; nr—r, t)Gl,p.—r;l’,u.’—r(_Rj)
T

1
X C(I’Ej’; o -, r) (104)

Thus, one has
7
1 .
AR = expliky -Rj) Y Ba:Gaa(=R;)  (105)
i A
Itis ::onvenient to introduce a “multiple-scattering matrix” X
by Ay = 3" o Aar X ara, which is easily calculated as

’
Xpra =Y tarn Y exp(iky - R)Gaa(-R))  (106)
A j
The total incoming wave field at the reference atom is then
given by

0 —(© 1 -
ne = ARO AR AB = ATO+ATOHT A

107)
or, in matrix notation, A = A® + AX, from which one obtains
A= A®1 —-X)~!. Eventually, the blocks of the M matrix can
be written formally as

M =59 +at1-X)" s =x  (108)

where ap (’k\g:) transforms from angular-momentum into plane
wave representation [cf. Eq. (98)], b Ar(kg) vice versa.

Scattering by a Double Layer. To calculate the scattering
properties of an arbitrary stack of layers, one starts with the
M matrix of a double layer, that is, a stack of two layers. By
consecutive application of the following computational scheme,
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Fig. 19. Schematic view of scattering by a double layer, that is, a stack of
two layers (1 and 2, left). The scattering properties can be cast into an effective
scatterer (1, right). :

one eventually obtains the M matrix of the stack. The “layer-
doubling” algorithm for computation of the bulk reflection
matrix (discussed later) is also based on this method.

One starts with a stack consisting of two layers, labeled 1
and 2, which need not be identical; cf. Figure 19. The result is
the M matrix of this stack, labeled 1/,

vy (Mt M (et
v ) oA\Mt M) e

Summing up all multiple-scattering events that are due to reflec-
tion at each layer, one obtains for the amplitudes of the plane
waves

Vi = MITPY(1 - M P M P M et
+[Mf™ + M P M P
x (1 — M2—+P+M;f—P—)—1M2f‘]u-
Vo= MY+ M7 P M P
x (1~ M~ P~ M+ Py ut
+MTPT(1 - My PYMETPT) I M Tum (110b)

(109)

(110a)

where we have used 1 +x 4+ x24x34... = (1—x)~1. For con-
venience, matrices N** are introduced, that is, M** matrices
enhanced by plane wave propagators P, N*++ = p+p++,
N*~ = P*M*~P~ N~* = M~+,and N-~ = M——p-.
which yields

NIt = Nt - NNy HTING (111a)
N}~ = Nf =+ NFHNF( - Ny PNFYTING T (111b)
- — —— A7 — a—+Hy—1
NpF = N7P S+ NTTNRQ = NNTHTING (1)
N~ = N~ - NN TING (111d)
The elements of the diagonal matrices P* are defined by

L yor = exp(ik - d)dgy8, o (112)

g

where d is the translation vector from layer 1 to layer 2 (cf.
Fig. 1). Note the relation between Nf," * and N|;™ as well as
that between Nl"," " and Ny, +: By interchanging + < — and
1 <> 2 in one expression, one obtains the other.

The preceding procedure can be used to calculate iteratively
the bulk reflection matrix R‘;l*l;(, known as the “layer-doubling”
method. The bulk is defined as an infinitely repeated arrange-
ment of identical layers or stacks of layers (principal layers).

1

[\

Fig. 20. Bloch waves in multiple-scattering theory. For identical layers
(1 and 2), plane waves on the right (Au™, Av™) are multiples of those on the
left (u*, v ) due to Floquet's theorem,

One first calculates the M matrix of a double layer, subse-
quently the M matrix of a doubled double layer, which yields M
of a stack of four layers, and so on. After n iterations, the
M matrix of 2" layers is obtained. The bulk reflection ma-
trix is eventually given by M—+ of the 2"-layer stack. The
“layer-doubling” procedure is repeated until (i) the change of
the bulk reflection matrix of the 2*~! stack and the 2" stack is
small enough to be regarded as negligible or (ii) the incoming
waves u't are absorbed within the stack; that is, M+t is close
enough to 0. In practical LEED calculations, which take into
account the mean free path via an absorptive optical potential,
three or four iterations are regarded as sufficient.

Bloch Wave Method. 'The M matrix of a layer or a stack of lay-
ers can be used to compute the bulk-band structure ki(E, ky).
Consider identical layers 1 and 2, which are connected by a
vector d. On the left-hand side of layer 1, we have incoming
and outgoing waves ut and v=. Due to Floquet’s theorem, the
plane waves on the left-hand side of layer 2 are these plane
waves but multiplied by a factor (A in Fig. 20). Thus, the out-
going waves Aut and v are related to the incoming waves ut
and Av™ by ‘

At = Nttgt LNty
Vo= N"tut ANy

(113a)
(113b)

In matrix notation, the eigenvectors and eigenvalues can be ob-
tained from the generalized eigenproblem

Ntt 0\ fut 1 -N*=\ [ut
(D)) Ga0)() o

which can be solved by standard numerical program packages.
However, by some algebra the preceding equation can be trans-
formed into standard form, Oc¢, = Anc,, with the blocks of the
matrix Q given by

ot = Nt _ Nt ()i (115a)
ot = Nt (v )! (115b)
Ot = (N INF (115c¢)
0" =)t (115d)

Here, the eigenvalue A, is in general complex and ¢, is a 4N,
vector, Ng being the number of reciprocal lattice vectors g taken
into account. The upper (lower) 2N, components of ¢, describe
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waves propagating or decaying in the -z direction (—z direc-
tion). The wave vector k of the Bloch waves can be decomposed
into components parallel, kj, and perpendicular, k1, to the
layer. Thus, the eigenvalue can be written as A, = exp(ik, - d)
from which k,, 1 is obtained as

kn L = ——(nAy, — iky - dp) (116)

dy

In conclusion, the bulk-band structure has been computed as
ki (E,K)).

Eigenfunctions with |A,| = 1 belong to the real band struc-
ture; that is, they fulfill the Bloch condition. But even if the
energy is real, the set of eigenvalues {1, } consists of values with
modulus greater than or less than 1. In particular, the norms of
the corresponding wave functions increase or decrease when
propagating across a layer. It is clear that these solutions can-
not be normalized in the bulk because only square-integrable
functions (£, functions) belong to the Hilbert space. If, how-
ever, a surface is present the normalization has to be carried out
only in the half-space z > 0. Thus, in addition to Bloch states
solutions with |A,| < 1 are allowed. The latter are the evanes-
cent states, that is, those states with decreasing amplitude when
propagating into the interior of the semi-infinite solid.

Once the eigenfunctions and eigenvalues of the Q matrix are
known, they can be used to calculate the reflection matrix of
the bulk. The 4N eigenvectors can be classified into those that
(i) decay exponentially in the z direction, (ii) decay in the —z
direction, (iii) have positive probability current perpendicular
to the layers, and (iv) have negative probability current perpen-
dicular to the layers. The eigenvectors can be arranged such
that those 2Ny of them that decay in the +z direction and the
current of which is positive comprise the first 2Ng rows of the
eigenvector matrix V. The relation between plane waves and
eigenvectors then reads

()=o) ()

Here, u™ equals 0 because the outgoing waves in the 4z direc-
tion of an infinitely thick slab vanish. In practical calculation,
this is assured by adding a small imaginary constant to the en-
ergy or to the potential in order to simulate inelastic scattering
of the electrons [53]. In this way, there are, strictly speaking, no
Bloch states, only evanescent states that decay in either the +z
or the —z direction. Eliminating u™ in the preceding equation
yields the bulk reflection matrix Ry},

(117)

o =V H et = Rkt (118)
Scattering from the Surface Barrier. At this point, one has to
consider the surface region of the solid. In multiple-scattering
theory, the surface barrier is treated as an additional layer that
enters via its M matrix. For a step barrier, which appears to be
sufficient in calculations for typical LEED energies, the latter
can easily be calculated as

M, = 2k1g/(kig + kTg)Sgg 8o

s (119)

—_—

————

\

Fig. 21. Reflection of a stack of layers. The incoming wave ut is reflected
into v~ by layer i (which is described by its scattering matrices M,.ii) and the
stack of layers with index greater than i (which is described by the reflection

s p—+
matrix Ri+1)'

M = (Kl —kig)/(kig + Ky)sggdeer  (119b)

Myt = (kg —Klp)/(kig + Ki)dgg 6ecr (1190)

Mg, e = 2K/ (kig + kig)gg8cc (119d)

with
kig = /2E — (k) + g)* (120a)
e = \/ 2(E + Vo) — (k) +g)? (120b)

Here, Vj is the inner potential, that is, the energy shift of the
muffin-tin potentials inside the solid relative to the vacuum
level, which is chosen as 0 eV for convenience.

In VLEED, however, a barrier with image-potential asymp-
totics, that is, V(z) = 1/(4z), is better suited [90]. The JJJ
barrier, which interpolates smoothly between the image poten-
tial in the vacuum and the constant inner potential Vy in the
solid, was introduced by Jones, Jennings, and Jepsen [91] (thus
the name JJJ) and improved by Tamura and Feder [92]. Besides
simple integration of the Schrédinger equation in the surface
region with standard numerical methods, highly sophisticated,
methods have been proposed that take into account the corruga-
tion, that is, the variation of the potential parallel to the surface
[67, 68, 93, 94].

Calculation of the Total Reflection Matrix. To compute the
reflected intensities Ig(E), the reflection matrix of the semi-
infinite system has to be calculated. If the scattering matrices of
all layers and the bulk reflection matrix have been determined,
the total reflection matrix Ry can be calculated step by step.
Consider the scattering matrices Mi:HE of layer i and the reflec-
tion matrix R; ] of the stack of layers with index greater than i
(cf. Fig. 21). Then the reflection matrix R;” * of the stack com-
prising all layers with index greater than or equal to i is given
by

—+ - —-— p— pD— “pPT R -1
Rt =M™t +M P RN(1-P*MI PR
x PYM+ (121)
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The first term is solely due to reflection at layer i, whereas
the second term takes into account multiple scattering between
layer i and the stack of layers on the r.h.s. of layer i.

Starting with the bulk reflection matrix Rb_uﬁ( and the scat-
tering matrices ME* of the first non-bulk-like layer 7, one
calculates the reflection matrix Rn‘_+1 of this stack according to

the preceding scheme. For example, from R;_Jrl and M"i_i2 one

computes Rn“_+ , and so forth. Eventually, one obtains the reflec-
tion matrix R of the entire semi-infinite system.

Spin-Polarized Low-Energy Electron Diffraction. Now we
have gathered all ingredients for calculating SPLEED. Af-
ter computing the single-site ¢ matrices of the scatterers, one
computes the M matrices of each layer (including the surface
barrier). From these, one calculates the bulk reflection matrix,
from which, in turn, the reflection matrix R' of the entire semi-
infinite system can be computed. This step-by-step procedure
allows for a great flexibility with respect to the geometrical
setup of the solid. Therefore, it is not only suited to semi-infinite
systems that are built by a single type of layer, but can handle
any arrangement of layers, in particular, ultra-thin films on a
substrate [95].

In SPLEED, one uses a spin-polarized incoming electron
beam with spin polarization P'" and measures intensity Iy and
spin polarization Pg"* of the reflected beams. The density ma-

trix o™ of the incoming electron beam is related to the spin
polarization P® by oi" = (1 + P . ¢')/2. The density matrix
og"* of an outgoing beam is therefore given by gg*' = QgQian
[96, 971. gg is given by 0grr = R;‘;EOI,(E 1¢/E10)!/* with the
“effective” energies E g = 2E — (kj + g)2. Intensity and spin
polarization of the outgoing LEED beams are obtained from
03" by Ig = tr(gg™) and P™ = tr(o 00")/ Iy.

In a typical SPLEED experiment from ferromagnetic sys-
tems, one chooses the spin polarization of the incoming beam
Pit ejther parallel or antiparallel to some direction P. The
sample magnetization M can be aligned, for example, via an
external magnetic field, parallel or antiparallel to some other
direction fi. Therefore, one can detect for each outgoing beam
four intensities Ig:i where the first (second) superscript refers

to P (M). With Ig being the sum of these four intensities, one
defines the asymmetries

—_ (gt g+ ——
AP = (YTt 1)/, (1220)
Ag = (T =L =17+ 17T/ lg (122b)
= (It +— ~+ _
AP = UFT -+t -/l (122¢)

where the labels “so,” “ex,” and “un” are short for spin-orbit
coupling, exchange, and unpolarized, respectively. In A%, ef-
fects due to the magnetization cancel and thus leave SOC as the
main source of the intensity difference. Analogously, SOC ef-
fects cancel in A®* but effects due to exchange are kept. A"™ is
the asymmetry of an unpolarized incoming beam due to mag-
netization reversal (cf. [97]).

As mentioned in Section 3.1, LEED provides information
on the geometrical arrangement of the scattering sites. Thus, by

comparing experimental with theoretical I (E) spectra, one can
determine the geometric structure of a sample by a systematical
search; for example, by variation of structural parameters (the
positions of the scatterers) and nonstructural parameters (the
mean free path), one tries to minimize an objective function,
which gives a measure of the agreement between experiment
and theory (see, e.g., [6, p. 38]). These objective functions
are called reliability factors, or for short R factors, and take
into account energy positions and width of intensity maxima
[98, 99]. Further, via SPLEED analysis, one is able to deter-
mine nongeometrical quantities. For example, the enhancement
of the magnetic moment at the (110) surface of Fe has been
found by comparing experimental and theoretical I (E) spectra,
treating the surface magnetic moment as a fit parameter [100]
(for an ab initio calculation of magnetic properties of surfaces,
see [101] and references therein).

Temperature effects occur prominently as thermal vibrations
of the scattering sites that reduce the reflected intensities and
increase the background. In LEED, this is approximately taken
into account by multiplying the elements of the single-site ¢ ma-
trix by effective Debye~Waller factors [7, 12], thus ignoring the
correlation of the motion (e.g., phonons), which might appear
important because of multiple scattering (see, e.g., [102]).

3.3. Application: Quantum-Well Resonances in
Ferromagnetic Co Films

As a typical example of the manifestation of electron scattering
within an ultra-thin film, we address quantum-well resonances
(QWRs) (see Fig. 22). As introduced in Section 2, QWSs are
quantized electronic states that are confined to an ultra-thin
film. Strict confinement on the substrate side of the film is pos-
sible if there is a gap in the substrate band structure. On the
vacuum side, confinement is achieved by the surface barrier (cf.
“QWS” in Fig. 22). At energies above the vacuum level, there is
no total reflection at the surface barrier and, therefore, the elec-
tronic states in the film are not strictly confined. In other words,
they are resonant with the free-electron states in the vacuum
(cf. “QWR?” in Fig. 22). In a ferromagnetic film on a nonmag-
netic substrate, QWRs are characterized as exchange-split pairs
of peaks in the ky-resolved and layer-projected density of states
(DOS), that is, the Bloch spectral function. Therefore, at the en-
ergy of a QWR, LEED electrons incident from the vacuum side
have highest probability of entering the film and, consequently,
aminimal reflection coefficient; that is, QWRs show up as min-
ima in the SPLEED spectra.

Similar connections exist between the electronic structure
of semi-infinite systems and other electron spectroscopies. It
is well known that the LEED reflectivity is maximal for ener-
gies in bulk-band gaps (see Section 3.2.2) and tends to have
minima at energies near band edges [45]. These minima cor-
respond to maxima in the fine structure of secondary electron
emission spectra {103]. Likewise, band edges are mirrored by
maxima in the target current absorbed by the crystal [104]
because the target current is complementary to the LEED re-
flectivity. Therefore, it could also be used to study QWRs.
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Fig. 22. Quantum-well resonance (QWR) and quantum-well state (QWS) in
an ultra-thin film. The film is depicted as a quantumn well (thick solid lines; the
abscissa is the spatial extent normal to the sample surface, the ordinate is the
energy E). The wave functions of a QWS and a QWR are schematically given
by thin solid lines.

The change of the DOS due to QWSs or QWRs can eas-
ily be computed for a rectangular quantum well [105]. A plane
wave with ky = 0 is reflected at the surface-side and the
bulk-side boundary with reflection coefficients R; exp(i¢s) and
R; exp(i;), respectively (R;, R; € R). The accumulated phase
along a round trip, that is, reflection at a boundary, propagation,
reflection at the other boundary, and once again propagation,
is A¢ = 2kd + ¢5 + ¢;, with k being the wave number of the
electron and 4 the thickness of the well. The change of the DOS
An(E) should be proportional to cos(A¢), the strength of the
confinement R = R;R;, the thickness of the well d, and the
unit DOS 28gk(E)/n. For j round trips, one has to replace R
by R/ and A¢ by jA¢. Thus, An(E) is given by

2d — i .
An(E) = —(3£k(E)) ) _ R/ cos(jAg) (123)
j=1
which, after some manipulation, can be written as
2d R A¢) — R
An(E) = [cos(AD) — Rl o By (129)

7 1—2Rcos(Ad) + R?

The important factor is the second one, which reflects the in-
terference of the electron. The last term takes into account
the electronic structure of the infinitely extended (“bulk™) sys-
tem. In Figure 23, An(E) is shown for a free electron; that
is, 0gk(E) = 1/k(E). If the phase shift is a multiple of 27,
constructive interference leads to maxima in An(E). These
maxima are very sharp (quasi 8 peaks) if R is close to 1 (cf.
R = 0.99 in Fig. 23). If R is considerably small, as is expected
for a QWR, An(E) shows smooth oscillations that become
broader with increasing energy. This behavior can be attributed
to dgk(E).

As a prototypical system, we now address SPLEED from
Co films on W(110) (for details, see [106]). Its layer-by-layer

-2

0.2 0.3 04 0.5
Energy (H)

Fig. 23. Change of the density of states An(E) due to confinement of a free
electron to a rectangular quantum well, cf. Eq. (124), versus energy for confine-
ment strengths R = 0.2, 0.4, 0.6, 0.8, and 0.99 (alternating solid and dashed
lines). For a well thickness of d = 14, the maxima correspond to quantum-well
states or resonances (R < 1).

growth [107~110] allows for a study of the evolution of QWRs
with increasing number n of Co layers. Note that initially a
pseudomorphic body-centered cubic (bce) (1 10) monolayer is
formed, which upon further Co deposition becomes a mono-
layer with approximate hexagonally closed packed (hcp) struc-
ture. Subsequent layers grow in the form of hep Co(0001). It is
further important that the magnetization of the Co film is paral-
lel to the surface for all film thicknesses (M [l [1100] of the hep
Co film).

Experimental.  Although this chapter is mainly concerned
with theory, some words on the experimental aspects are in
order. To estimate the film thickness during the growth pro-
cess, one monitors the Co evaporation rate, for example, by a
quartz crystal oscillator. This procedure gives an accuracy of
better than 2% in thickness calibration. Spectra were measured
by means of a spin-polarized low-energy electron microscope
(SPLEEM), which, for normal incidence (ky = 0), allows for
the observation of the specular reflected beam (g = 0) from
single ferromagnetic domains [111). The illumination system
produces an electron beam with spin polarization Pi® perpen-
dicular to the direction k of the beam, that is, parallel to the
surface. Thus, in-plane magnetization M can be studied. The
degree of polarization Pi" was about 20%. Spectra were taken
in remanence because even weak magnetic fields would deflect
the low-energy electrons because of the Lorentz force.

Specular SPLEED intensities I, and I_ were recorded for
Pt parallel and antiparallel to M. As mentioned previously,
minima in I, (I_) directly reflect majority (minority) spin
QWRs. The asymmetry A®* = (I, — I.)/(I¢ + 1) is iden-
tical to the exchange-induced asymmetry A®* [cf. Eq. (122)],
because in this highly symmetric setup effects due to SOC do
not show up in an asymmetry, although they are present in na-
ture.
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Computational and Model Assumptions. Numerical calcula-
tions were performed within the framework of spin-polarized
relativistic layer-KKR (SPRLKKR) theory for ferromagnetic
systems consisting of arbitrary combinations of commensurate
atomic monolayers, as briefly described in Section 3.2.3. The
spin- and layer-resolved Bloch spectral function was obtained
as the imaginary part of the Green function (see Section 4.2.3).
Because hep Co films are incommensurate with the W(110)
substrate, only the specular beam (g = 0) is common to the
beam sets of hcp Co(0001) and bcc W(110) [110]. However,
the previous layer-KKR (LKKR) approach is applicable only
to commensurate systems. Therefore, either the substrate plus
pseudomorphic Co layers or a standalone hcp Co film, that is,
a Co film without substrate, can be treated. The latter should
be a reasonable approximation in the case of thicker films, but
the influence of the substrate can certainly not be ignored in
the case of a few monolayers (MLs) because of the mean free
path (cf. Fig. 12). The effect of the substrate can be included
in the following approximation: One calculates the total re-
flection matrix R* from semi-infinite W(110) without surface
barrier. From this R*", the specular reflection coefficient RSt
is extracted and taken as the only nonvanishing element of the
reflection matrix at the substrate side. To simulate lifetime ef-
fects, the imaginary part V; of the optical potential was taken as
energy dependent. Because a surface barrier of step shape is not
appropriate for VLEED, a smooth JJJ form [91] was chosen.

Theoretical and Experimental Results. Numerical results of
QWRs and their manifestation in SPLEED are presented in
Figure 24 for 4-ML Co on W(110). First, the bulk-band struc-
ture above the vacuum level of hcp Co(0001) along the line
I'-A is addressed. Although in the presence of SOC bands of
ferromagnets should be characterized with respect to magnetic
double groups (cf. [112]), a classification in terms of nonmag-
netic single groups and majority/minority spin remains useful
in large parts of the band structure, in particular, those in parts
where there are no bandgaps induced by SOC. Between 2.0 and
17.5 eV above the vacuum level (0 eV), there is a rather steep
spin-split band that belongs to the A! representation, separated
by a narrow gap at 17.5 eV from a flat band of the same rep-
resentation. Further, there are fairly flat bands of dominant A3
representation above 21 eV. The spin polarization expectation
value for the majority (minority) bands departs from +1 (—1)
only by a few hundredths, which indicates a negligible influ-
ence of SOC.

For each of the four Co monolayers, the Bloch spectral func-
tion for ky = 0 (Fig. 24b) is seen to have four widely spaced
pairs of majority and minority spin peaks between 2 and 17 eV,
and four narrowly spaced pairs between 17 and 20 eV (the pair
around 16.5 eV looks more like a shoulder because it is close
to the strong peak at 17.5 eV). These two sets of Al QWRs are
related to the steep and to the flat Al band, respectively. In Fig-
ure 24b, the first three pairs of QWRs are indicated by arrows,
the k; values of which are shown in panel a. For the major-
ity A! band, one finds & values of 0.40 2m/c, 0.77 27 /c, and
0.76 27 /c, whereas for the minority band one finds 0.40 27 /c,
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Fig. 24. Ferromagnetic hcp Co. (a) Bulk-band structure along [0001] with
bands of mainly majority (solid lines) and minority spin (dashed lines) and
dominant spatial representations A! and A3 indicated by numbers 1 and 3.
(b) A! contributions to the layer- and spin-resolved density of states (LDOS)
forky = 0 of a4-ML film of Co on W(110); solid and dashed lines indicate ma-
jority and minority spin, respectively; the first ML (Co 1) is at the surface, the
fourth (Co 4) adjacent to the substrate. (c) SPLEED from 4-ML Co on W(110):
spin-dependent intensity versus energy curves I (solid) and J_ (dashed) of the
specular beam for normal incidence, calculated with the same lifetime broad-
ening V; = 0.05 eV as in (b). The quantum-well resonances are indicated by
arrows in (b); see text. The vacuum level is 0 eV. Reprinted with permission
from T. Scheunemann, R. Feder, J. Henk, E. Bauer, T. Duden, H. Pinkvos,
H. Poppa, and K. Wurm, Solid State Commun. 104, 787 (1999). Copyright
1997, by Elsevier Science.

0.77 2m/c, and 0.74 27 /c (note that all bands are back-folded
at the Brillouin zone boundary k; = 27/c). According to the
theories presented in Section 2.2, these values nicely coincide
with those obtained from Eq. (20) with a = 5c/4. Because
the substrate is nonmagnetic, the reflection properties at the
Co/W interface are identical for spin-up and spin-down elec-
trons. Therefore, one would expect the same k; for majority
and minority QWRs, as can be observed from Figure 24. The
small differences in k; can be attributed to the different en-
ergies of majority, and minority QWRs, which are due to the
spin-dependent potential within the Co film; cf. Eq. (81).
Decomposition of the Bloch spectral function according to
angular momenta reveals that the first set of resonances, that
is, those QWRs below 17.5 eV, has comparable s, p, d, and
higher contributions, whereas in the second set the d and higher
contributions far outweigh the s and p parts. The exchange
splitting is largest for the pair around 3 eV and decreases with
increasing energy. The difference between the local density of
states (LDOS) of the first layer and that of the fourth is due to
the fact that the film is bounded by vacuum on one side and by
W(110) on the other. Because of their A! representation, the
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Fig. 25. Ferromagnetic hcp Co: (a) Same as Figure 24c, but calculated with
the larger energy-dependent lifetime broadening V;. (b) SPLEED asymmetry
A = (I+ — I_-)/(I4+ + I_) obtained from the intensities /4 in panels (c) in
Figure 24 (dashed line) and (a) (solid line). Reprinted with permission from
T. Scheunemann, R. Feder, J. Henk, E. Bauer, T. Duden, H. Pinkvos, H. Poppa,
and K. Wurm, Solid State Commun. 104, 787 (1997). Copyright 1997, by Else-
vier Science.

resonances can couple to scattering solutions outside the film
and thus become observable by SPLEED, as mentioned previ-
ously. In contrast, the two sets of four LDOS peaks associated
with the A3 bands above 20 eV correspond to QWRs that can-
not be accessed from the vacuum side for ky = 0.

We now proceed to specular-beam SPLEED spectra 1 (ma-
jority) and I.. (minority) for normal incidence. The incoming
electrons are fully polarized parallel and antiparallel to the ma-
jority spin direction of the Co film. Figure 24c shows SPLEED
spectra that were calculated with the same lifetime broaden-
ing as the Bloch spectral function; for example, the imaginary
part of the optical potential was chosen as V; = 0.05 eV. The
most important features of the I /I_ pair are broad valleys be-
tween 2 and 17 eV and four pairs of narrow dips between 17
and 22 eV. All these minima occur exactly at the energies of
QWRs, which establishes the one-to-one correspondence be-
tween SPLEED minima and QWRs. A

To come closer to experiment, the lifetime broadening V;
was increased, as shown in Figure 25. The larger energy-
dependent V;, which is on the order of 2 eV, leads to broader
maxima in the I;(F) spectra, as has been demonstrated by
means of a model calculation (Fig. 15). For example, the sharp
minima between 17 and 20 eV are completely smeared out.
The fingerprints of the QWRs between 2 and 17 eV are thus
preserved, whereas those of the resonances above 17 eV are
obscured by lifetime effects. Compared to Figure 24c, the first
two valleys are only slightly broader, but significantly deeper.
The latter is plausible because, roughly speaking, “more elec-
trons disappear” in inelastic channels inside the solid and are
consequently missing in the elastically reflected channel. In the
exchange-induced asymmetry A® = (I — I-)/(I+ + 1),
shown in panel b, the exchange-split QWRs manifest them-
selves as pronounced — /+ features.

In Figure 26, experimental and calculated SPLEED spec-
tra Co films on W(110) with 0 ML to 8 ML thickness are
shown. Note that the spectra for uncovered W(110) are not
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Fig. 26. Spin-polarized low-energy electron diffraction from clean W(110)
and from n-ML ferromagnetic Co on W(110) with n = 1, ..., 8 as indicated:
spin-dependent intensity versus energy curves I (solid) and I_ (dashed) of the
specular beam for normal incidence. Experiment (left panel) and theory (right
panel). For 1-ML Co, the lower pair of curves was obtained for a pseudomor-
phic overlayer with Co atoms in bulklike W positions, the upper pair for an
incommensurate overlayer with the lateral geometry of hcp Co(0001). The tick
mark below each curve indicates its zero line. The intensities are normalized to
the primary beam intensity, with the distance between 0 and 0.5 at the bottom
of the right panel giving the scale. Reprinted with permission from T. Sche-
unemann, R. Feder, J. Henk, E. Bauer, T. Duden, H. Pinkvos, H. Poppa, and
K. Wurm, Solid State Commun. 104, 787 (1997). Copyright 1997, by Elsevier
Science.

spin dependent because of the high symmetry of the normal-
incidence geometry and the absence of ferromagnetism. For
1-ML Co on W(110), the measured spectrum is, in contrast
to the calculated one, still spin independent. This may be ex-
plained by a Curie temperature ¢ below room temperature, at
which the data were taken. For example, a 2-ML Co film on
Cu(001) shows Tc of about 320 K compared to a bulk value of
1388 K [113]. Another reason might be perpendicular magne-
tization, which cannot be detected by SPLEED with incoming
electrons polarized parallel to the surface. The similarity of the
measured 1-ML spectrum to the spectrum for uncovered W and
its agreement with the 1-ML spectrum calculated for Co in W
sites indicates pseudomorphic growth of the first Co monolayer.
In the theoretical spectrum for an incommensurate monolayer
with the lateral geometry of hcp Co(0001), the second peak is
shifted upward by about 2 eV. The rather broad minimum be-
tween 7.5 and 12.5 eV is associated with a QWR.

With increasing number n of Co monolayers, the calculated
spectra in Figure 26 show a systematic evolution of the minima,
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that is, the signatures of the QWRs, the number of the latter be-
ing equal to n. Comparing with experiment, one notices good
agreement for 2 and 4 ML. For 3 ML, the experimental spec-
trum duly exhibits three minima but the third one is higher in
energy and so is the subsequent peak. On the grounds of the
evolution of the calculated spectra with thickness n, the experi-
mental data for 3 ML indicate a surface morphology other than
three hep monolayers. From 5 ML upward, the experimental
spectra differ from theory by having only n — 1 minima instead
of n. It is, however, striking that the experimental curves for 6,
7, and 8 ML are in good agreement with the calculated ones for
5,6, and 7 ML, respectively.

The preceding theoretical and experimental results show that
the electronic structure of ultra-thin films at energies above the
vacuum level can comprise pairs of exchange-split QWRs. The
calculated as well as the experimental SPLEED spectra have
minima, which exactly coincide in energy with maxima in the
Bloch spectral function of the same spin and the same spatial
representation.

4. PHOTOELECTRON SPECTROSCOPY

4.1. Introduction and History

The first publications on the photoelectric effect appeared in the
19th century (for detailed coverage of the history of photoelec-
tron spectroscopy (PES), see [114]). In 1887, Hertz discovered
that a discharge between metal plates (electrodes) occurs at a
lesser voltage than usual if the cathodes are illuminated by ul-
traviolet light [115]. One year later, Hallwachs found that a
negatively charged metal plate connected to an electroscope
becomes discharged if illuminated. A positively charged metal
plate, however, remains charged [116]. These findings led to
intensive experimental work, for example, by Elster and Gei-
tel [117, 118] as well as Lenard [119]. The latter observed that
irradiated metals send electrons into their surroundings. The ve-
locity of the photoelectrons, however, does not depend on the
intensity of the incoming radiation, but the number of electrons
increases with light intensity. These observations could not be
explained within classical theories. In 1905, Einstein explained,
following Planck’s ideas, the photoelectrical effect by quanta of
the electromagnetic radiation, that is, by photons [120]. For this
he achieved the Nobel Prize in 1919.

Because of the comparably large experimental effort, it took
considerable time to use the photoelectric effect as a spectro-
scopic method. Siegbahn used X-rays to determine the elec-
tronic structure of the inner shells of atoms [121], a method first
termed electron spectroscopy for chemical analysis (ESCA)
and nowadays better known as X-ray photoelectron spec-
troscopy (XPS). Using light in the ultraviolet regime, which can
be produced by rare-gas discharge lamps, instead of X-rays and
using angle-resolved detection of the photoelectrons instead of
angle-integrated detection allowed for the determination of the
valence-band structure of solids [122]. As in LEED, surface
sensitivity plays an important role: The detected photoelectrons

Fig.27. Setup of photoemission. Light with photon energy w impinges on the
solid surface (gray area, with dots representing surface atoms). Its polarization
components are denoted A; and Ap, the photoelectrons as e~

have their origin in the first few layers of the solid and, there-
fore, the spectra contain contributions from both the surface and
the bulk. A considerable impact on the development of angle-
resolved photoelectron spectroscopy (ARPES) or, as commonly
but less accurately named, photoemission was obtained by syn-
chrotron radiation facilities [123-125]. These allow the use
of photon energies from the vacuum-ultraviolet (VUV) to the
X-ray regime. Further, they provide both circularly and linearly
polarized light, which can be used to determine the symmetry
of electronic states via dipole selection rules.

Figure 27 shows a rather typical setup of a photoemission ex-
periment [6, p. 73]. The incoming light is characterized by the
incidence direction, the photon energy w, and its polarization.
The latter is described by the components of the electrical-field
vector A with components A p and A; lying parallel and per-
pendicular!® to the plane of incidence, which is spanned by the
surface normal and the incidence direction (xz plane in Fig. 27),
respectively. A list of commonly used light polarizations is
given in Table II. The electrons (e~ in Fig. 27) are detected
with respect to their kinetic energy, their outgoing direction
(angle-resolved photoemission), and their spin (spin-resolved
photoemission).

In an energy diagram (Fig. 28), photoemission can be re-
garded as a three-step process [126]. In the initial stage, the
electronic states are occupied up to the Fermi level Ep. The
incoming photon with energy w excites one electron into an
unoccupied state with energy larger than Ep. The latter then
propagates toward the surface. If the electron energy is larger

l"'Historically, s stands for German senkrecht, that is, perpendicular.
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Table 1. Light Polarization in Photoemission
Polarization Ag Ap Remark
s 1 0 Linear
p 0 1 Linear
[ 2% 1 i Right-handed circular
o 1 —i Left-handed circular

Note: The components As and Ap of the electrical-field vector are given for
both linearly and circularly polarized light. Unpolarized light is an incoherent
superposition of either s- and p-polarized or left- and right-handed circularly
polarized light.

E

conduction bands

!

core levels

Fig. 28. Energy scheme of photoemission. Right panel: Incident light with
photon energy w, represented by the wavy line, impinges on the solid surface
(gray area, right) and outgoing electrons e~ leave the solid. Left panel: An elec-
tron (filled circle) is excited into a state above the vacuum level Eyyc, leaving
behind a hole (empty circle) below the Fermi energy Ef. The electron, which
stems either from the valence-band (gray area) or from the core-level (horizon-
tal lines) regime, leaves the solid and is subsequently detected.

than the vacuum level Ey,c, the photoelectron can leave the
solid and propagate toward the detector, leaving behind the
solid with one hole. The energy difference between Ey,c and Eg
is the work function @, typically about 5 eV.

There are three main modes in photoemission: (i) The most
commonly used is the energy distribution curve (EDC) mode
in which the photon energy is kept constant. Therefore, varia-
tion of the kinetic energy of the photoelectrons corresponds to a
variation in the initial-state energy (cf. Fig. 29). (ii) In constant
initial-state (CIS) mode, both the photon energy and the kinetic
energy are varied in such a way that the energy of the initial
state remains constant. (iii) In constant final-state (CFS) mode,
the kinetic energy is kept fixed and the photon energy is varied.
This leads to a variation in the initial-state energy. Because CIS
and CFS require variable photon energy, they are not possible
with laboratory rare-gas discharge lamps, which provide only
fixed photon energies, for example, w = 21.22 eV from He(I)
discharge.

A simple theoretical description of the process uses Fermi’s
golden rule. The transition probability ws; between the initial
state |W;) with energy E; and the final state [®(k, Ey)) with

EVﬁC

EDC CIS CFS

Fig.29. Energy modes of photoemission. In energy distribution curve (EDC)
mode (left), the kinetic energy of the photoelectrons (black circles) is varied
while keeping the photonenergy constant. In constant initial-state (CIS) mode
(middle), the energy of the initial state (hole, white circles) is kept constant
while the photon energy is varied, which, in turn, leads to variable kinetic en-
ergies. In constant final-state (CFS) mode (right), the kinetic energy is kept
fixed while the photon energy is varied. The Fermi energy is EF, the vacuum
level Ey,c.

energy Ef = E; + o and surface-paralle] momentum k; is
given by

wri = (@), E)IDIW)S(Ef —~ E; +w)  (125)

The transition is mediated by the dipole operator D, which
can be approximated as A - p, with p denoting the momentum
operator and A the vector potential of the incident light. The
photocurrent j for kinetic energy Eiin and kj of the photoelec-
trons is then given by

(126)

jNVEkinwai
i

The electron detection angles 9, and ¢, as well as the kinetic
energy determine the surface-parallel momentum k,

CcOSs
Ky =v2Eqn | 0% | sino,
sin @,

(127)

One of the most successful methods for the analysis of
electronic states in the valence regime is angle-resolved pho-
toemission using VUV light (for reviews on ARPES, see [114,
127-1291]). For fixed photoelectron detection angles, the exper-
imentally obtained intensity maxima disperse in binding energy
with photon energy. The interpretation of this behavior is usu-
ally based on the very popular and successful direct-transition
approximation, which relates the energy position of the inten-
sity maxima to the bulk-band structure E (k). This relies on the
assumption that the wave vector k is conserved in the excitation
process. A survey of the theoretical aspects is given next.
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4.2. Theory
4.2.1. Historical Sketch

First, a few milestones of photoemission theory will be sketch-
ed, without claim of completeness. In 1964, Adawi showed
within scattering theory that the final state |®) can be described
by an incoming plane wave [130]. Mahan addressed the an-
gular distribution of the photoelectrons and pointed out that
the results obtained via Green functions and via quadratic re-
sponse are equivalent [131, 132]. Regarding surface sensitivity,
model calculations by Schaich and Ashcroft yielded that the
photoeffect at the surface and in the bulk can be of the same
order of magnitude [133]. Langreth determined the scattering
of the photoelectrons versus several parameters, in particu-
lar, the escape depth [134]. Because of the similarity of some
aspects of LEED and photoemission, in particular, the state
of the photoelectron, several works based on LEED theory
were published. Especially, multiple scattering of the outgo-
ing electrons was treated by Pendry [135]. Taking into account
all ingredients of photoemission theory, for example, band
structures, transition-matrix elements, scattering, and surface
effects, Pendry developed a dynamical theory that eventually
led to the PEOVER computer program [136, 137].

Relativistic effects were considered by Ackermann and
Feder [83] as well as by Borstel’s group [138-140]. The latter
addressed, in particular, optical orientation, that is, the align-
ment of the photoelectron’s spin parallel or antiparallel to the
helicity of the incoming circularly polarized light [141]. In a
series of publications, Feder’s group predicted that the photo-
electron shows a spin polarization even in the case of linearly
polarized light [142-144] (see also [145]). All their predictions
were fully confirmed experimentally [146-148].

In addition, multiple-scattering theories for ferromagnets
[149] found entrance into the photoemission theories (for an
overview, see [51]). Relativistic theories for spin-polarized
systems, in particular, spin-polarized relativistic layer-KKR
(SPRLKKR), proved to be successful in the explanation of
magnetic dichroism in photoemission, that is, the change of
the photocurrent due to reversal of the magnetization direction
by an otherwise fixed setup [150]. This allowed for a detailed
understanding of the electronic structure of ferromagnets, in
particular, the delicate interplay of spin-orbit coupling (SOC)
and exchange [151-153]. Further, multiple-scattering theory al-
lows for the treatment of disorder, for example, substitutional
alloys [154]. This can also be used to describe photoemission
from ferromagnets at elevated temperatures [155].

In the following, we portray the photoemission formalism as
derived by Feibelman and Eastman [156], which can be seen
as the basis of most, if not all, applied photoemission theories
today.

4.2.2. Formalism of Photoemission

The nonrelativistic theory of Feibelman and Eastman [156]
is based on the work of Caroli et al. [157] who applied

Keldysh’s Green function formalism for nonequilibrium sys-
temns. Consider a semiinfinite solid, the electrons of which are
assumed independent. Monochromatic light with vector po-
tential A(r, 1) = Ag(r) cos(wt) impinges on this solid. The
Hamiltonian of the entire system is then given by

1 1, \?
H(t) = E(p + ZA(r, t)) + V() (128)
where V(r) is the crystal potential. We separate H(t) into
the time-independent reference Hamiltonian Hp and the time-
dependent perturbation H (t), H(t) = Hp + Hi(t) with

p2
1 A, 1)?
Hi@) = =[p-A@, 0 +A@ 1) -p]+ 5z~ (129b)

The eigenstates of Hy form a complete set and obey Hyln) =
Epln). Our task is to calculate the current density j, which is
due to a state | W) at the detector position R,
. i

(wli®)w) = E(W*V\Il A NN (130)
where the expectation value is evaluated at R. Following time-
dependent perturbation theory, H, (z) is adiabatically switched
on. For the time development of an eigenstate |n), one has in
first order

t
W@ =t =i [ Hu@mar s
—00

where the subscript I denotes the interaction picture. The con-
tribution of state |n) to the current density,

(in(R) = (W1 ()]s R, [ Wr (1))

is straightforward with the following considerations: (i) The
diamagnetic term of the dipole operator, A2/(2¢2), is neglected.
(ii) Terms in which the current density operator acts on bound
states give no contribution to j(R) because these electrons can-
not leave the solid. (iii) Translating the dipole operator from
the interaction picture into the Schrodinger picture yields ex-
actly one term, which corresponds to the excitation of |n) into
a state with energy E, + w. In summary, one arrives at

(In(®R)) = (n|OG*(E,, + )i(RG’ (E, + ) Oln)  (133)

with O = (p - Ag + Ay - p)/2¢ and advanced (G?) as well as
retarded (G™) Green functions

(132)

GYE) =) % (134a)
G'(E)=Y)" E% (134b)

(n > 0). Inserting Eq. (130) into Eq. (133) and introducing the
nonlocal spectral density

GHE) =211y In){nI3(E — Ey) (135)
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one eventually obtains

—-3%;5(¢*(E+w)m ImG*(E)AT|0*(E+w))
(136)

K = /2(E + w) is the momentum of the photoelectron. The
time-reversed final state |®) fulfills

RAj®) =

O(r, E + w) = exp(iK- 1) +fdr'G’(r, r'; E+o)V()

x exp(iK - r') (137)
which establishes the connection of photoemission with LEED.
First, |P) is a superposition of an incoming plane wave, the first
term in Eq. (137), and outgoing waves. The latter are repre-
sented by the integral in Eq. (137), which gives nonzero contri-
butions only inside the crystal, in particular, where V(') # 0.
The retarded Green function propagates electrons from the in-
terior of the solid (') to the vacuum region (r). Therefore, the
integral can be regarded as giving rise to reflected beams in
vacuum. In short, |P) is a state suitable for the description of
a LEED experiment. |®*) is known as a time-reversed LEED
state.

As a last step, we observe that the final state can be written
as |®*) = G'(E + w)|®f) where |®f) is the plane wave at
the detector position. The expression for the photocurrent then
eventually reads

Jj~ —{®}IG*(E + ®)AImGT(E)ATG"(E + w)| D) (138)

Equation (138) can be represented by the Feynman diagram
shown in Figure 30. Its interpretation is straightforward if
Eq. (138) is read from the right. First, the photoelectron state
|®;) with energy E + w is propagated by the retarded Green
function G” from the detector to the interior of the solid. Sub-
sequently, the dipole operator AT mediates a deexcitation to
initial states with energy E, which are described by the nonlo-
cal density of states, Im G*. These are excited into the outgoing
photoelectron state (®3|G* by the dipole operator A. The dia-
gram in Figure 30 is that of lowest order. Higher order diagrams
include, for example, the (screened) Coulomb interaction be-
tween the final and the initial states, that is, scattering between
the photoelectron and the remaining hole. These terms are, for
instance, essential for the description of the resonant behav-
ior of photoemission intensities from Pd [158]. Usually, one
neglects higher order terms; that is, one assumes the sudden
approximation {159-161].
Applying the Dirac identity,

1 1
li =P| - 1)
n—l>r(r)l+x:i:in P(x):Fl )

which establishes for any state | E) the relation [cf. Eq. (134);
P stands for principal value]

(139)

Im(E|G(E +in)[€) = ~7 Y |(Em)|*8(E — Em) (140

G'(E)

A+

Fig. 30. Feynman diagram of photoemission according to Eq. (138). The
double line represents the detected state |®g) with energy E + w and surface-
parallel momentum k). Green functions G%, G, and Gt are represented by
arrow-decorated lines, photons by wavy lines.

the photocurrent can be expressed in golden-rule form,

i~ Y _*(E + )| Am)[8(E + @ — En) (141)
m

The main difference between the golden-rule and the Green
function expression, Eq. (138), is that the former holds only for
real energies, whereas the latter can also be applied for com-
plex energies. In other words, the golden rule is only valid for
infinite lifetimes, whereas the Green function takes into account
finite lifetimes of both photoelectrons and holes.

The description of electron scattering in a many-body the-
ory leads to quasi-particle states and to the self-energy X,
sometimes denoted optical potential [162]. In the lowest or-
der approximation, the self-energy is local and homogeneous.
Its real part gives rise to shifts of the quasi-particle energies.
For example, fundamental bandgaps obtained from density-
functional calculations for zinc-blende semiconductors are too
small with respect to the experimental values; inclusion of X
in the GW approximation [163] increases the bandgaps consid-
erably. Another example is Ni where the experimental energy
shift between spin-split bands is about 0.3 eV, in comparison to
0.6 eV from density-functional calculations [164]. The imagi-
nary part of % accounts for the lifetime of the quasi-particles;
that is, an increase of Im X leads to broader photoemission
spectra [165, 166]. This can be attributed to the spectral func-
tion A(E) = —ImTrG(r, r; E) /7,

[ 8(E — Ep)
real energies
r 1

7 (E = Em)2+12
complex energies
Im X (Ep)
(E — Em —Re Z(En))? + (Im (Ep))?
general case

A(E) = Z

m

(142)
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4.2.3. Formulation within Multiple-Scattering Theory

As we have seen in Section 3, multiple-scattering theory pro-
vides an excellent description of the LEED process. In the
previous, we have further established a close connection be-
tween LEED and photoemission; in particular, the final state
in photoemission is a time-reversed LEED state. Guided by
these findings, photoemission should also nicely be described
in terms of multiple-scattering theory. Instead of sketching
Pendry’s formulation [136, 167], which provides a very fast
algorithm (in terms of computational time) but a rather tech-
nical theoretical description, we present a formulation in terms
of Green functions. Of course, both methods give identical re-
sults.

In the formulation of the LKKR method for LEED, we have
obtained the scattering properties of the entire semi-infinite sys-
tem by consecutively treating the scattering of smaller entities:
the single-site ¢ matrix for scattering from atoms, the M and Q
matrices for layers, and from these eventually the reflection ma-
trix of the semi-infinite solid. This idea appears again in the
calculation of the Green function. We shall start with the Green
function of free space, then treat an empty layer embedded in
the otherwise occupied system, and eventually treat a full layer.

Before turning to the investigation of the Green function,
we sketch the very basis of multiple-scattering theory, the
Lippmann-Schwinger equation and the Dyson equation.

Lippmann—Schwinger and Dyson Equations. Consider an
eigenstate |9%) of a reference Hamiltonian HO, H?|®%) =
E|®°). The associated Green function G° fulfills (z — H%) x
G° = 1, with z = E + in, n = 0%. The eigenfunction |®)
of the Hamiltonian H = H® + V, V being the perturbation,
fulfills H|®) = E|®) and can be obtained via the Lippmann-
Schwinger equation

(143)

Solving for |®) yields formally |®) = (1 — G°V)~!|®?). In-
troducing the transition operator T = V(1 — G°V)~! gives
V|®) = T|®Y%, and |®) = (1 + G°T)|®Y).

The Dyson equation for the Green function G with (z— H) x
G = 1 can be obtained from (z — H)G =1 + VG,

G=G"+GYG=G"+GvG®

|®) = |®%) + G'V|D)

(144)

Or, in terms of T, G = G%+ G°T GY, which immediately gives
VG = T'GY. This result can also be used for the wave function
@), |®) = |9%) + GV|DY).

Free-Space Solutions. We recall briefly basic properties of the
solutions of the free-space Dirac equation for a given complex
energy E. Because in this case the Hamiltonian is no longer
hermitian, one has to deal with left-hand side (superscript L)
and right-hand side (superscript R) wave functions [168]. The
former obey (WL |H = E(WL|, the latter H|WR) = E|WR). In
general, the Lh.s. solutions are not the hermitian conjugate of
the rh.s. solutions. In plane wave representation, the free-space

solutions [V (r) = 0] read [76]

T

E +¢? X
AR = 507 co-k _ lexp(ik-r)  (145)
E+c2X
and
E +¢? co-k
L . T T ik,
(fkrll‘)— 52 ((X )L () ‘E_l_cz)exp( ik-r)
(146)
In angular-momentum representation, they are given by
2 zy(kr)(T
(rizf) = ‘/__E2+2c ickS, ! lxﬁ) (147)
4 mzf(kr)(rlxx)
and
Ly c? o —ickS -
(ZA|1') = 22 zi(kr){xa|T), mZi(kr)(XXl r)

(148)
with z = j for regular or z = 4 for irregular solutions. The
wave number k is v E2 — ¢*/c. Each representation can be
transformed into the other by

(rlA) =D (rliR)as: @)

A

(149)

with a A,(E) from Eq. (98).

Free-Electron Green Function. The retarded Green function
of free space obeys the Dirac equation

(E - H)G{(r,v; E) = ((1) (1)) 3(r—r)®38pin  (150)

with the Hamiltonian H = ca - p + 2B and V(r) = 0. éypin
denotes the Kronecker § in spin space, spin = Dy X (XDT.
For given energy E and wave vector kj, Gg' is given in plane
wave representation by

z2>7

Gla,r)= L Z 1 (rlfkgf)(flérlﬂ)
0 iFa T kg1 (r]fR_t)(fI;_rlr') z<7
(151)
k;h is taken from Eq. (94) and the + (—) sign refers to the case
z > 7’ (z < 2). F4 is the area of the two-dimensional layer unit
cell. In angular-momentum representation, Ga" (r, r') reads

l (rlj}f)(hﬁlr’) r<r

152
(r]hﬁ)(jf\‘lr’) r>r' (152)

Gy Xy =—iky

A

With r.. (r.) being the larger (smaller) of r and r’, the Green
function can be written in a more compact form as

Gy (r,v') = —ik Y (r]jR)nk ) (153)
A

keeping in mind the two cases in Eq. (152).
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Lippmann-Schwinger Equation and Single-Site Green Func-
tion. Theregular solutions |J 115 ) fulfill the Lippmann—-Schwin-
ger equation |J Ry = |jR) + GFV|JR), or explicitly for the
radial part,

(rl IR = (r1iR) — ik{r|n%) / dr'r '2]Alr)V(r)<r|JA)
_ik(ru}f)/ dr' FP (KW e IIR) (154

The irregular solutions obey |HR) = |h®) + G(‘)F V|HR) and

/oodrrz(hLlr)V(r)(r|HR) =0 (155)

0

where |HR) and |rR) are either of the first () or of the second
(—) kind [81]. Analogously to the spherical Bessel and Han-
kel functions, the regular and irregular solutions are related by
|7R) = (HR®)) 4+ |HEC))) /2.

To determine the single-site Green function G (r, r’), one
starts from the expression for G* in terms of eigenfunctions of
the Hamiltonian,

di (r|¥(k, E))(¥(k, E)|r)
2r)3 E+in—k?
and obtains with the regular solutions after integration over an-
gles in reciprocal space

2 o0
Gta,r)== / dk
(157)

Because the integrand is even in k, the integration can be ex-
tended to the interval [—o0, +-00], allowing the integral to be
treated as a contour integral. Defining « = p + in/(2p),
p = +/E, and noticing that = 0%, one has o? = E + in.
Thus, the preceding integral contains the factor

K2 1 2% Lk k
a?+k2 " 2\k—a k4o k-

(156)

G, r) =

(r|JR(k, E))(J (k, E)Ir)
E+in—k?

(158)

(k? in the numerator on the Lh.s. is due to the path element). The
underbraced term is odd in k and thus gives no contribution to
the integral. Therefore, one is left with

U | /°° (rlJ{ &k, ENk(IR K, E)IY')
G (r,r)_n; _oodk R
(159)

Replacing (JL(k, E)|r’) by the sum of (HL™(k, E)|r') and
(HXO)(k, E)|r), the integral can be performed. Taking the
limit lim,_, o+ eventually yields

Gt (r,v) = —ik Y (relJRk, E)HY Pk, E)rs) (160)
A

Alternative representations of the single-site Green function
follow immediately from operator equations for . For exam-
ple, G = G° 4+ G°T G yields [72]

bulk side

&

surface side

©
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Fig. 31. Arrangement of layers for the calculation of the empty-layer Green
function. An empty layer (dashed line) is embedded between stacks of layers
(left, surface side, black circles; right, bulk side, gray circles).

GT(r,r) = —ier<Ij1’f(k By Pk, B)Ir,)

—k? Zr<|h (k, E))tan
AN

x (5P, E)r..) (161)

Empty-Layer Green Function. Now consider a solid buildup
by layers from which one layer of scatterers is removed (cf.
Fig. 31). We will denote this layer with index i as “empty”.
For semi-infinite solids, one side belongs to the surface region,
the other to the bulk region. Note that the following method
can treat any kind of embedded layers, the embedding regions
may consist of vacuum, films, or semiinfinite solids, respec-
tively. For the Green function of the empty layer, one makes the
ansatz

Gpp (i, 1)) = G (i, 1)) + Z(rile DXA'(L%"‘;)
AN

(162)

with arguments E and k; dropped. The coordinates are taken
with respect to layer i, r; = r — R;. G(')" is the retarded Green
function of free space, Eq. (152). The coefficients D' ‘A haveto
be determined by the boundary conditions: the Bloch condition
parallel to the layers,

G (i + R, 1)) = exp(ik; - R) Gy (i, 1)) (163)

(R is a vector of the layer lattice) and correct reflection at both
the surface and the bulk side. Thus, DX A is decomposed into
DX N All At B” A A [( A 18 the structure constant of layer i,
which obeys

i L E+c?
AII:A’ = —ik ) (164)

Y GY \(—Ryexp(iky - R)
R#0

Further, one has ;" (k|r — R[){r — R|x4)
Jrkr)(Tlxar).

= Y Gia -R)X
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To determine the coefficients BK A+ itis convenient to switch
from angular-momentum (k i) to plane wave representation
(g7), which yields

Biw = 20 DD anctWar (anwikg))” (165)

s,8'=+ 8T gt/

Thus, the matrix B is completely determined by the matrices
wtt, Considering the reflection at the boundaries of the empty
layer, one obtains the following matrix equation:

—R*~ |1 Wt -
1 —R+ )\ w-+t -

_ 1 (Rt 0 KO0
TiA\ o0 Rt 0K

R*~ and R~ are the reflection matrices at the surface side and
the bulk side, respectively, which can easily be computed from
the scattering matrices of the layers forming the surface and the
bulk side stacks. Further, K grgtr = Ogrgv/kgi. Eventually,
one obtains

(166)

wtt = pt-w—+ (167a)

wt- = ,L(l —RYTRH)"lgt-g (167b)
iFy

Wt = _LR"+(1 -R*R Nk (1670
iF,

W~ = R~twt- (167d)

Note that for a standalone layer, that is, a layer without vacuum
embedding on both sides, Rt~ = R—+ — 0, which leads to
WEE = 0, and the matrix D is given by the structure constant A
alone.

It is illustrative to write the empty-layer Green function in
terms of outgoing and incoming plane waves. With the defini-
tions

1
(el = A )

:b ’
+ Z Z Wgt.,“g’t’<fklsl:,/'r§) (168a)
=+ g't’ 8
(Felei) = 30 Do W {fL ) (l6sb)
s'=+ g't/ 4
one has in matrix form
1
—K+wtt wt=
v\ _[iEs T fL+
- 1 7 ](169a)
w —K+W
lFA
vt wHt wt-\ [+
= 169b
(f") (W--F W——) (fL—) ( )

and the empty-layer Green function is given by
Gl ) =Dl Nok ) + D_(ril A5 NoF 1)
gr gr
(170)

where the upper (lower) signs are for the case 7 > 7/ iz <7).
According to this decomposition, the Green function can be
interpreted as a propagator: From r} there are outgoing plane
waves into the +z direction (v and ¥*) and into the —;
direction (v~ and V™) that are collected at r; via f&. This in-
terpretation is quite helpful in obtaining the interlayer part of
the Green function.

Full-Layer Green Function. For the layer-diagonal Green
function for the full layer i, we make the ansatz!5

G(ri, 1)) = G*(r;, 1)) + DRRE (i)
AN

with the single-site Green function G+ for a site at layer i, ,
Eq. (160). The regular solutions of the single-site problem fulfil]
the Lippmann-Schwinger equation for the site potential V; (r),

(rilA%) = (17 R) + /Q G (xi, X)) Vi )1 TiR)ar B (172)
Thus, the single-site ¢ matrix is given by

BR =ik /ﬂ (X 7iRar? 73
Further, tj\’,‘ A= tl"\’;\,. The single-site solutions show the asymp-
totics as in Eq. (88). The coefficients U/ X A are determined by
the Dyson equation for G,

G, ¥y = GaL(r, 1) + f GEL(r, YV ()G, ') dr"
«Q

(174)
Using the asymptotics for the single-site solutions, one obtains
after some manipulation an equation for U}/ As» Which in matrix
form reads

. -1
Uil — (1 _ I%DiitiR) Dii (175)
where the indices of U*, D¥ and #'R run over all A.

Now we turn to the calculation of the non-layer-diagonal
parts of the Green function, that is, the matrices {7i/ fori # j.
As we have seen, the empty-layer Green function can be in-
terpreted in terms of outgoing and incoming plane waves,
Eq. (170). Now the incoming waves do not belong to the empty
layer (with index j) but to the full layer (with index i); see Fig-
ure 32. The first task is to find the transfer matrix from layer J
to layer i. Therefore, the reflection matrix R;:r_f at the surface
side, the scattering matrix Mg,y of the layers sandwiched be-
tween layers j and i, and the reflection matrix Rb_uﬁ( at the bulk
side have to be computed according to the methods presented
in Section 3. Then the matrix U/ can be computed according
to the following scheme:

(i) The wave fields outgoing from layer j in the 4z
direction are given by v;? in the plane wave
representation, Eq. (169). These have to be

I5Note that the ansatz shows the same structure as in Eq. (162).
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propagated to the boundaries of the layer stack and
giverisetouf, | = PTvl andu | = F7v).

{ii) The wave field impinging an layer {, which is due to
the wave ficld oulgoing from layer i, has to be
calculated. For the case i = j, that is, the empty layer

on the surface side {cf. lower patt of Fig. 32), ong has

uf = (1= MIERGE) ™ MGG, (1760
- - +— p—+ =l et
u = Rhutk“ T M;,-luh IF:".‘I,:mllc) ﬁ]:il.‘lu_.l'-l-l

= Rtut (176b)

For the case i = j, that is, the empty layer on the
bulk side (cf. upper part of Fig. 32), analogously

u = (1 - MELRID T Maguy , (1778)
+ - =
n = Rs.urf{]' — M Rsurf} ’Hslﬂl!u.."—l
= Ri=nt (177h)

(iif) Toexpress the incoming wave field in terms of
regular solutions of layer i, one has o muoltiply uf
by {1 —iA¥ r"fk]_i, where AT and ¢ are the
structire constant and the single-site r matrix of
layer i, respectively.

{iv) To oblain the *full layer” j, cne has to slve the
Diyzon equation. Applying the similar considerations
as for the layer-diagonal part, v;!' has to be multiplicd
by —i{1 + ie5 075 7). In summary, the Green
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Table UL, Propertics of Single-Sie Solotions
Funciion Behavior for v — 11 Azymplatics for r — 00
|0 Reaular Py Ry
15 Irresular i
k7 Regular i )
|4 Tivepular 1]

funciion iz given by

X an? e waf ; iR [ Y R
Glri.r) =G {r;,rf}é,}+2{:r,|.f},. Julstind )
Ly

(178)

Scattering-Faih Operaior and Scattering Solurions.  Certain
equations of multiple-scattering theory beecome nicer when they
arc not fornulated in terms of regolar and iregular solutions of
the single-site problem but in terms of séattering solutions; for
example, the matrices U™ are replaced by the scattering-path
operators (SPOg) o™, The latter are the on-the-energy-shell
matrices ol the transition operator T. Because the derivation
of ™" can be found in several extbooks (see, e.g., [TO-72]),
we just recall some basic properties.

The SPG ™" from site 1 1o site m obeys 707 = (™5 o4
R Y i G878 where G™ is the structure constant, The
matrices 7 and 7 are closely related,

Frmn {rmﬁj_]{rmn 2¥ !rJ:HSerHr.-:L}”' {179)

Consider, for cxample, the Green function that propagates an
clectron from a site By, to a site By, m 2 ». Taking r, and ry
outzide the muffin-tin sphere and using the asympiotic behavior
ol | 7°®) and {J™L|, cf. By, (88), One amives at

Gy, b)) = (r,,u*"‘(r*"”)‘l + .&R:It’""{jL{f"L}_1 + " [ty
(180
The preceding equation establishes the regular scattering solu-
tions [169]. Within the muffin-tin sphere, they are given by

128 = TN (181a)
_Iil_.l

25 =Y Mkl (181b)
"I.'l

Analogously, the Green function at site By, can be written as
Gir,, 1) = {r,EIZ’-'*Jr““{Z""|r;] o jkl:rnlznﬁ:l{jnf.Ir:’I:l
{182)

where |/} is an irregular scattering solulion. The main proper-
ties of the single-site solutions arc given in Table 111

Screened-KER Methods,  The Green function G of a system
can be obtained from the Dyson equation with respect o the
free-space Green function G, & = Gg + GurG, where ¢ s
the single-scattering matrix, The SPO 7 is implicitly defined
by G = Gg + GorGo, which leads o ¢ = (1! — Gg)~' or
G=tlgml — =l
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The preceding formalism is based on free space as a ref-
erence system but can, in fact, rely on any other reference
system [170]. The Green function G, of the reference system
is given by G, = Go(1 — t,Go)~!. Now G can be expressed
in terms of G, as G = G,(1 — At G,)~! with At =1 —1,.
For the SPO, one obtains 1o = [(Af)~! — G,]~L. Now, one
can ask for a reference system that (i) can easily be computed
and (ii) allows for a rapid computation of the Green function G
by means of G = (At)“l'tA(At)_1 — (A1)"L. One answer
is the screened-KKR method, that is, the transformation of the
KKR equations into a tight-binding (TB) form.!6 In TB calcula-
tions, one exploits that the interaction integrals, which describe
the hopping of the electron from one site to another, decay
rapidly in configuration space, so that only a few nearest neigh-
bor shells have to be taken into account. This approximation
allows for the use of a variety of computational methods to
obtain the Green function. Of practical interest is the renor-
malization scheme or, in the case of disordered systems, the
recursion method [171].

Within the screened-KKR method, one uses a reference sys-
tem that allows a fast computation of ta. Because At is site
diagonal, a perfectly suited G, should also be site diagonal.
This, however, cannot be the case in real solid systems. Thus,

" one tries to construct a reference Green function, that decays
as fast as possible in, configuration space. One way is to follow
Anderson who invented the screening method and to exploit the
scaling properties of the preceding equations in order to con-
struct a “most screened” set of basis functions [172]. Another,
more practical way builds the reference system by repulsive
(Vo > 0) well-shaped and spherically symmetric potentials of
muffin-tin form [173],

Vor <rme

. (183)
0 otherwise

V() = [
the ¢ matrix of which can easily be calculated analytically. The
screening, that is, the exponential decay of the SPO in real
space, can be tuned by the height of the potential wells. Fur-
ther, in order to compute the reference Green function, one can
employ the translational properties of the reference system, in
particular, the Bloch property.

Photoemission Final State. The final state in photoemission,
the time-reversed LEED state, can be computed either directly
via the reflection and transmission matrices of the layers [136]
or within the Green function formalism presented here. The
LEED state d>];EED (r; E,K) at energy E, wave vector k, and
spin 7 fulfills the Lippmann—Schwinger equation

LR B, = [riff)+ [ &G EVEOIAE)
(184)
that is, the relativistic version of Eq. (137), with the free-
space solution | fth) and the potential in the solid V. Instead of

16Then:fore, screened methods are sometimes loosely denoted as TB methods
(TB-KKR, TB-LMTO, where LMTO is short for linearized muffin-tin orbital).

using the plane wave representation, we turn again to angular-
momentum representation. With Eqs. (147) and (149) for regu-
lar solutions (z = j), the LEED state at site R,, is given by

L (r,; E, k)
= exp(ik - Ry) ) _(rnljf)anc &)
A

+E exp(ik-R,,,)E / d*r),G(xy, ¥),; E)
Qm
m

X V(00,1 X)anc () (185)

with G from Eq. (171). Inserting the interlayer contribution to
the Green function, one arrives at a term

Zexp(zk Rn) Y (mlJf)Usm.,

AAIAII

x fg dri (T 5,V @), I]A)aAt(k)

m

[

v

=ty o/ (~ik)

Zexp(tk Rn) Y (ralJR)URT otf panc (K) (186)
AIAII
For the evaluation of the remaining single-site terms, one ex-
ploits the Lippmann-Schwinger equation (172) for the regular
solutions. Thus, these terms reduce to |J ,'{R). In summary, the
LEED state at site R, is given by

SLEED(y, - E k)
= exp(ik - Rn)Z<rn|JA>aA,(k)+ Zexp(zk R,)

X Y (el IRV tEy pane (K) (187)
AAIAII

A slightly more compact form is obtained using the SPO,

Zexp(zk R,,,)Z 1 ZR)emm, ap . (K)

AN
(188)
It is worth mentioning that a construction of the final state
in terms of Bloch states has been given by Bross [174] (see
also [69]).

OLEED(r - E,K) =

Transition-Matrix Elements and Photocurrent. A photoemis-
sion theory is incomplete as long as the transition-matrix
elements are not taken into account. The interaction of an elec-
tron with incoming monochromatic light of frequency w and
with wave vector q is relativistically described by the Hamilto-
nian

H(r,t) =a-A(r,t) =a-Agexp(iq-r — ot) (189)

Upper and lower components of the Dirac spinors are coupled
via , Eq. (79). Usually, one decomposes A = (Ax, Ay, A;)
into (A4, A, A;) with AL = A, + iAy, that is, into contri-
bution from left- and right-handed circularly polarized light as
well as linearly polarized light.
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The transition-matrix elements between the Dirac spinors at
a particular site are integrals over the muffin-tin sphere. Inte-
gration over angles, that is, matrix elements of « - A of the
central-field spinors |xa), yield the well-known “atomic” se-
lection rules [175]: The angular momentum [ has to differ by 1,
Al = +1, and its z projection m is conserved for linearly po-
larized light, Am = 0, or for circularly polarized light it is
changed by 1, Am = =1. The integration over the radial part
has to be computed numerically. The Green function of the ini-
tial state consists of both regular and irregular solutions, the
time-reversed LEED state of regular solutions only. Therefore,
one has to consider two general types of matrix elements. For
those between regular solutions, one has

Rmt
Mi(11\)’A =/ (Jarlrnei Ai(rida)dr  i==%,z (190)
0

The single-site term of the Green function gives rise to a double
integral, M ,.(12\), A» due to the selection of regular and irregular
wave functions with respect to r; see Eq. (160). In the preceding
definition, we have suppressed the indices L and R, which are
due to the occurrence of left and right wave functions.
Eventually, the spin-density matrix p of the photoelectron is

given by [cf. Eq. (138)]

prrr ~ (@0 |G (E + 0)A Im G (E)ATG' (E + )| ®or)
ot =+ (191)

which, besides the computation of the photocurrent I = tr(p),
allows for computation of the spin polarization of the photo-
electrons P = tr(op)/tr(p). Note that due to SOC the spin
polarization can be nonzero even from nonmagnetic solids (see,
e.g., [150]).

Because the final state is a time-reversed LEED state, it
shows the same symmetry properties as a LEED state; cf.
Section 3.2.2. This, together with knowledge of the light po-
larization, allows for a detailed group-theoretical analysis of
photoemission from (ferromagnetic) surfaces [58, 176]. In par-
ticular, it reveals the initial states for which dipole transitions
are allowed or forbidden (see also [97]). ’

A popular approximation for analyzing experimental spec-
tra is the direct-transition model. If the initial states are taken
as Bloch states, for example, by neglecting the surface of the
sample, the normal component k; of the wave vector is con-
served in the transition process. This allows for a mapping of
the intensity maxima to the band structure k1 (E,Kkp).

Before turning to applications of the multiple-scattering the-
ory of photoemission, basic properties of photoemission from
ultra-thin films should be addressed.

4.2.4. Simple Theory of Photoemission from Ultra-Thin
Films

In recent experimental work on photoemission from films with
thicknesses of a few layers, the photoemission intensity maxima
show dispersion, as in the bulk case, and can be well described
within the direct-transition model using bulk-band structures.

Fig. 33. Linear chain along thé z axis with n = 11 equidistant sites with
intersite distance a. The tight-binding parameters, cf. Eq. (192), are the on-site
energy € and the next nearest neighbor hopping energy ¢, visuatized by dashed
lines.

This led to the conclusion that even ultra-thin films “show a
(bulk) band structure” [177, 178]. This behavior can be un-
derstood within a simple theory of photoemission from linear
chains [179], which will be presented in the following (for an
approach based on Green functions, see [180]).

There are two limits in which valence electrons in a film can
be described (see Section 2 and, e.g., [21, 181-184]): (i) In a
plane wave representation, free electrons can be confined to a
quantum well. (ii) In a tight-binding description, electrons are
allowed to hop only within a finite number of layers. The pro-
totypical realization of the latter model is rare-gas layers on a
(metal) substrate (cf. Section 2.2.3).

The film is represented by a linear chain oriented along the
z axis, that is, perpendicular to the surface, with n equidistant
sites i, i = 1,..., n, with one orbital |®;) per site. The lat-
ter is located at iae;, a denoting the intersite distance (Fig. 33)
{185-188]. Further, the overlap between the normalized orbitals
located on different sites is assumed to be 0, (®;|P;) = §;;.
Neglecting the substrate completely, the elements of the Hamil-
tonian matrix H™ read

Hi(j") =€8ij +tdi—jin Lj=1,....n (192)

with on-site energies € = (®;|H ()| ®;) and next nearest neigh-
bor hopping energies t = (®; | H™ | ®;11). The eigenvalues
of H™ can be written as

Af") =42 cos(kf")a) (193)

i=1,...,n

with ki(") = wi/[a(n + 1)]. In the case of a single site where
there is obviously no hopping, )\21) = ¢. For an infinite chain

(i.e., in the limit n — 00), k,.(")a is dense in [0, 7] and, thus,
the eigenvalues represent the bulk-band structure E(k) = € +
2t cos(ka); cf. Figure 34. An eigenfunction I\I!i(")) of H™ with

energy Ag") can be written as

n

v =Y 1))

j=l1

(194)

i=1,...,n

2
ij

(ny _ (n) (n) (n)
¢ = 2 cos(k; a)C,-,j_1 - ci.nj—Z

the coefficients c;;’ of which can be calculated iteratively by

j=2,...,n (195)

with ¢® = 0 and ¢ = 1. The additional relation

ZCos(k,g")a)c,g’"") = ci(,"n)_l ensures that ki(") has to be chosen

properly. It can easily be shown that cf]'.’) ~ sin(mij/a(n + 1))
Strictly speaking, kf") is not a wave number as it is in the case
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Fig. 34. Tight-binding electronic structures of linear chains. The tight-binding
parameters are € and #; cf. Eq. (192). (a) Eigenenergies AE") [dots; cf. Eq. (193)]
of chains with n = 1, ..., 10 sites. (b) Density of states (DOS) of the infinite
chain. (c) Band structure E (k) = € + 2t cos(ka) of the infinite chain. Reprinted
with permission from J. Henk and B. Johansson, J. Electron Spectrosc. Relat.
Phenom. 105, 187 (1999). Copyright 1999, by Elsevier Science.

of Bloch states because there is no translational symmetry and
therefore no periodicity. Due to the inversion symmetry, the
eigenstates \I/i(") show the expected even—odd alternation [cf.
Eq. (19)], and the number of nodes in the wave function in-
creases with Ik,.(")l.

The photoelectron state |¥5) can crudely be approximated
by a single plane wave, (r|¥y) = exp(iky - r), as is often done
in the interpretation of experimental data. This way, quantum-
size effects in the upper band structure that show up, for
example, in LEED (cf. Section 3.3) are ignored. The wave vec-

tor K ¢ is determined by both the position of the detector and the

energy of the photoelectron, Ef ~ k}. The photocurrent Ii(”) at

photon energy w from the initial state IIP,.(”)) is given by Fermi’s
golden rule, Eq. (141). Inserting the previous expressions for
the wave functions and defining the Fourier-transformed atomic
wave function F(K) by F(k) = [ ®*(r) exp(ik-r) d3r, one ob-
tains eventually

I o [E-ks PP k) 2| AP (1) P8(Ef —0—2™) (196)
The function A" (k), which is defined by

n
AP W) =Y e explikja) (197)
j=t
determines considerably the dependence of the photocurrent on
the photon energy and, thus, should be discussed in more de-
tail. Obviously, A;") is periodic with period 27 /a. In the case
of a single site, n = 1, [A(k)| = 1 and the photon energy
dependence of the photocurrent is determined solely by F (k f)-
In the case of an infinite chain, n — 00, strict wave vector con-
servation, A (k f1) = 8(ksL — k), is obtained; that is, the
direct-transition model is recovered.
Setting all ci(]'.') = 1 leads to a geometrical series for A",

n fork =0

= ¢ k
(@" —1)/(g — 1) otherwise q = explika)

AP (k) = [
(198)

(b)n=8

(@) n=2,4,8, 16, 32; Im(ka) =0
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~ 0.4 ] [
P \ 8% f/ &
£ . /
04 \ 0.1 M Hoa
s “ 0.0 Y/
i A
. // /,
e e
00 = = 0.0
T 0 2 x 3a/2 2%
Re(ka) Re(ka)

Fig. 35. The “k-conservation” function IA(")IZ, as defined in Eq. (198).
(a) Dependence on the numbser of sites n in the linear chain. » ranges from 2 to
32, as indicated, Im(ka) = 0. (b) Dependence on Im(ka). Im(ka) ranges from
00t01.0,n =8.

Obviously, A™ shows n — 1 zeros in [0, 2] at ka = 27i/n
withi = 1,...,n — 1. Its absolute value increases with 7z in
the vicinity of k = 0, whereas it decreases in the interior of the
interval [0, 27]. In short, A™ is an approximation of Dirac’s
4 function [189] (cf. Fig. 35). The main photoemission intensity
comes from the region around £ = 0 (ic, k fL = kl.(")), but
additional intensity maxima, which are due to the oscillatory
behavior of A®™, should occur.

So far, we have considered only the case of infinite life-
time of the photoelectron. Introducing a finite lifetime leads to
a complex wave number [53], which results in an additional
weakening of the k conservation, as is also shown in Figure 35.
A™ decreases rapidly around & = O with increasing Im(ka)
(as is evident from the geometrical series), but the oscillatory
behavior is still visible, except for very strong damping, for ex-
ample, Im(ka) = 0.5 in Figure 35b.

Photoemission from chains with length of 5 and 10 sites
is compared in Figure 36. The intensities were obtained from
Eq. (196) with |E - ks |2|F(ks)[? set to 1, but A™ calcu-
lated with the coefficients c,.(]'.') obtained from Eq. (195). At
the bottom of each box, the initial-state band structure E (k £1)
is shown (note that k¢ is related to the photon energy w by

k% ~ Ag") + ). The individual photoemission intensities show

main maxima at k,.("), that is, E(ksy) = )\5") . In other words,
one obtains approximate k) conservation. However, the inten-
sities show oscillatory behavior (cf. Fig. 35). Further, the main
maxima for n = 5 (Fig. 36b) are much broader than those for
n = 10 (Fig. 36a) due to the weakening of the k conservation
for shorter chains.

The finite photoelectron lifetime can be modeled using com-
plex energies [53], which leads to complex k f1. Its effect is
addressed for a 10-site chain in Figure 37. For a rather large life-
time [Im(kr; a) = 0.2, in Fig. 37b], there are still oscillations
with k¢ in the photoemission intensities from the individual
initial states. These become smeared out for decreasing lifetime
[e.g., Im(ks;ia) = 0.5 in Fig. 37a]. However, the intensities
follow the bulk-band structure in both cases. At a fixed pho-
ton energy or a fixed Re(kys ), for example, Re(ks1) = 0, the
EDC becomes broader with increasing Im(k f1), which is due
to the smearing out of the individual maxima and not to the
uncertainty in k¢ .
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Fig. 36. Photoemission from linear chains with lengths 10 (a) and 5 sites
(b), respectively. The intensity I is shown for each initial state at energy Af")
[cf. Eq. (193)] for final-state wave numbers k¢ ranging from 0 to 2r/a and
Im(k sy a) = 0. The initial-state band structure £ (k) = €+ 2t cos(ka) (dashed)
is shown at the bottom of each box. Intensities are scaled to the same maximum
in each box. Reprinted with permission from J. Henk and B. Johansson, J. Elec-
tron Spectrosc. Relat. Phenom. 105, 187 (1999). Copyright 1999, by Elsevier

Science.

In summary, photoemission from ultra-short chains shows
the following properties: (i) The confinement of the valence
electrons to the chain leads to a weakening of the wave number
conservation: the shorter the chain, the broader the photoemis-

- sion maximain ks, . (ii) Besides the periodicity with 27 /a, in-
dividual photoemission intensities show oscillations with k|,
the number of which is proportional to the chain length. These
oscillations become smaller in intensity with decreasing photo-
electron lifetime [increasing Im(k ¢ )]. (iii) Even for very small
lengths, the main maxima in the photoemission intensity fol-
low the initial-state bulk-band structure, despite the fact that
the initial-state energies are discrete (quantum-well states).

4.3. Applications

In the following, we focus on theoretical photoemission results
for metallic films on metal substrates, which were obtained
by multiple-scattering methods. Further, representative exper-
imental data that show fingerprints of QWSs are presented.

o1 (arb. units)

k2 3. (E-e)/t
z
(b) Im(k¢,a) = 0.2

I (arb. units)

3.1
kfza

(a) Im(kga) = 0.5

6.2

Fig. 37. Same as Figure 36, but for photoemission from chains with 10 sites
for Im(k f1a) = 0.5 (a) and Im(k fia) = 0.2 (b), respectively. Reprinted
with permission from J. Henk and B. Johansson, J. Electron. Spectrosc. Relat.
Phenom. 1035, 187 (1999). Copyright 1999, by Elsevier Science.

4.3.1. Ultra-Thin Cu Films on fcc Co(100)

Hansen et al. performed photoemission experiments for ultra-
thin Cu films on fcc Co with an identical number of Cu layers
but different crystallographic orientation of the substrate [190].
For 14 layers of Cu on fcc Co(111), they found a bulklike dis-
persion in the Cu sp states but three quantized states with fixed
energy for fcc Co(100) and fcc Co(110) substrates (see Fig. 38).
These findings were explained by the bulk-band structure of Co:
Only in the latter two cases do bandgaps lead to confinement of
the valence electrons to the Cu films and thus to QWSs. Further,
it was observed that for the (100) and (110) films the photoe-
mission intensities from the QWSs behave similarly to those of
semi-infinite Cu(100) or Cu(110), respectively, which can also
be understood by means of photoemission from linear chains
(Section 4.2.4). A closer look at the intensity variations, how-
ever, gives hints that the maxima show more structure in their
dependence on both the binding energy and the photon energy.

Ultra-thin Cu films on fcc Co(001) lend themselves support
as prototypical systems because of extensive experimental and
theoretical work. However, experimental {183, 191-194] and
theoretical [195] investigations dealing with Cu/Co have fo-
cused mainly on the properties of QWSs as a function of the
film thickness (e.g., binding energy and spin polarization). Usu-
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T.-C. Chiang, J. Phys.: Condens. Matter 9, L435 (1997). Copyright 199

ally, such analyses were performed at a fixed photon energy.
In the following, we focus on a few film thicknesses but ex-
tend the analysis to variable photon energy in order to work
out the manifestation of quantum-size effects in photoemission.
Photoemission from Cu/Co(001) is analyzed by means of cal-
culations within the one-step model of photoemission based on
multiple-scattering theory (SPRLKKR), as presented in Sec-
tion 4.2.3.

Quantum-Well States in Cu Films on fec Co(001). Typical
photoemission spectra from Cu/Co(001) for various thicknesses
of the Cu films are shown in Figure 39. The intensity max-
ima are labeled by numbers that refer to the QWSs in the film
(cf. Fig. 7). With increasing thickness, the maxima disperse to
higher energies. At a fixed binding energy, for example, at the
Fermi level Ef, the intensity is higher if a QWS crosses this
energy than if there is no QWS at that particular energy. This
gives rise to oscillations in the photoemission intensity at a fixed
binding energy, as shown in the top panel of Figure 39 (and dis-
Cussed later).

Before turning to the photoemission results, the electronic
Structure of Cu films on fec Co(001) at T, which is relevant
for normat emission, kj = 0, is briefly analyzed. The perpen-
dicular component k; of the wave vector takes values from
the direction '~A—X in the bulk Brillouin zone. The Cu sp
band belongs to the double-group representation Ag; the related

hv
0

nergy (eV)

-crystal Cu surfaces and for Cu
dle), and (111) (right) orienta-
bounds indicated in each graph.
position of intensity maxima re-
dicates the dispersion of a peak
om E. D. Hansen, T. Miller, and
7, by the Institute of Physics.

10) indicate the

ith permission fr

wave functions show a prominent A! single-group (spatial)
contribution (for applications of group theory in solid-state
physics, see [59, 196]). To confine these electrons completely
within the Cu film, the Co substrate has to have a gap in
the A! bands. This is the case for minority electrons below
—0.65 eV (light-gray area in Fig. 40), for majority electrons
below —2.09 eV (dark-gray area in Fig. 40).

To distinguish among surface states, interface states, and
QWSs, one calculates the layer-resolved Bloch spectral func-
tion (LDOS) for the whole Cu film and the subsequent Co
layers. Surface and interface states, the energies of which may
also lie in a bandgap of Co, are localized at the respective
boundary (e.g., vacuum/Cu or Cu/Co). This means that the cor-
responding maxima in the LDOS decrease with distance from
the boundary. Quantum-well states, however, show maxima in
the whole Cu film but decreasing maxima in the Co substrate.
The latter can be attributed to the gap in the bulk-band structure
of Co because the QWSs cannot couple to Bloch states but to
cevanescent states in the Co substrate. Further, the energetic po-
sition of surface and interface states is expected not to depend
significantly on the number of Cu layers, whereas QWSs should
show the typical dispersion with film thickness (see Section 2
and Fig. 39).

The Bloch spectral function for a 14-ML Cu film shows two
sharp maxima of minority spin character with energies —1.52
and —0.80 eV, respectively, which are denoted as QWSs A



518 HENK

Number of Cu Layers

5 10 15 20 25 30 35 40
YIlTlllllllrIlfT]Tllllr“llll'l’_'lITl'Irl
u_]u'10"'
=
>
-
s 9
C NPT T YT ITTTU ATETE FUN TN FUTEE I
TITl‘TTlI'IIlI‘I!'ITjITf
Normal emission hv = 83 eV
Cu layers|

Photoemission intensity

fec-Co(100)
Cuffcc-Co(100) QW-States

PUPEITEE U B S S T N T VAT B S N )

15 1.0 0.5 0
Binding Energy (eV)

Fig. 39. Experimental photoemission from Cu films on fcc Co(100) for kj =
0 and 83 eV photon energy. The lower panel shows intensity versus Cu film
thickness (as indicated on the right of each spectrum). Intensity maxima related
to quantum-well states are labeled by numbers (cf. also Fig. 7). The upper panel
depicts intensity modulation at the Fermi level (0 eV) versus film thickness.
Reprinted with permission from P. Segovia, E. G. Michel, and J. E. Ortega,
Phys. Rev. Lett. 77, 3455 (1996). Copyright 1996, by the American Physical
Society.

and B in Figure 40b. The latter agree reasonably well with those
obtained experimentally by Hansen and coworkers [190], who
found QWSs at —1.5 and —0.9 eV (see also Fig. 39 and [191,
192]). At energies larger than —0.65 eV, the Bloch spectral
function shows weak maxima, which may also be associated
with QWSs but lack the complete confinement due to the weak
reflection at the Cu/Co interface at these energies [197]. There
is no even—odd alternation of the QWSs, as found in the simple
tight-binding model (Section 4.2.4), due to the lack of inversion
symmetry in the Cu film.

The reflectivity at the Cu/Co boundary, as obtained theoreti-
cally by Dederichs and co-workers [197], is shown in Figure 41.
In the lowest panel, the reflectivity of the Bloch state, which
is associated with the Cu sp valence band, is shown for in-
cidence on a Co film with 20 ML thickness. At energies less
than —0.6 eV, there is almost complete refiection in the minor-
ity spin channel, in accordance with the band structure shown

[y
[
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(b) Cuya/Co(001) — min. |
A e . P maj_
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DOS (arb. units)
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Fig. 40. Spin-resolved relativistic electronic structure of 14-ML Cu on fec
Co(001) for T (ky =0, '-A-X in the bulk Brillouin zone). (a) Band structure
of fcc Co(001) along M-A-X. The sliding gray scale of the bands indicates
dominant majority (minority) spin orientation with black (light gray). (b) Den-
sity of states of 14-ML Cu on fcc Co(001) for the outermost (S) and a central
(S — 6) layer with black (light gray) lines indicating minority (majority) spin
orientation. (c) Same as (a), but for Cu(001). Gray areas indicate gaps in the Co
band structure: dark gray for both majority and minority electrons, light gray
for minority electrons with prominent Al spatial symmetry. The latter leads
to confinement of minority electrons in the Cu film; see maxima A and B in
panel (b). For C, see text. The Fermi energy is at 0 eV. Reprinted with permis-
sion from J. Henk and B. Johansson, J. Electron Spectrosc. Relat. Phenom. 105,
187 (1999). Copyright 1999, by Elsevier Science.

in Figure 40. Above —0.6 eV, there are QWSs in the Co film,
which reduce the reflectivity; cf. the pronounced minima in
the reflectivity. This picture corresponds nicely to that of the
quantum-well resonances in LEED (see Section 3.3): Here, the
incoming wave is the Cu Bloch state, whereas in LEED it is the
electron beam.

Manifestation of Quantum-Size Effects in Photoemission. As
a prototypical example, normal photoemission (ky = 0) with
p-polarized light that impinges with a polar angle of 45° onto
the surface is discussed in detail. In Figure 42, photoemission
from semi-infinite Cu(001) is compared to that of 14-ML Cu on
fcec Co(001). For the former (Fig. 42a), the intensity at energies
below —2 eV stems from the d-band regime. The maximum
that disperses from the Fermi energy at 10 eV photon energy
down to —2 eV at 17 eV photon energy is due to emission
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Fig. 41. Reflectivity r of a Cu Bloch wave of A; representation (along the
I'-A-X direction, ky = 0) at the Cu/Co interface versus Co film thickness
[from top to bottom, 1-ML, 5-ML, and 20-ML Co on Cu(001)]. Note that dis-
tinct minima occur which can directly be attributed to quantum-well states in
the Co film (cf. [1981). Solid lines, minority spin; dashed lines, majority spin.
Reprinted with permission from P. H. Dederichs, K. Wildberger, and R. Zeller,
Physica B 237-238, 239 (1997). Copyright 1997, by Elsevier Science.

15 10

from the Cu sp band (cf. Fig. 40c). The direct-transition model
can be used to explain the widths of these maxima: The sp
band and the final-state band are almost parallel in the band
structure and, thus, there is a certain energy range where the dif-
ference in the respective k_is rather small [166]. The slightly
weakened k; conservation results therefore in a broad maxi-
mum. For the 14-ML Cu film on fcc Co(001) (Fig. 42b), the
energies of the QWSs lead to narrow maxima [199]. The two
sharp peaks, A and B, correspond to those found in the LDOS
(Fig. 40b). The intensity distribution of structure C, however,
agrees with that found for Cu(001), which can be also explained
by the LDOS: Near Ef there are no strictly confined electronic

states in the Cu film because the reflection at the Cu/Co inter-
face is small. This qualitative difference between A and B on
the one hand and C on the other is further established in the
photoelectron spin polarization. A and B show strong minority
polarization (P ~ —0.75), whereas C is weakly spin polarized
(P = —0.05), as expected from the LDOS.

The intensity variation with photon energy of maxima A
and B is similar to that found for semi-infinite Cu(001) at
the respective binding energies, a finding that confirms nicely
both the simple theory presented in Section 4.2.4 and the ex-
periment. At this point, quantum-size effects seem to occur
only in the widths of those intensity maxima that are asso-
ciated with QWSs [199]. This feature should be observable
with high-resolution photoemission techniques [200]. However,
hints about this behavior may be seen, for example, in the work
by Hansen et al. (Fig. 38).

Further pronounced manifestations of quantum-size effects
in photoemission are intensity oscillations with photon energy.
These can be observed in the CIS mode of photoemission
(Fig. 29): The initial-state energy is chosen as that of a QWS
and the photon energy is varied while keeping k| fixed. The re-
sults for semi-infinite Cu(001) and 14 ML on fcc Co(001) are
shown in Figure 43 where the initial-state energies were chosen
as those of QWSs A, B, and C.

For semi-infinite Cu(001), one observes for each initial-state
energy a dominating maximum and a few smaller maxima and
shoulders (Fig. 43a). The former directly reflects the k; con-
servation; the latter can be explained by the final-state band
structure. Further, because the wave function of the initial state
does not change rapidly with energy, as is evident from the band
structure, the three CIS spectra show almost the same shape,
which appears only shifted in photon energy (sce the inset in
Fig. 43a). In other words, the CIS spectral shapes are governed
by the final states. The fine structure for the energy of state C is
slightly more pronounced when compared to those for A and B
because of the larger photoelectron lifetime, which decreases
with kinetic energy. The most important observation, however,
is the absence of significant oscillations with photon energy.

For the 14-ML film, one finds similar behavior regarding the
overall CIS intensity distribution (Fig. 43b). In particular, the
relative heights of the main maxima for A, B, and C are close
to their counterparts of semi-infinite Cu(001). The main differ-
ences are distinct intensity oscillations, which become clearly
visible in the insets showing the logarithm of the intensities.
In particular, maxima A and B show almost the same oscilla-
tion period, which is indicated by vertical lines in the inset of
Figure 43b. The period for maximum C, however, differs sig-
nificantly from those of A and B. Further, the spectral shapes
of A and B are nearly identical and again differ from that of C;
in particular, the double-peak structure near the maximum in-
tensity occurs for both A and B but is missing for C. This
double-peak structure is clearly due to the quantum-size in-
duced oscillations of the CIS intensity. These findings show
directly the different confinement strengths of the QWSs: strict
confinement for A and B, less confinement for C.



520

HENK

(a) Cu(001)

Intensity (arb. units)

(b) Cu;4/Co(001)
A w=

w
]

n
o
Intensity (arb. units)

—_
(=]

-2

-1
Energy (eV)

-1
Energy (eV)

Fig. 42. Photoemission for ky = O with p-polarized light incident at 45° off-normal from Cu(001) (a) and 14-ML Cu on fcc
Co(001) (b). The photon energy « ranges from 9 eV (bottom spectra) to 17 eV (top spectra), as indicated on the right. Gray areas
in (b) indicate gaps in the Co band structure as in Figure 40. A, B, and C refer to quantum-well states (see text and Fig. 40). The
Fermi energy is at 0 eV. Reprinted with permission from J. Henk and B. Johansson, J. Electron Spectrosc. Relat. Phenom. 105, 187
(1999). Copyright 1999, by Elsevier Science.
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Fig. 43. Constant initial-state photoemission for kj = 0 with p-polarized light incident at 45° off-normal from Cu(001) (a) and
14-ML Cu on fcc Co(001) (b). The initial-state energies are chosen as those of quantum-well states A (solid lines), B (dotted lines),
and C (dashed lines); see text as well as Figures 40 and 42. Insets show the logarithms of the intensities, which are normalized to 1
and shifted in energy such that the maximum intensity is at 13 eV (relative photon energy). Vertical lines in the inset of (b) indicate
intensity minima of state A. Reprinted with permission from J. Henk and B. Johansson, J. Electron Spectrosc. Relat. Phenom. 105,

187 (1999). Copyright 1999, by Elsevier Science.

Finally, the dependence of the oscillatory behavior on film
thickness is addressed. According to Section 4.2.4, the oscil-
lation period should decrease with increasing film thickness.
For quantum-well state A of the 14-ML film and the corre-
sponding states for films with thicknesses of 9 ML, 19 ML,
24 ML, and 29 ML, the energy positions are almost identical.
This means that hole and photoelectron lifetimes are also al-
most identical, and the main differences in the CIS spectra can
unambiguously be attributed to the difference in film thickness.
Constant initial-state spectra for the various film thicknesses are
shown in Figure 44. Both the width of the main maximum and
the oscillation period decrease with film thickness. Further, the
intensity at higher photon energies decreases with film thick-

ness, which is also evident from Section 4.2.4, particularly from
Figure 35. The double-peak structure can clearly be attributed
to the quantum-size induced oscillations: For the Cu film, the
main intensity maximum is broadened with respect to the semi-
infinite case due to the weakening of the k; conservation, as is
evident from Figure 44. This maximum is “divided” in two due
to the intensity oscillations (cf. the dashed—dotted guideline in
Fig. 44). With increasing film thickness, the double-peak struc-
ture disappears.

In summary, quantum-size effects in photoemission from
ultra-thin films manifest themselves in the following features:
(i) Strict confinement of valence electrons to the film leads
to a weakening of the k, conservation: the thinner the film,
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Fig. 44. Constant initial-state photoemission for k) = 0 with p-polarized
light incident at 45° off-normal from Cu films on fcc Co(001). The initial-
state energies are chosen as those of quantum-well state A for selected film
thicknesses # from 9 ML (top spectrum) to 29 ML (bottom spectrum), as in-
dicated on the right. Dashed and dashed—dotted lines visualize the behavior of
oscillations. Short horizontal lines represent zero intensity for each respective
spectrum. Reprinted with permission from J. Henk and B. Johansson, J. Elec-
tron Spectrosc. Relal. Phenom. 105, 187 (1999). Copyright 1999, by Elsevier
Science.

the broader the photoemission maxima. (ii) Photoemission in-
tensities from individual QWSs show oscillations with photon
energy, the period of which decreases with film thickness.
(iit) Even for films only a few layers thick, the main maxima
in the photoemission intensity follow the initial-state bulk-band
structure, despite the fact that the initial-state energies are dis-
crete.

Oscillations of Photoemission Intensity with Film Thickness.
Another example of investigating QWSs at a fixed binding
energy is illustrated in Figure 45. Klisges et al. recorded ex-
perimentally the photocurrent at 0.3 eV binding energy and
fixed photon energy (w = 77 eV) of Cu films on Co(100) for
a variety of film thicknesses (1 ML-17 ML) [194]. Besides a
global decrease of the intensity with film thickness, they found
significant oscillations in the current, which, of course, can be
attributed to QWSs. The period of the maxima was determined
as 2.3 ML + 0.1 ML.

Results of electronic-structure calculations of Cu films on
Co(100) are shown in Figure 45b. Dederich’s group calcu-
lated self-consistently the Bloch spectral function Ap(ky, E) =
~Im G(ky; E)/n. Each maximum in Ap in the sp-band range
indicates a QWS (filled circles in Fig. 45b). Again, one finds
the familiar dispersion with film thickness, as discussed in Sec-
tion 2.2. With increasing film thickness, the QWSs disperse
in energy toward the Fermi level, as visualized, by the dashed
lines. The latter cross the binding energy of 0.3 eV with a pe-
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Fig. 45. Photoemission intensity from Cu films on Co(100) at 0.3 eV bind-
ing energy versus Cu film thickness. The emission angle chosen is 12° k) =

0.94 A_l). (a) Shows experimental data (dots) and results of a model calcu-
lation (solid line). Binding energies of quantum-well states are shown in (b).
Dashed lines serve as a guide to the eye. The hatched area indicates the binding
energy as chosen in the photoemission experiment. Reprinted with permission
from R. Klisges, D. Schmitz, C. Carbone, W. Eberhardt, P. Lang, R. Zeller,
and P. H. Dederichs, Phys. Rev. B. 57, R696 (1998). Copyright 1998, by the
American Physical Society.

riod of 2.4 ML, which corresponds nicely to the experimentally
obtained value. Because the photoemission intensity shows a
maximum at the energy position of a QWS, the dispersion of the
QWSs can be translated into a dispersion of the photoemission
maxima. As shown in Figure 45a, a model photoemission calcu-
lation reproduces all general features found in the experimental
results, in particular, the global decay and the oscillations. The
model assumes that each QWS contributes to the photocur-
rent with a finite peak width corresponding to the experimental
energy resolution. Further, this intensity is expected to be pro-
portional to the inverse of the film thickness. The background
intensity due to the Co substrate is approximated as decaying
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exponentially with Cu thickness, in accordance with the mean
free path of the photoelectron (Fig. 12). This causes the global
decay of the intensity. Missing are, however, interference ef-
fects in both the initial and the final state of the photoemission
process. These can, for example, lead to significant changes in
the photocurrent that call into question the one-to-one corre-
spondence between maxima in the Bloch spectral function and
the photocurrent maxima. These effects have been observed, for
example, for Co/Cu(001) [201] and Au/Ag(111) [202]: Due to
destructive interference in the final state at a particular kinetic
energy, only one of two QWSs of the 2-ML films has been ob-
served in both experiment and theory although the layer- and
symmetry-resolved Bloch spectral function of both states shows
maxima of comparable height. The effect of interference is dis-
cussed in more detail in the following Section.

4.3.2. Quantum-Well States and Interference: Ag on Fe(001)

Particle wave duality is one of the fundamental features of
quantum mechanics. We now investigate how photoemission
from a thin film establishes an almost perfect analogy between
a standing electromagnetic wave caught between two mirrors
and an electron confined to a thin film.

Consider an electron confined to a quantum well, the lat-
ter, for example, being realized by a thin film (Fig. 46). The
electron is reflected at both the surface side (s) and the sub-
strate side (interface, i) of the film with reflection coefficients
Rs = |Rslexp(i¢s) and R; = |R;|exp(i¢;), respectively. The
propagation from one side to the other is taken into account
via the phase factors P+ and P~. For ky = O, these read
Pt = exp(iky Nd), where N is the number of layers of the
film, d is the interlayer distance, and k is the wave number of
the electron. The Bohr—Sommerfeld quantization rule, which
is well known from the theory of atomic spectra, then reads
2k, Nd + ¢s + ¢; = 2nm, n € Z. In other words, constructive
interference occurs if the accumulated phase shift is an even
multiple of 7. This relation is known as the round-trip criterion

substrate

vacuum film

Fig. 46. Electron confined to a quantum well. Arrows P denote propagation
between the interfaces (vacuum—film and film—substrate). R; and R; are the
reflectivities at the film boundaries.

(see Sections 2.2.2 and 3.3) and holds for perfectly reflecting
boundaries (| Rs| = |R;| = 1).

The more general case can be discussed in terms of an in-
terference factor /. For each round trip, the wave function of
the electron is changed by the factor P* R, P~ R;, with P* =
exp(ik* - d). Fork = 0, the interference factor  then becomes

o0
I=) (P*R,P™R;)’
j=0

= (1 Rexp (i(¢ + 2k Nd)) exp (—Nd/A)) ™' (199)

with the definitions R = |R;R;| and ¢ = ¢; + ¢;. Note that
the mean free path A is taken into account. The modulus of the
interference factor is given by

2 (i Nd\\ 2
1| -_(1 Rexp(—T))
2f\? o\
x [1 + (—) sinz(k L Nd + —)] (200)
T 2

w+/Rexp (—Nd/2)\)
1 — Rexp(—Nd/A)

S is the finesse (i.e., the ratio of peak separation and peak
width) of a Fabry-Pérot interferometer with an absorptive
medium (A < 00). Such a device was invented by Fabry
and Pérot in 1899 [203]. Equation (200) establishes the close
analogy between interference of electromagnetic waves and of
electrons (cf., e.g., [204]). '

The first factor in Eq. (200), (1 — Rexp(—Nd/1))~2, de-
pends on both the mean free path A and the reflectivity R,
quantities that are expected to depend rather smoothly on en-
ergy. The same holds for the finesse f and the phase shift ¢.
Therefore, the modulation of the interference factor can be
mainly attributed to the wave number k) . Assuming the first
factor, the finesse, and the phase shift as energy independent,
the interference factor becomes approximately

2 ’ -1
2 ~ [1 + (2f) sinz(k_]_(E)Nd + %)] (202)

with

f= (201)

b4
which is shown in Figure 47. Maxima in |I|2 occur if
sinz(kl(E)Nd + ¢/2) = 0 or, equivalently, if k,(E) =
(nm — ¢/2)/(Nd),n € Z.

The relevant quantities that determine the interference can
be cast into two categories. (i) The wave number k, (E) and
the mean free path A(E) depend on the band structure of the
film material. Because the electrons can be described as quasi-
particles, the band structure ky (E, ky) is, in general, complex
(cf. Section 3.2.2). The imaginary part of k; is related to
the mean free path by the group velocity v) = 8, E(kL1),
A =vy /Imk, (E). (ii) The reflectivity R and the phase shift ¢
depend on the quantum-well boundaries, in particular, on the
reflection properties at the film—substrate interface. For thick
films, R and ¢ can be regarded as independent of the film
thickness Nd. Therefore, one can expect to determine them by
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-
g ~.

0.0 + + - . —
0 /2 T
k, Nd

Fig. 47. Interference factor /(k ) for a Fabry-Pérot-type quantum well as a
funétion of wave number k| for finesses 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 (from
top to bottom, alternating solid and dashed lines). N and d are the number of
layers and the interlayer distance of the film, respectively. The phase shift ¢ is
chosen as 0; cf. Eq. (202).

ARPES from films with different thicknesses Nd. For very thin
films, however, the interfaces (surface side and substrate side)
cannot be separated and R and ¢ should differ considerably
from their values for thicker films. This becomes evident by
comparing reflectivities for various film thicknesses, as, for ex-
ample, shown in Figure 41. The peak positions depend on k.
and ¢, the peak widths on R and A.

If the film were infinitely thick, the photocurrent J; would be
expressed in the form of Fermi’s golden rule, Eq. (141). How-
ever, for a finite thickness, the initial state |i) can be seen as
modulated by the interference factor 7, Eq. (200), and thus is
given by I;|i) [205]. Therefore, the photocurrent from the film
with finite thickness reads

Jpw~ Y ILP|fIA pli)8(Ef —w—E)  (203)
i

The task to determine the interference-determining quantities
k1, ¢, R, and A might be complicated by several facts. (i) The
growth of the film material on the substrate should be in the
layer-by-layer mode, which leads to well-defined film bound-
aries and minimizes film imperfections. (ii) The electronic
properties of the film and the substrate should “match”. In other
words, they should allow for QWSs; for example, there has to
be a gap in the band structure of the substrate. (iii) In general,
several initial states |i) contribute to the total photocurrent in the
considered energy range and, thus, one has to deal with a set of
parameters for each initial state. Fortunately, there are systems
in which only a single initial state is present in the considered
energy range.

Paggel et al. reported on an experimental investigation of the
interference properties of Ag films on Fe(001) [206], another
prototypical system. In the considered initial-energy range
(—2 eV up to 0 eV) and the chosen photon energy, the spectrum
for semi-infinite Ag looks almost structureless. Therefore, the
intensity modulations due to the Ag films can be easily iden-
tified (cf. Fig. 48). Further, Ag films grow in a layer-by-layer

Ag/Fe(100)
hv=16eV Thickness
& (ML)

Photoemission Intensity (arb. units)

Binding Energy (eV)

Fig.48. Photoemission spectra for Ag films on Fe(001) for various film thick-
nesses in monolayers (ML), as indicated on the right of each spectrum. The
experimental data (given by dots) were recorded for normal emission (k = 0)
and 16 eV photon energy. Solid lines correspond to the fitted interference spec-
tra and the background. Reprinted with permission from J. J. Paggel, T. Miller,
and T.-C. Chiang, Science 283, 1709 (1999). Copyright 1999, by the American
Association for the Advancement of Science.

mode on Fe(001), which allows for a very accurate thickness
calibration via the observed intensity modulation. As an ex-
ample, the spectrum for a film with thickness 27.5 ML shows
simultaneously the peak structures of films with 27 and 28 ML.
The modulated intensity appears as a superposition of those of
the latter films (this holds, in addition, for the 42.5-ML film).
To determine the reflectivity R, the phase shift ¢, and
the mean free path A, one has to know the initial-state band
structure of Ag. The latter can be obtained either by the pho-
toemission experiment itself, for instance, via band mapping
using various photon energies or by a band structure calcula-
tion. The relevant band in the considered energy range is the
sp valence band, which is roughly a free-electron parabola; see
Figure 49a (cf., e.g., the band structure of Cu in Figure 40,
which shows an sp band, too). Applying a fitting procedure,
Paggel et al. obtained R(E), ¢(E), and A(F), which are as-
sumed to be independent of the film thickness. The resulting
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Fig. 49. Electronic structure of Ag films on Fe(100). Panel a shows the Ag
band structure near the Fermi energy (i.c., the sp band range). The solid line
corresponds to the experimentally determined dispersion of the sp band, the
dashed line to one theoretically obtained. Panel b depicts the inverse lifetime
as obtained from the experimental data. Panels ¢ and d show the reflection co-
efficients and the phase shift at the Ag/Fe interface. Reprinted with permission
from J. J. Paggel, T. Miller, and T.-C. Chiang, Science 283, 1709 (1999). Copy-
right 1999, by the American Association for the Advancement of Science.

theoretical modulated intensities are shown in Figure 48 and
match almost perfectly the experimental ones for all film thick-
nesses. Note that the peak shapes in the experimental spectra
agree very well with that of the interference factor I shown in
Figure 47. The determined reflectivity R was less than unity
(R € [0.6, 0.85], Fig. 49¢), indicating that the electrons are not
strictly confined to the Ag film. This can be attributed to the
fact that the bandgap in the Fe substrate is not an absolute one
but a hybridization bandgap. In the former case, there are no
states in the bandgap energy range, whereas in the latter, there
are states with different spatial symmetry, which, however, are
mixed by SOC. Further, the small, but not negligible lattice mis-
match between Ag and Fe leads to nonspecular reflection at the
boundaries. The inverse lifetime depends quadratically on the
binding energy (Fig. 49b and [207]), as in Fermi liquid theory.

Acknowledgments

It is a great pleasure to thank those colleagues who have made
the present chapter possible. Unfortunately, it is nearly impossi-

ble to acknowledge them all. Therefore, I want to mention only
four to whom I am especially grateful: Roland Feder, Samed
Halilov, Thomas Scheunemann, and Eiichi Tamura.

REFERENCES

1. L. Bennett and R. Watson, Eds., “Magnetic Multilayers.” World Scien-
tific, Singapore, 1993.

2. J. Bland and B. Heinrich, “Ultrathin Magnetic Structures.” Springer-
Verlag, Berlin, 1994.

3. A. Barthélémy, A. Fert, and F. Petroff, In “Handbook of Magnetic Mate-
rials” (K. H. J. Buschow, Ed.), Vol. 12, p. 1. Elsevier, Amsterdam, 1999.

4. J. M. Daughton, J. Magn. Magn. Mater. 192, 334 (1999).

5. U. Hartmann, Ed., “Magnetic Multilayers and Giant Magnetoresistance:
Fundamentals and Industrial Applications,” Springer Series in Surface
Sciences, Vol. 37. Springer-Verlag, Berlin, 1999,

6. A. Zangwill, “Physics at Surfaces.” Cambridge Univ. Press, Cambridge,
UK, 1988.

7. N. Ashcroft and N. Mermin, “Solid State Physics.” Holt-Saunders, Lon-
don, 1976.

8. L. Brillonin, “Wave Propagation in Periodic Structures.” McGraw-Hill,
New York, 1946.

9. R.L.Park and H. H. Madden, Surf. Sci. 11, 188 (1968).

10. S. Gull, A. Lasenby, and C. Doran, Found. Phys. 23, 1175 (1993).

11, T.G. Vold, Am. J. Phys. 61, 491 (1993).

12. G. Entl and J. Kiippers, “Low Energy Electrons and Surface Chemistry,”
Chap. 9, p. 201. VCH, Weinheim, 1985.

13. F. Bloch, Z. Phys. 52, 555 (1928).

14. P. Harrison, “Quantum Wells, Wires and Dots.” Wiley, Chichester, 2000.

15. E. Merzbacher, “Quantum Mechanics,” 2nd ed. Wiley, New York, 1970.

16. K. R. Brownstein, Am. J. Phys. 68, 160 (2000).

17. H. A. Kramers, Koniklije Nederlandse Akademie van Wetenschapen 33,
959 (1930).

18. G. Bastard, Phys. Rev. B 24, 5693 (1981).

19. G. Bastard, Phys. Rev. B 25, 7584 (1982).

20. P.D. Loly and J. B. Pendry, J. Phys. C: Solid State Phys. 16, 423 (1983).

2]. ). E. Ortega, F. J. Himpsel, G. J. Mankey, and R. F. Willis, Phys. Rev. B
47, 1540 (1993).

22. M. Griine, T. Pelzer, K. Wandelt, and 1. T. Steinberger, J. Electron Spec-
trosc. Relat. Phenom. 98-99, 121 (1999).

23. K. Homn, M. Scheffler, and A. M. Bradshaw, Phys. Rev. Lett. 41, 822
(1978).

24. M. Scheffler, K. Horn, A. M. Bradshaw, and K. Kambe, Surf. Sci. 80, 69
(1979).

25. K. Kambe, Surf. Sci. 105, 95 (1981).

26. P. Trischberger, H. Drége, S. Gokhale, J. Henk, H.-P. Steinriick, W. Wid-
dra, and D. Menzel, Surf. Sci. 377-379, 155 (1996).

27. W. Widdra, P. Trischberger, and J. Henk, Phys. Rev. B 60, R5161 (1999).

28, C. Davisson and L. H. Germer, Nature 119, 558 (1927).

29. C.J. Davisson and L. H. Germer, Phys. Rev. 30, 705 (1927).

30. L. de Broglie, Comte Rendu 179, 676 (1924).

31. L. de Broglie, Comte Rendu 179, 1039 (1924).

32. L. de Broglie, Comte Rendu 180, 498 (1925).

33. J. E van Veen and M. A. van Hove, Eds., “The Structure of Surfaces
I1,” Springer Series in Surface Sciences, Vol. 11. Springer-Verlag, Berlin,
1988.

34. S. Y. Tong, M. A. van Hove, K. Takayanagi, and X. D. Xie, Eds., “The
Structure of Surfaces III,” Springer Series in Surface Sciences, Vol. 24.
Springer-Verlag, Berlin, 1991.

35. C. Davisson and L. H. Germer, Phys. Rev. 31, 307 (1928).

36. C. Davisson and L. H. Germer, Phys. Rev. 31, 155 (1928).

37. M. P.Seah and W. A. Dench, Surf. Interface Anal. 1, 2 (1979).

38. Z.-1. Ding and R. Shimizu, Surf. Sci. 222, 313 (1989).

39. J. Rundgren, Phys. Rev. B 59, 5106 (1999).

40. C. 1. Davisson, J. Franklin Inst. 205, 597 (1928).



4.
1.
43,
4.
45.
46.
47.
48,
49,

50.
51

52.
53.
54.

55.
56.
57.
58.
59.

65.

66.

67.
68.
69.
70.
71,
72.
73.
74.
75.
76.
77.
78.

79.

80.

LOW-ENERGY ELECTRON DIFFRACTION AND PHOTOELECTRON SPECTROSCOPY

K. Heinz, U. Starke, and J. Bernhardt, Prog. Surf. Sci. 64, 163 (2000).
K. Kambe, Z. Naturforsch., A: Phys. Sci. 22, 322 (1967).

K. Kambe, Z. Naturforsch., A: Phys. Sci. 22, 422 (1967).

K. Kambe, Z. Naturforsch., A: Phys. Sci. 22, 1280 (1967).

J. B. Pendry, “Low Energy Electron Diffraction.” Academic Press, Lon-
don, 1974.

M. A. van Hove, W. H. Weinberg, and C. M. Chan, “Low-Energy Electron
Diffraction.” Springer-Verlag, Berlin, 1986.

S.'Y. Tong, In “Progress in Surface Science” (S. G. Davisson, Ed.), Vol. 7,
p. 1. Pergamon, London, 1975.

M. A. van Hove and S. Y. Tong, “Surface Crystallography by LEED:
Theory, Computation and Structural Results,” Springer Series in Chemi-
cal Physics, Vol. 2. Springer-Verlag, Berlin, 1979.

R. Feder, Solid State Commun. 31, 821 (1979).

R. Feder and J. Kirschner, Surf. Sci. 103, 75 (1981).

R. Feder, In “Polarized Electrons in Surface Physics” (R. Feder, Ed.).
Advanced Series in Surface Science, Chap. 4, p. 125. World Scientific,
Singapore, 1985.

J. Kirschner and R. Feder, Phys. Rev. Lett. 42, 1008 (1979).

J. C. Slater, Phys. Rev. 51, 840 (1937).

V. N. Strocov, R. Claessen, G. Nicolay, S. Hiifner, A. Kimura, A. Hara-
sawa, S. Shin, A. Kakizaki, P. O. Nilsson, H. I. Starnberg, and P. Blaha,
Phys. Rev. Lett. 81,4943 (1998).

1. Barto¥, Prog. Surf. Sci. 59, 197 (1998).

V. Heine, Proc. Phys. Soc. 81, 300 (1963).

Y.-C. Chang, Phys. Rev. B 25, 605 (1982).

J. Hermanson, Solid State Commun. 22, 9 (1977).

T. Inui, Y. Tanabe, and Y. Onodera, “Group Theory and Its Applications
in Physics,” 1st ed., Springer Series in Solid State Sciences, Vol. 78.
Springer-Verlag, Berlin, 1990.

. 1. B. Pendry, J. Phys. C: Solid State Phys. 2, 1215 (1969).
61.
62.
63.

J. B. Pendry, J. Phys. C: Solid State Phys. 2, 2273 (1969).

J. B. Pendry, J. Phys. C: Solid State Phys. 2, 2283 (1969).

V. N. Strocov, H. I. Starnberg, and P. O. Nilsson, J. Phys.: Condens. Mat-
ter 8, 7539 (1996).

V. N. Strocov, H. I. Starnberg, and P. O. Nilsson, J. Phys.: Condens. Mat-
ter 8, 7549 (1996).

J. Henk, W. Schattke, H.-P. Bamnscheidt, C. Janowitz, R. Manzke, and
M. Skibowski, Phys. Rev. B 39, 13286 (1989).

J. Henk, J.-V. Peetz, and W. Schattke, In “20th International Con-
ference on the Physics of Semiconductors” (E. M. Anastassakis and
J. D. Joannopoulos, Eds.), Vol. 1, pp. 175-178. World Scientific, Sin-
gapore, 1990.

J. Henk, W. Schattke, H. Carstensen, R. Manzke, and M. Skibowski,
Phys. Rev. B 47, 2251 (1993).

S. Lorenz, C. Solterbeck, W. Schattke, J. Burmeister, and W. Hackbusch,
Phys. Rev. B 55, R13432 (1997).

W. Schattke, Prog. Surf. Sci. 64, 89 (2000).

L. Mertig, E. Mrosan, and P. Ziesche, “Multiple Scattering Theory of Point
Defects in Metals: Electronic Properties,” Teubner-Texte zur Physik,
Vol. 11. Teubner, Leipzig, 1987.

P. Weinberger, “Electron Scattering Theory of Ordered and Disordered
Matter,” Clarendon, Oxford, 1990.

A. Gonis, “Green Functions for Ordered and Disordered Systems,” Stud-
ies in Mathematical Physics, Vol. 4. North-Holland, Amsterdam, 1992.
J. Korringa, Physica 13, 392 (1947).

W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).

J. M. MacLaren, S. Crampin, D. D. Vvedensky, and J. B. Pendry, Phys.
Rev. B 40, 12164 (1989).

E. M. Rose, “Relativistic Electron Theory.” Wiley, New York, 1961.

S. Bei der Kellen and A. J. Freeman, Phys. Rev. B 54, 11187 (1996).

A. Gonis, P. Turchi, J. Kudrnovsky, V. Drchal, and I. Turek, J. Phys.:
Condens. Matter 8, 7869 (1996).

J. W. Krewer, “Beugung spinpolarisierter langsamer Elektronen
(SPLEED) mit nicht-sphirischen Potentialen,” Ph.D. Dissertation, Uni-
versitit Duisburg, 1990. ’

J. W. Krewer and R. Feder, Physica B 172, 135 (1991).

81.

82.

83.

84.

8.

86.

87.
88.

89.

90.

91.
92.
93.

94.

95.

97.

98.
99.
100.

101.

102.
103.
104.

105.
106.

107.

108.

109.
1i0.
111.
112.
113.

114.
115.
116.
117.
118.
119.
120.
121.

122,
123.

124.

125.

525

M. Abramowitz and I. Stegun, Eds., “Handbook of Mathematical Func-
tions.” Dover, New York, 1965.

E. Tamura, Phys. Rev. B 45, 3271 (1992).

B. Ackermann, “Relativistische Theorie der Photoemission und Streuung
langsamer Elektronen von ferromagnetischen Oberfliichen,” Ph.D. The-
sis, Universitit Duisburg, 1985,

D. D. Koelling and B. N. Harmon, J. Phys. C: Solid State Phys. 10, 3107
1977).

H. Gollisch and L. Fritsche, Phys. Status Solidi B 86, 156 (1978).

T. Takeda, J. Phys. F: Met. Phys. 9, 815 (1979).

E. Tamura, private communication.

H. Ebert, H. Freyer, A. Vemes, and G. Y. Guo, Phys. Rev. B 53, 7721
(1996).

H. Ebert, H. Freyer, and M. Deng, Phys. Rev. B 56, 9454 (1997).

L. A. Mac Coll, Phys. Rev. 56, 699 (1939).

R. Jones, P. Jennings, and O. Jepsen, Phys. Rev. B 29, 6474 (1984).

E. Tamura and R. Feder, Z. Phys. B: Condens. Matter 81, 425 (1990).

C. S. Lent and D. J. Kirkner, J. Appl. Phys. 67, 6353 (1990).

Y. Joly, Phys. Rev. Lett. 68, 950 (1992).

R. Feder, J. Phys. C: Solid State Phys. 14, 2049 (1981).

J. Kessler, “Polarized Electrons,” 2nd ed., Springer Series on Atoms and
Plasmas, Vol. 1. Springer-Verlag, Berlin, 1985.

R. Feder, Ed., “Polarized electrons in surface physics,” Advanced Series
in Surface Science. World Scientific, Singapore, 1985.

E. Zanazzi and F. Jona, Surf. Sci. 62, 61 (1977).

J. B. Pendry, J. Phys. C: Solid State Phys. 13, 937 (1980).

E. Tamura, R. Feder, G. Waller, and U. Gradmann, Phys. Status Solidi B
157, 627 (1990).

O. Hjortstam, J. Trygg, J. M. Wills, B. Johansson, and O. Eriksson, Phys.
Rev. B 53, 9204 (1996).

1. Delgadillo, H. Gollisch, and R. Feder, Phys. Rev. B 50, 15808 (1994).
R. Feder, B. Awe, and E. Tamura, Surf. Sci. 157, 183 (1985).

E. Tamura, R. Feder, J. Krewer, R. E. Kirby, E. Kisker, E. L. Garwin, and
F. K. King, Solid State Commun. 55, 543 (1985).

P. Bruno, J. Phys.: Condens. Matter 11, 9403 (1999).

T. Scheunemann, R. Feder, J. Henk, E. Bauer, T. Duden, H. Pinkvos,
H. Poppa, and K. Wurm, Solid State Commun. 104, 787 (1997).

B. Johnson, P. Berlowitz, D. Goodman, and C. Bartholomew, Surf. Sci.
217, 13 (1989).

J. G. Ociepa, P. I. Schultz, K. Griffiths, and P. R. Norton, Surf. Sci. 225,
281 (1990).

M. Tikhov and E. Bauer, Surf, Sci. 232, 73 (1990).

H. Knoppe and E. Bauer, Phys. Rev. B 48, 1794 (1993).

E. Bauer, Rep. Prog. Phys. 57, 895 (1994).

L. M. Falicov and J. Ruvalds, Phys. Rev. 172, 498 (1968).

C. M. Schneider, P. Bressler, P. Schuster, J. Kirschner, J. J. de Miguel,
and R. Miranda, Phys. Rev. Lett. 64, 1059 (1990).

H. Bonzel and C. Kleint, Prog. Surf. Sci. 49, 107 (1995).

H. Hertz, Ann. Phys. Chem. Neue Folge 31, 983 (1887).

W. Hallwachs, Ann. Phys. Chem. Neue Folge 33, 301 (1888).

J. Elster and H. Geitel, Ann. Phys. Chem. Neue Folge 38, 40 (1889).

J. Elster and H. Geitel, Ann. Phys. Chem. Neue Folge 38, 497 (1889).

P. Lenard, Ann. Phys. 8, 149 (1902).

A. Einstein, Ann. Phys. 17, 132 (1905).

K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hed-
man, G. Johanson, T. Bergmark, S.-E. Karlsson, I. Lindgren, and B. Lind-
berg, “ESCA~Atomic, Molecular and Solid State Structure Studied by
Means of Electron Spectroscopy.” Almqvist & Wiksell, Uppsala, 1967.
E. O. Kane, Phys. Rev. Lett. 12, 97 (1964).

M. Campagna and R. Rosei, Eds., “Photoemission and Absorption Spec-
troscopy of Solids and Interfaces with Synchrotron Radiation.” North-
Holland, Amsterdam, 1990.

R. Z. Bachrach, Ed., “Technique,” Synchrotron Radiation Research: Ad-
vances in Surface and Interface Science, Vol. 1. Plenum, New York, 1992.
R.Z. Bachrach, Ed., “Issues and Technology,” Synchrotron Radiation Re-
search: Advances in Surface and Interface Science, Vol. 2. Plenum, New
York, 1992.



526

126.
127.

128.

129.

130.
131.
132.
133.
134.
135.
136.
137.

138.
139.

140.
141.
142.
143.
144.
145.
146.
147.
148.
149.

150.

151
152.
153.

154.
155.

156.
157.

158.

159.
160.
161.
162.
163.

164.
165.

166.
167.
168.

HENK

C. Berglund and W. Spicer, Phys. Rev. 136, A1030 (1964).

M. Cardona and L. Ley, Eds., “Photoemission in Solids I,” Topics in Ap-
plied Physics, Vol. 26. Springer-Verlag, Berlin, 1978.

A. Liebsch, In “Photoemission and the Electronic Properties of Surfaces”
(B. Feuerbacher, B. Fitton, and R. E. Willis, Eds.), p. 167. Wiley, Chich-
ester, 1978.

S. V. Kevan, Ed., “Angle-Resolved Photoemission: Theory and Current
Applications.” Elsevier, Amsterdam, 1992.

I. Adawi, Phys. Rev. A 134, 788 (1964).

G. D. Mahan, Phys. Rev. B 2, 4334 (1970).

G. D. Mahan, Phys. Rev. Lett. 24, 1068 (1970).

W. L. Schaich and N. W. Ashcroft, Phys. Rev. B 3, 2452 (1971).

D. C. Langreth, Phys. Rev. B 3, 3120 (1971).

1. B. Pendry, J. Phys. C: Solid State Phys. 8, 2431 (1975).

J. B. Pendry, Surf. Sci. 57, 679 (1976).

J. F. L. Hopkinson, J. B. Pendry, and D. J. Titterington, Comput. Phys.
Commun. 19, 69 (1980).

G. Thomer and G. Borstel, Phys. Status Solidi B 126, 617 (1984).

J. Braun, G. Thomer, and G. Borstel, Phys. Status Solidi B 130, 643
(1985).

J. Braun, G. Thémer, and G. Borstel, Phys. Status Solidi B 144, 609
(1987).

M. Wahlecke and G. Borstel, In “Optical Orientation” (F. Meier and
B. P. Zakharchenya, Eds.), North-Holland, Amsterdam, 1984,

E. Tamura, W. Piepke, and R. Feder, Phys. Rev. Lett. 59, 934 (1987).

E. Tamura and R. Feder, Europhys. Lett. 16, 695 (1991).

J. Henk and R. Feder, Europhys. Lett. 28, 609 (1994).

B. Ginatempo, P. J. Durham, B. L. Gyorffy, and W. M. Temmerman, Phys.
Rev. Lett. 54, 1581 (1985).

B. Schmiedeskamp, B. Vogt, and U. Heinzmann, Phys. Rev. Lett. 60, 651
(1988).

B. Schmiedeskamp, N. Irmer, R. David, and U. Heinzmann, Appl. Phys.
A 53,418 (1991).

N. Irmer, F. Frentzen, S.-W. Yu, B. Schmiedeskamp, and U. Heinzmann,
J. Electron Spectrosc. Relat. Phenom. 78, 321 (1996).

R. Feder, F. Rosicky, and B. Ackermann, Z. Phys. B: Condens. Matter 52,
31 (1983).

R. Feder and J. Henk, In “Spin-Orbit Influenced Spectroscopies of Mag-
netic Solids” (H. Ebert and G. Schiitz, Eds.), Lecture Notes in Physics,
Vol. 466, p. 85. Springer-Verlag, Berlin, 1996.

W. Kuch, A. Dittschar, K. Meinel, M. Zhamikov, C. Schneider,
J. Kirschner, J. Henk, and R. Feder, Phys. Rev. B 53, 11621 (1996).

A. Fanelsa, E. Kisker, J. Henk, and R. Feder, Phys. Rev. B 54, 2922
(1996).

A. Rampe, G. Giintherodt, D. Hartmann, J. Henk, T. Scheunemann, and
R. Feder, Phys. Rev. B 57, 14370 (1998).

P.J. Durham, J. Phys. F: Met. Phys. 11, 2475 (1981).

P. J. Durham, J. Staunton, and B. L. Gyorffy, J. Magn. Magn. Mater. 45,
38 (1984).

P. Feibelman and D. Eastman, Phys. Rev. B 10, 4932 (1974).

C. Caroli, D. Lederer-Rozenblatt, B. Roulet, and D. Saint-James, Phys.
Rev. B 8, 4552 (1973).

H. Gollisch, D. Meinert, E. Tamura, and R. Feder, Solid State Commun.
82,197 (1992).

W. Schattke, Prog. Surf. Sci. 54, 211 (1997).

L. Hedin, J. Michiels, and J. Inglesfield, Phys. Rev. B 58, 15565 ( 1998).
L. Hedin, J. Phys.: Condens. Maiter 11, R489 (1999).

T. Fujikawa and L. Hedin, Phys. Rev. B 40, 11507 (1989).

S. Lundgvist and N. H. March, Eds., “Theory of the Inhomogenous Elec-
tron Gas.” Plenum, New York, 1983.

A. Liebsch, Phys. Rev. Lett. 43, 1431 (1979).

A. Goldmann, R. Matzdorf, and F. Theilmann, Surf. Sci. 414, 1.932
(1998).

R. Matzdorf, Surf. Sci. Rep. 30, 154 (1998).

J. Braun, Rep. Prog. Phys. 59, 1267 (1996).

P. M. Morse and H. Feshbach, “Methods of Theoretical Physics,” Vol. 1.
McGraw-Hill, New York, 1953.

169.
170.
171.
172.
173.

174.
175.

176.

177.

178

179.

180.
181.

182,
183.
184,
18s.
186.

187.

188.
189.

190.

191.
192,

193.

194,

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

207.

J. S. Faulkner and G. M. Stocks, Phys. Rev. B 21, 3222 (1980).

P. Braspenning and A. Lodder, Phys. Rev. B 49, 10222 (1994).

G. Grosso, S. Moroni, and G. P. Parravicini, Phys. Scr, T 25, 316 (1989).
L. Szunyogh, B. Ujfalussy, and P. Weinberger, Phys. Rev. B 51, 9552
(1995).

K. Wildberger, R. Zeller, and P. H. Dederichs, Phys. Rev. B 55, 10074
(1997).

H. Bross, Z. Phys. B: Condens. Matter 28, 173 (1977).

J. Henk, A. M. N. Niklasson, and B. Johansson, Phys. Rev. B 59, 13986
(1999).

J. Henk, T. Scheunemann, S. Halilov, and R. Feder, J, Phys.: Condens.
Matter 8, 47 (1996).

C. M. Schneider, J. J. de Miguel, P. Bressler, P, Schuster, R. Miranda, and
J. Kirschner, J. Electron Spectrosc. Relat. Phenom. 51, 263 (1990).

W. Kuch, A. Dittschar, M. Salvietti, M.-T. Lin, M. Zharikov,
C. M. Schneider, J. Camarero, J. J. de Miguel, R. Miranda, and
J. Kirschner, Phys. Rev. B 57, 5340 (1998).

J. Henk and B. Johansson, J. Electron Spectrosc. Relat. Phenom, 105, 187
(1999).

A. Beckmann, Surf. Sci. 349, L95 (1996).

R. Paniago, R. Matzdorf, G. Meister, and A. Goldmann, Surf, Sci. 325,
336 (1995).

R. Schmitz-Hiibsch, K. Oster, J. Radnik, and K. Wandelt, Phys. Rev. Lett.
74, 2995 (1995).

P. Segovia, E. G. Michel, and J. E. Ortega, Phys. Rev. Lett. 71, 3455
(1996).

F. G. Curti, A. Danese, and R. A. Bartynski, Phys. Rev. Lett. 80, 2213
(1998).

H. Hoekstra, Surf. Sci. 205, 523 (1988).

J. Henk and W. Schattke, Comput. Phys. Commun. 77, 69 (1993).

S. V. Halilov, J. Henk, T. Scheunemann, and R. Feder, Surf. Sci. 343, 148
(1995).

J. Heinrichs, J. Phys.: Condens. Matter 12, 5565 (2000).

W.-H. Steeb, “Hilbert Spaces, Generalized Functions and Quantum Me-
chanics.” B.I. Wissenschaftsverlag, Mannheim, 1991.

E. D. Hansen, T. Miller, and T.-C. Chiang, J. Phys.: Condens. Matter 9,
L435 (1997).

K. Garrison, Y. Chang, and P. Johnson, Phys. Rev. Lett. 71, 2801 (1993).

C. Carbone, E. Vescovo, O. Rader, W. Gudat, and W. Eberhardt, Phys.
Rev. Lett. 71, 2805 (1993).

C. Carbone, E. Vescovo, R. Klisges, D. Sarma, and W. Eberhardt, Solid
State Commun. 100, 749 (1996).

R. Klisges, D. Schmitz, C. Carbone, W. Eberhardt, P. Lang, R. Zeller,
and P. H. Dederichs, Phys. Rev. B 57, R696 (1998).

P. van Gelderen, S. Crampin, and J. Inglesfield, Phys. Rev. B 53, 9115
(1996).

C. Bradley and A. Cracknell, “The Mathematical Theory of Symmetry in
Solids.” Clarendon, Oxford, 1972.

P. H. Dederichs, K. Wildberger, and R. Zeller, Physica B 237-238, 239
(1997).

P. Bruno, Phys. Rev. B 52, 411 (1995).

J. J. Paggel, T. Miller, and T.-C. Chiang, Phys. Rev. Lett. 81, 5632 (1998).
R. Matzdorf, A. Gerlach, R. Hennig, G. Lauff, and A. Goldmann, J. Elec-
tron Spectrosc. Relat. Phenom. 94, 279 (1998).

D. Reiser, J. Henk, H. Gollisch, and R. Feder, Solid State Commun. 93,

231 (1995).

F. Frentzen, J. Henk, N. Irmer, R. David, B. Schmiedeskamp, U. Heinz-

mann, and R. Feder, Z. Phys. B: Condens. Matter 100, 575 (1996).

C. Fabry and A. Pérot, Ann. Chim. Phys. 19, 115 (1899).

M. Bomn and E. Wolf, “Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light,” 3rd ed. Pergamon,

Oxford, 1965.

P. Voisin, G. Bastard, and M. Voos, Phys. Rev. B 29, 935 (1984).

. J. J. Paggel, T. Miller, and T.-C. Chiang, Science 283, 1709 (1999).

A. Beckmann, Sury. Sci. 326, 335 (1995).



