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Integration over two-dimensional Brillouin zones by adaptive mesh refinement

J. Henk
Max-Planck-Institut fu Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
(Received 25 January 2001; revised manuscript received 9 April 2001; published 25 Juine 2001

Adaptive mesh-refinemeAMR) schemes for integration over two-dimensional Brillouin zones are pre-
sented and their properties are investigated in detail. A salient feature of these integration techniques is that the
grid of sampling points is automatically adapted to the integrand in such a way that regions with high accuracy
demand are sampled with high density, while the other regions are sampled with low density. This adaptation
may save a sizable amount of computation time in comparison with those integration methods without mesh
refinement. Several AMR schemes for one- and two-dimensional integration are introduced. As an application,
the spin-dependent conductance of electronic tunneling through planar junctions is investigated and discussed
with regard to Brillouin zone integration.
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[. INTRODUCTION very small regions of the BZ'hot spots”), not necessarily
near the BZ center. In both cases, the regions with high ac-
The computation of physical quantities often requires in-curacy demand are small in comparison with the area of the
tegration over the Brillouin zon&Z). Standard methods to BZ and their locations ara priori unknown. While special-
obtain BZ integrals are special-poif8P schemesand tet-  point schemes appear inefficient, an AMR provides a method
rahedron methods.Since both methods rely on equally Of choice since it can efficiently treat both large- and small-
spaced grid points, they may be regarded as inefficient ifcale variations of the integrand.
there are small regions in the BZ that give a sizable contri- This paper is organized as follows. After having illus-
bution to the integral, while large regions give almost notrated the basic idea and the main features of AMR’s by
contribution: Either the number of grid points may be toomeans of one-dimensional integratigec. 1), adaptive
small to sample the “important regions” with high accuracy, mesh refinements for two-dimensional integration are intro-
or the number of gr|d points may be too h|gh and the “un-duced in Sec. lll. Exemplary results for the Spin-dependent
important regions” are sampled with a dispensable high actunneling conductance for planar junctions are presented in
curacy, thus leading to an unnecessarily large computatio®€c. 1V in order to show the properties of the various pro-
time. An integration method that automatically adapts thePosed AMR'’s.
grid to the integrand’s structure would overcome this prob-
lem. _Such an adaptive mgsh r(_afinemehMR) would find Il ADAPTIVE MESH REEINEMENT EOR
the important regions with h|gh accuracy (_Jlemand and ONE-DIMENSIONAL INTEGRALS
sample them with high resolution, while the unimportant re-
gions with low accuracy demand are sampled by a few Adaptive mesh refinements aim to integrate numerically a
points. Consequently, discretization on a very fine grid covfunction f(x):R—R over the interval x;,x;] with a given
ering the entire BZ is avoided. accuracye but with the numben(e) of function evaluations
Bruno and Ginatempo proposed as an AMR scheme foas small as possible. They rely on three main ingredi€nts:
n-dimensional integrals a cascade of adaptive integratioii) a crude approximation ,x;,x;) to the exact integral
techniques for one-dimensional integrals this paper, fur- lox(Xi ,xf):f);ff(x)dx [gray area in Fig. ()] that uses only
ther adaptive integration schemes based on the partitioninﬁ;] int | 6 daries. and i) afi imati
of the integration domain by simplexes will be introduced e interval boundaries; andxy, (ii) a fine approximation

and investigated, with a focus on the computation of physica\ ap (X;Xq) that usegat least one inner poinky in addition,
d (iii) a refinement rule that in dependence lgp, |,y ,

guantities of layered systems, e.g., the magnetic anisotrop X . )
energies of ultrathin filmgsee Refs. 4 and)&nd magnetore- nde determines \_/vhet_her the mte_rval has to be f.ef'”ed-
A crude approximatiom,(X;,xs) is for example given by

sistances of planar tunnel junctioffer a few recent publi- ; . o <
b J ks P the trapezoidal rul¢the area hatched with thin lines in Fig.

cations see Refs. 69 12 , o o
Coherent tunneling of electrons through planar magneticl(a)]' For a fine approximation ay (x; Xp), f(X) is inte-

junctions provides a test for the proposed AMR’s. The Com_grated by Simpson’s rule, which uses the inner point
putation of the spin-dependent conductance requires the irkm= (Xi+X7)/2. Instead, one could also use the simpler but
tegration of the transmission of Bloch electrons through thd€SS accuratel ay(X;, X)) =1ad(Xi Xm) +1afXm,X) [the area
junction over the two-dimensional BZ. This transmission can@tched with thick lines in Fig. @]. The refinement rule
depend strongly orkl (cf. Ref. 10. First, for increasing States that .y (x;,x;) is accepted as an approximation for
spacer thickness, the transmission at ldigebecomes sup- X X9) if |1y (X, X)) = af(X; , X)| <€ (absolute errar
pressed, leaving a sizable contribution to the conductancer |lay (Xi,X¢) —lagXi . X0)| <€l 4y (Xi . X¢)| (relative erroy.

only near the BZ center. Second, electronic states localize@therwise the mesh is refined by applying the above scheme
at the lead/spacer interfaces can dominate the transmissionto the intervalq x;,x,,] and[x.,,%;] [an analog can be for-
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FIG. 2. Numbers(e) of mesh pointgdiamondg and integra-
tion errorsAl(e) (circles of the AMR for f(x)=exp(—2x|) in
dependence on the absolute accuracy Squares give errors
Al (n(e)) of a Simpson integration with the same numbefs)
of points as determined by the AMR.

M
o 20 In Fig. 2, the numbersi(e) of grid points are shown
®© 156 (diamonds$. An increase of accuracy by one order of magni-
' tude requires an increase fe) by a factor of about 2.15.
T The integration erroiAl () =|1(€)— ¢y (circles is always
’ less thane. The efficiency of the AMR becomes evident if
05| one considers the integralgy (n(e€)) of f(x) by Simpson’s
’ rule with the same numbex(e) of grid points as used by the
0 AMR. For comparably largen(e), the integration error

Al (n(e))=|1,y(n(€))— ¢y (squarepis about four orders
of magnitude larger thanl(€). Thus, in order to achieve an
accuracy ofe=10° in the Simpson integration, a grid of
FIG. 1. Adaptive mesh refinement for one-dimensional inte-ghout 32 000 points is needed. This corresponds to an in-

grals. (@ The integral of the functiorf(x) (thick line) over the  rease in speed by a factor of about 5 in favor of the AMR.
interval [ x;,X] is given by the gray area. A crude approximation

uses onlyx; andx; and results in the area hatched with thin lines. A
fine approximation uses, in addition and leads to the area hatched
with thick lines. (b) Adapted meshe$x,f(x)] (doty of f(x)

= exp(~2|x]) for absolute accuracies ranging from 16 down to An obvious generalization of the above AMR to integra-
10"® (bottom to top, as indicated on the left of each curvine tion in n dimensions was proposed by Bruno and

inset shows the same data but in a small interval aroun@ for . . (n_ h .pn
€=10"2,...,10° (bottom to top. The curves are shifted with Ginatempo’ The integrall ¢y [ xaT(x) ™ of (x): T

respect to each other for clarity. Vertical dashed lines emphasize the* R Over the interva[ x;,x] is decomposed into successive
mirror symmetry off(x) atx=0. one-dimensional integrals, the AMR of Sec. Il being applied

to each of them. In a computer program, one would deal with
) ] a cascade of AMR’s for linear meshes, and hence the name
mulated withl 55 (X;, %) instead ofl 5y (X;,X7) ]. cascading linear mesh refinement, CLMR(wheren indi-
The main properties of this AMR are revealed by consid-cates the dimension. To give an explicit example, e.g., a
ering the functionf(x)=exp(~2/x) with le(—,2)=1  CLMR(2) scheme, for the integraf? = [, f(Kl) d2k! of the
[see Fig. W)]. It has been integrated numerically via the function f(k”):Rz—>R, k||:(kx,ky), over the two-

above AMR (using trapezoidal and Simpson’s ryldeom . . Il . . (2)
—20.15 to 19.85 with an initial grid of 11 pointéThe large dlmkeyn5|onal BZ [k kil thkex cascade is given bye,
interval [ —20.15,19.85 is first partitioned into 10 equally =fkfyl(e}()(ky) dK, Ig}(’(ky)szfxf(kx,ky) dk*.

large subintervals which are then treated by the AMR. This ! '

initial partitioning determines the large-scale resolution of
th_e adaptive scheme. The small-scale resolu.t|on 'S Oleteof n+1 points and all its constituenta/hich are themselves
mined bye.) Whether the AMR is able to recognize the cusp implexe with dimensionam (0<m<n), e.g., cormers
can be tested by choosing the interval asymmetrical withS:O;) line segments ri=1) tri;n ular'sﬁr%;cean=2)
respect tox=_0. In this case, the cusp is not hit directly by etc ' Since % simplex {s un? uelv  defined b ' its
the initial grid and its first refinement. For largpd, f(X) is cor.nersx " X px it can C!‘or yshort be den)c/)ted
rather flat and henck,, and |1,y do not differ significantly. (12 (lnfl» ' TF1e ngéntral oint of a simolex. ie
In this unimportant region the demand of accuracy is low! . point ot a simpiex, 1.,
and therefore a coarse grid can be maintained. The cusp,i-1%/(n+1), will be denoted agl---(n+1)). For ex-
however, represents an important region with high accuracgmple, the centex,=(x;+x,+x3)/3 of a triangle(1 2 3)
demand and thus requires a fine gfisee the inset in can be written ag4)=(1 2 3). Further, lengths, areas, or
Fig. 1(b)]. volumes will be written ag(1- - -n)|.

-10 -8 6 4 -2 0 2
X

Ill. ADAPTIVE MESH REFINEMENTS FOR
TWO-DIMENSIONAL INTEGRALS

I |
Another type of AMR is based on the refinement of sim-
P_Iexes. A simplex inR" is a geometrical object that consists
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the refinement rule based on absolute accuracy, the total ab-
solute error can roughly be estimatededs(e) whereN(e)

is the number of simplexes used in the evaluation of the
integral over the domain.

The AMR schemes are not restricted to integration of
real-valued functions. Even matrix-valued functions
f(x):R"—R"*¢ can be integrated, the integrals being them-
selves matrices. As a distance in matrix spaté® one
could use the matrix normA|| = Vtr(AA"). An example for
operating with matrix-valued functions is a multiple-
scattering calculation which takes into account substitutional
disorder within the coherent potential approximatton.
There, one has to average the scattering-path operator
7(E,k) over the BZ, the latter being represented in angular-
<> momentum spac¥.

SMR(2,1)

<640

<2>

<

<4> <4>
SMR(3,3) SMR(3,2) 4

<1> <2> <I>

FIG. 3. Simplex mesh refinements SMRfn) for triangular
(n=2, top row and tetrahedral (=3, bottom row grids. The
mesh refinements are illustrated by dashed lines. Top row: The IV. APPLICATION TO THE SPIN-DEPENDENT
initial triangle (1 2 3) is refined using as additional points the cen- CONDUCTANCE OF PLANAR TUNNEL JUNCTIONS
ter of the trianglg4) [left, SMR(2,2)] or the edge centekgt), (5),
and (6) [right, SMR2,1)]. Bottom row: The initial tetrahedron
(1 2 3 4), with corner(3) lying behind the front surfacél 2 4), is
refined using the central poifileft, SMR(3,3)], the centers of the
surfacegmiddle, SMR3,2)], or the edge centefsight, SMR3,1)].

We now apply the AMR schemes for two-dimensional
integration to the computation of the spin-dependent conduc-
tance of planar tunnel junctiofisThe conductance is calcu-
lated for parallel or antiparallel alignment of the magnetic
moments of the semi-infinite ferromagnetic leads which are
separated by an insulating spacer. If the layer unit cells of the

Any simplex can be partitioned into smaller simplexes byleads and the spacer are commensurable, the in-plane wave
adding points that are the centers of thelimensional con-  yectorkl= (k*,kY) is conserved in the scattering procéss-
stituents of the initial simplex ($ms=n). These new points herent tunneling According to Landauer and “Bttiker®
in conjunction with the initial points serve as corners of thethe conductance at the Fermi energy can then be expressed
new (Sma”eb Simplexes, which have to be diSjunCt and as G:(ezlh)fBzT(kH) dzk” The transmission is given by
space filling. Consequently, the simplex mesh refinement$(k\l)zzm’n|smLﬁnR(kH)|2, whereSis the scattering matrix
introduced below can be Igbeled SMRIn). ) . _of the spacer expressed in terms of lead Bloch states. The

Suppose we want to integrate numerically a funct|onsums run over all incoming Bloch states of leadL which
f(x):R?—R over a triangle(1 2 3). A crude approximation e scattered into those outgoing in leRdng). Computa-

to the exact integral ((123) is the volumel,{(123))  tjon of the conductance by means of a layer Korringa-Kohn-
=[f((1))+f((2)+f((3))]|{(123)|/3 of the prism. For

the mesh refinement SMR2) the center{4)=(123) is
chosen as an additional poinsee Fig. 3, and thus

oy (123)=1a((124) + 1a{(238) +1,(314) s 06
taken as a fine approximation. Or one might utilize for 05
SMR(2,1) the edge centerg4)=(12), (5)=(23), and
(6)=(31) with the fine approximationl,y ({12 3)) 2
= Iap(<1 4 6>)+Iap((2 5 4))+Iap(<3 6 5)) + Iap(<4 56)). =~ 03
As for one-dimensional integrationgy ((1 2 3)) is ac- A
cepted in the case of SMR2 if |[l,y((123)) 0.2
—1,(123))|<e (absolute errgr or [l,y({(123))
—1,0(123))| <€l ((123))| (relative erroy. Otherwise 0.1
the AMR is applied to the refined triangles, namely, to 0.0
<1 2 4>, <2 3 4>, and(3 1 4> An analog can be formulated 00 01 02 03 04 05 06
for the SMR2,1) scheme. k, (ao-l)

It is straightforward to extend the above mesh refinements
to three-dimensional integral§ig. 3. Using the center of FIG. 4. TransmissionT(kl) of Ni(00D/vacuum/N{001) for
the initial tetrahedrofSMR(3,3)] the centers of its four sur- three spacer layers of vacuum and parallel alignment of the lead
faces[SMR(3,2)] or the centers of its six edg¢SMR(3,1)]  magnetizations. In the gray-scale contour plot covering one-quarter
yield 4, 11, or 8 small tetrahedra, respectively. of the Brillouin zone, zero transmission corresponds to black, while
Note that the accuracyis directly related to the integrals maximum transmission (0.036) corresponds to light gray. Equally
over a simplex but only indirectly related to the accuracy ofspaced contour lines are displayed in whiké= (k*,k¥) with re-
the integral over the complete domadix ,x;]. In the case of  spect to[110] and[110], respectively.
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FIG. 5. Adapted meshegloty obtained by the CLMR2) (left column, SMR(2,2) (middle), and SMR2,1) (right) schemes for the
transmission shown in Fig. 4. In the top right corner of each panel, the absolute acewaadyhe numben(e) of mesh points in the entire
Brillouin zone are given. The transmission is displayed in addition by gray contour lines.

Rostoker (KKR) calculation closely follows the work by gion with rather smallk”|, say,|k”|<0.2$51 (Fig. 4). Note
MacLaren and co-workers. that due to the band structure of Ni(kl) has a plateau-
For the purpose of this paper, we focus in the followingshaped local minimum &= (0,0) which is surrounded by
on the system NOOD/vacuum/N{001) with the magnetic small “ridges.”
moments in the leads aligned along {l#®1] direction. Be- Adapted meshes obtained by the CLIZR SMR(2,2),
causeT (kl) shows the symmetry of the point groupn, it and SMR2,1) schemes for selected absolute accuraciase
is sufficient to present results for a quarter of the two-shown in Fig. 5. The quarter of the BZ was initially parti-
dimensional BZ. The wave vector componekitsandk” are  tioned by a 1& 10 grid for all three schemes. As expected,
chosen with respect #dl10] and[110], respectively. the density of mesh points is rather low for smal{bottom
Due to the insulating spacer, the conductaGagecreases row in Fig. 5. A decrease of leads to a high sampling
exponentially with spacer thickness. Further, the transmisdensity of the region with smalkl|, in accordance with the
sion T(kl) gets focused at the BZ center. For three spacetransmission shown in Fig. 4. A slightly increased point den-
layers of vacuum and parallel alignment of the lead magnesity is observed atkl|~0.1a;?, just where the above-
tizations, most of the contributions ® come from the re- mentioned plateau has its boundary. The local minimum at
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FIG. 6. Conductancés of Ni(001)/vacuum/N{001) for three
spacer layers of vacuum and parallel alignment of the lead magne-
tizations in dependence on the numlvgle) of mesh points.(a)
Conductance as obtained by the three adaptive mesh refinements
CLMR(2) (squares, solid lingsSMR(2,2) (triangles, dashed lings
and SMR2,1) (triangles, dash-dotted lingsas well as by a special-
point schemdSP, circles, dotted lingsThe arrows mark the con-
verged value of the conductan&, . (b) Same data as ifa), but
displayed as the absolute deviation fro@,., AG=|G(n(e))
-G.|.

02 0.3 0.4 0.5 0.6

-1
the BZ center requires a lower density than the surrounding s (30 )
ridge, as can be seen best for S®@R). In other words, the FIG. 7. Transmissiof (kl) of Ni(001)/vacuum/N{001) for one
meshes are adapted to the integraifé!). vacuum layer as spacer and antiparallel alignment of the lead mag-
The convergence behavior of the conducta@oeith de- netizations(a) T(k”) is shown as gray-scale contour, with black for
creasinge, and hence increasing numbefe) of mesh zero transmission and light gray for maximum transmission
points, is displayed in Fig.(8). For smalln(e), the conduc-  (0-857). Equally spaced contour lines are displayed in wiite.
tance is far from being converged since it shows a significanfdapted mesidots as obtained by the SMR,1) scheme. The
variation for the CLMR2) and SMR2,2) schemes. The contour lines of(@ are shown in gray.
SMR(2,1) scheme instead appears to converge faster. For
grids of about 5000 to 10000 points, however, the conducspacer layer for antiparallel alignment of the magnetizations.
tances obtained by all three schemes are almost converged.The transmission for this system decays smoothly with in-
further increase of(e) reveals that the AMR's are robust, creasing|k!|, thus leading to a rather large region with al-
ie., the conductance shows no considerable oscillationgnost zero contribution to the conductandsay [KI|
Since the transmission shows a shape rather similar to that 6f0.5a, ; black area in Fig. ®)]. Consequently, the adapted
the function f(x) =exp(~2/x|) one finds a similar general mesh[Fig. 7(b)] as obtained by SMR,1) with e=10"° and
convergence behavidcf. Sec. 1). The AMR’s have been a 10x10 initial grid is coarse in this area. However, interface
investigated for both a variety of test functions and conduc+esonances produce “hot ridges” with a large transmission
tances of other systenfshanging lead and spacer materials (see Sec. I; cf. also Fig. 5 in Ref. 10rhe AMR leads to a
as well as spacer thicknesgesn all cases, these adap- fine mesh right at these ridggsimilar meshes were obtained
tive integration methods were robust and led to rapidby both the CLMR2) and the SMR2,2) scheme§ This
convergence. clearly proves that the AMR’s discussed in this paper are
In addition to the AMR schemes, the conductance hasapable of finding even tiny important regions and therefore
been calculated with a special-point schefh@he number may considerably reduce the computation time.
of mesh points in the entire BZ ranged from 2500 up to
160000. The conductanc&,, obtained from the largest
number of points represents the converged valu& afind
can hence be regarded as a reference. For all calculated val- Adaptive mesh-refinement schemes for Brillouin zone in-
ues, the erroAG=|G(n(e))—G..| of the AMR’s is less tegration provide robust numerical methods which automati-
than that of the SP scheme, i.e., the AMR points lie withincally find regions with a high accuracy demand. These re-
the gray area in Fig.(6). Thus, AMR schemes can outper- gions are sampled with high density, while the other regions
form SP schemes if the integrand shows unimportant regionare sampled with low density. This salient feature may save
of considerable sizéhere,| k”| >0.3a, b, a considerable amount of computational time as compared to
A particularly interesting case is tunneling through oneintegration methods that rely on equally spaced mesh points,

V. CONCLUDING REMARKS
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regardless of the particular AMR usédascading linear or recursion level is reached. One minor disadvantage of the
simplex mesh refinement AMR’s might be that the execution time of a calculation is
In our computer code for electron spectroscopies which idiard to estimate since the number of mesh points is unknown
based on the layer-KKR method, a special-point scheme as priori.
well as three AMR'’s(the cascading linear and two simplex  Adaptive mesh-refinement schemes, like other grid tech-
mesh refinemenidor integration over the two-dimensional niques, are of course not restricted to Brillouin zone integra-
Brillouin zone were implemented. Since it is writtenda +, tions (for application of grid techniques in density-functional
the recursive algorithms of the AMR’s could easily be imple-theory see Ref. )7 We suggest considering the implemen-
mented. The nesting is terminated if either the integratiortation of AMR’s in computer codes for electronic-structure
error is smaller than the prescribed accuracy or a maximumalculations.
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