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Abstract The aim of this work is to highlight the role of confinement and electron-
electron interaction in the double photoemission spectra. We probe
simple models, bridging the 'atomic’ case of the process with its 'surface’
counterpart via the prototypes of a quantum dot and a thin film. The
manifestation of two aspects - localization of the electronic states in
confined systems and the role of screening in extended systems - is
illustrated in the DPE angular distributions.
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1. INTRODUCTION

In one-photon two-electron photoemission (DPE) experiments from
solids and surfaces one resolves simultaneously the energies and emis-
sion angles of two photoelectrons for well defined properties of the photon
field and the sample under study [1]. As the escape depth of low-energy
electrons is of the order of a few atomic layers the low-energy photo-
electrons are produced in the surface region. The theoretical analysis
of the DPE shows that the two-electron coincident signal is an evident
signature of inter-electronic interactions [2,3]. In extended systems elec-
tronic correlation is intimately related to localization of electronic states.
Thus, the question arises as to what extent the confinement (and/or
dimensionality) of the scattering volume may effect the DPE spectra.
Dimensionality could be also meant in context with the dimensional-
ity of the Coulomb interaction, as is discussed e.g. in [4]. Here the
electron-electron interaction will be assumed three-dimensional, which
is the most general and physically relevant choice.

In the present work simple models will be probed, trying to bridge
’atomic’ version of the process with its ’surface’ counterpart via the
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prototypes of a quantum dot and a thin film. In the case of a film
electrons have discrete energy levels in one direction and are free to move
in the other two. In the case of a quantum dot the electrons are confined
in all three directions and have only discrete bound states. For these
systems we write down DPE matrix elements and cross sections (Sec.2).
The size of a quantum dot can vary from tens to hundreds angstroms,
giving a broad range of distances over which it’s bound states can spread.
Thus our first aim is to probe the size-effect in DPE angular distributions
from a dot (Sec.3). Our second aim is the inclusion of the interaction
of the two photoelectrons with all the other surrounding electrons. This
may be approximately done within the static-sereening concept. The
role of screening in DPE spectra from a thin film is discussed in Sec.4.

2. FORMALISM AND APPROXIMATIONS

We consider a process in which an incident photon (energy hw) knocks
two electrons out of a system S, the properties of which will be specified
further. The subsequent detection of both outgoing electrons in coin-
cidence allows the simultaneous determination of their wave vectors k;
and kp. In the sudden approximation the photon field affects only the
degrees of freedom of the two electrons, which will be termed ’active’,
in contrast to the remaining ’passive’ ground state electrons of S. The
latter do not participate in the dipole transition explicitly, but can alter
the strength and range of the interaction between two active electrons.
The transition matrix element in the dipole velocity form is

T = (¥12fé- (V1 + v2)|D12) 1)
for the transition between two-electron initial |®12) and final (¥;,| states,
€ being a photon polarization vector. We employ a simple initial state
constructed as an antisymmetrized product of single-particle states of
the system S (spin-orbit interaction is neglected and the spin part is
factored out):

D12(r1,12) = By (r1)P2(r2) £ Bo(r1)®1(r2). (2)

We assume that the system S remains neutral upon photoionization,
which is reasonable for the system with the large number of electrons.
The final state is generated by back-propagating the asymptotic plane-
wave state |kj, ka) via the total Green operator Gy,

¥12(r1,12) = Giz kg, ko) ®3)
The Green operator G, is given by the integral equation
G12 = Go + Go (V1 + V2 + V12) Gra. (4)
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Here, Gy is the free Green operator, Vi and V; couple electrons to the
system S, and Vi, is assumed to be either bare or screened Coulomb
interaction, depending on the purposes and on the system at hand. The
potential in Eq.(4) contains only two-body interactions, which leads to
the reduction of the total Green’s operator in terms of lower-order op-
erators:

G2 = Gy 26162612, (5)

where the operators G; are given by G; = Go + GoV;G; j = {1,2,12}.

In the following we neglect the interaction of the final-state electrons
with the system S, In the case of bare Coulomb interaction we also
approximate the Green’s function G2 by that of the relative motion,
depending on the relative coordinate r = r; — ra. This approximation
corresponds to the calculation of the two-electron state (3) in the free
space, still keeping the interaction with the system S in the initial state
Eq.(2).

To deduce the optical double transition amplitude we transform to
the Jacobi coordinates K+ = kj + ko and K~ = (ky — ki) /2 to arrive
at

T oo [OCK-|Gute POPRY) (7 i)

x  (p1,p2|®12) d*P+d°P~d’p1d’pe =

= / (- PH)s(PT — K*) (K™ |Gi2|P~) (P"P*|p1p2) X

x  (p1,p2|®12) *PFd’P~d’p1d’pe =

= /(g -P1)o(p3 + ps — k1 — ko) <%(k2 —k1)|{G12 ';-(P4 - P3)> X
X (ps,pa|@12) d*p3d®py =

) 1 1
= (¢-K%) /d3P3 <§(k2 -k1)|Gi2 -2-(k1 + ko) — P3> X
X (ps, ki + ko — p3|®12). (6)

This expression exhibits the DPE selection rule é(k; + k2) # 0, which
implies that the photon acts on the center of mass of two electrons. The
matrix element of the Green’s function embodies the dynamical correla-
tion effects as described by the motion of the relative coordinate in the
Coulomb field [5]. It is given by the Fourier transform of the Coulomb
continuum wave function [5]. The Fourier transform of the initial state
(p3, k1 + ko — p3|®12) characterises the overlap of the single-electron or-
bitals in the momentum space and is strongly dependent on the spatial
extention of the system and on the particular final state total momen-
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tum k; + ko. In the following our intention is to use simple confining
potentials for the initial state wave functions, which would merely reflect
the main physical aspect - the degree of the localization of states.

3. THREE-DIMENSIONAL CONFINEMENT

The parabolic well is a usual shape to describe a potential of a quan-
tum dot. The simplest form of the potential is given by the spherically
symmetric oscillator; the modifications allow for different frequencies an
effective masses in z,y, z-directions [6]. There is a temptation to take
the wave functions of the exact infinite well problem for the construction
of the initial state, but such a dot would have no ionization continuum.
So, we solve eigenvalue-eigenfunction problem for the finite well numeri-
cally. We will assume that the lateral extension of the potential is larger
(or equal) than that in z-direction, and the confinement energies in z
and y directions are assumed equal for simplicity:

1, 1,
V(z,y,2) = §m||wﬁ (=* +9%) + Emiw:{zﬂ, W <wy (7

The single-particle density of states is given by the delta-functions
p(E) =Y,0(F — E;), where i counts all the (degenerated) levels.
The 6-fold DPE differential cross section is

do 2

T|*0(E; — Ef)p(Es)p(Ep)dEdE 8
Trdian | TP 0 - Bpp(E)p(BdEdE,
where E, and Ej are the energies of the electrons in the initially bound
states and F; and Ey are the the initial and final state energies, respec-
tively, i.e.

24 1.2
B; = By + Ey + huw, E,«:f%k?. 9)

The DPE angular correlation discussed in this section is an angular
distribution of one of the electrons over two angles 6 and ¢, while the
emission angles of the second electron are fixed and the direction of po-
larization vector € is well defined. For space limitations we present here
only two typical examples. We consider a spherical oscillator potential
of a constant depth (Vp=300 meV) and a radius ranging from 7 to 400
A. Suppose that only the lowest level is occupied. This means that the
initial state is a singlet and the total final state energy E; + E» is fixed
by the photon energy. Fig.1 shows the case of E; =1 eV, E; =19 eV,
01 =0, ¢1 = 0, the vector € is perpendicular to the emission direction of
the first electron. The angle ¢ = 0, and the DPE intensities are plotted
as functions of §,. The minimum at # = 0 arrises due to the DPE
selection rule exposed above: The two electrons can not be emitted with
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a total wave-vector perpendicular to the field. The five curves 1-5 corre-
spond to the quantum dot radii 7, 20, 135, 200 and 400 A, respectively.
If the dot is small enough (curves 1 and 2), the initial state is strongly lo-
calized. Roughly speaking, it’s Fourier transform (ps, k; + ka — p3|®12)
is delocalized and smooth in a large domain of angles (62,¢42), therefore it
adds no features to the angular distribution. This can be seen in Fig.2(a)
which shows the three-dimensional plot of the case of curve 1, Fig.1. As
E; > E;, the sum (k; + kj) is almost parallel to vector ky. Since the
PDE rate is proportional to é(k; + ky) we notice a continuous increase
of the curves 1,2 of Fig.1 towards 62 = £90°, where k; becomes parallel
to é&. The shape of Fig.2(a) can be understood from the following: as
energy F, is much larger than F;, the photon is "absorbed” mostly by
the fast electron, which undergoes a dipole transition from the initially
isotropic state, with a weak coupling to the second electron. This results
in p-type distribution of the fast emitted photoelectron.

For larger sizes of the QDs the function (ps,k; + k2 — p3|®12) be-
comes rather localized at certain angles. One can think of this quantity

Figure 2 The same as Fig.1, 3D-view. Emission direction of the first electron and
photon polarization direction are the same for all plots and are shown in plot (b).
Radius of the well is (a) 7A, (b) 1354, (c) 2004, (d) 400A.
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Figure 8 Conditions are
the same as in Fig.1 except
for the fixed dot size (7 A)
in z-direction and different
angle 6; = 40°. Lateral
sizes are shown near the
curves.
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as of a measure of correlation in momentum space, probed by the vec-
tor ki + k. It affects the angular distribution by damping the certain
(62, p2)-regions as can be seen on the plots (b), (c), (d) (Fig.2), corre-
sponding to curves 3, 4, 5 of Fig.1, respectively.

The second example demonstrates the effect of gradual broadening of
a dot in lateral directions, keeping it’s z-size equal to 7 A. Four curves
in Fig.3 correspond to xy-radii of 7, 20, 135 and 200 A. To make ge-
ometry less symmetrical than in Fig.1, 1 eV electron is directed at 40
degrees from the normal to the xy-plane, the second electron has 19 eV
kinetic energy. Again we observe the squeezing of the angular distribu-
tions, which is quite sensitive to the confinement in xy-plane. However,
there is no continuous transition from a 3D-confinement (a dot) to 1D-
confinement (a film) by taking a limit of infinite sizes of a dot in xy-
directions. For very large lateral size DPE current from a dot goes to
zero as soon as the overlap of the initial states in momentum space
becomes vanishingly small. So, the case of a film must be considered
independently.

4. ONE-DIMENSIONAL CONFINEMENT

Suppose the system is confined in z-direction and is infinite and
jellium-like in z,y-directions. Accounting for the free motion parallel
to the surface, irrespective of the other properties of the wave function,
obtain:

o) = 0t(z),  (alon@) =5 -p)-(a*|2t) (10

pll is a component of the wave vector of the electron parallel to the
surface, which is used as a quantum number denoting the state. Per-
pendicular component may be confined from two or one side so that to
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represent a quantum well (modelled by square or parabolic well) or a
layer on a surface (modelled by a triangular well). In both cases eigen-
states of the potential in 1 -direction are the bottoms of two-dimensional
single-particle subbands, filled by the motion in xy-directions. The en-
ergy conservation states the equality of initial and final state energies
2 , li2

+ K2+ k2
+ B OP iy, ad B =02 ()

E;=-Er - E +
Here and after all energies (relative to the vacuum) should be understood
as absolute values and minus signs are written explicitly where necessary.
EJ-b are the eigenenergies of the a and b electrons in 1-direction. The
transition amplitude and cross section are:

. 1
T « (e-K+)/d3p3 <§(k2 - k1)|Gi2

X (p3, ki1 + ko — p3|®12) =

1
-2-(k1 + kz) - p3> X

= (é- K+ /dp3 < (kz—kl) Gia|= (k1+k2)—-pﬂ—p§-> X
X <p3,k1 +ky Pa‘q’ > k”+kg— !—-pll!) (12)
do 25 (B — B d2pldZp!
A, dERd0,ds, o / IT1"6 (B — Ei) d°pad’py (13)

Conservation of the parallel component of the center of mass wave vector

) (kllI + k|2| - pg - Pltl) in Eq.(12) together with the conservation of energy

from Eqgs.(11),(13) eliminate integration over one of the vectors pﬂ or

pu, and we are left with the two-dimensional integration over the initial

state parallel component of one of the electrons. The z-component of
the initial state is taken as a simple analytic one-parameter function,
commonly used in the description of thin films, inversion layers, surface
states, etc. [6; 7]:

‘¢L>={ V5 zen-f) >0 (14)

0 z2<0
(oY) =5 Gy (15)

Two aspects will be demonstrated in the angular distributions: (i) the
restrictions imposed by the energy and momentum conservation, and (ii)
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Figure 4 Energy diagram,
showing kinetic energies E;
and E3, energy of the con-
finement in L-direction E;
and integration range for
E) from the Fermi level to
Enin (see text).

the role of screening. First one may be clarified by the energy diagram
(Fig.4). Suppose for simplicity that both electrons have the same energy
in z-direction E = —FE (all energies still given with respect to vacuum
level with explicit minus signs). Due to the upper limit for the initial

state energies (the Fermi energy —Ep), the integration region for p!l in
Eq.(13) also has an upper limit equal to ppmaz = /2(EL — Er). So,
parallel components of the initial state wave vectors should not leave
the circle of the radius pp,; in the zy-plane. At the same time, it has
the lower limit, given by pmin = \/2(Er + E| + E1 + E; — hw) > 0.

Vectors p!,p!l are selected from within the ring of radii (pmin,Pmaz)

so that to fulfill energy and momentum conservation. Note, that the
longest possible pﬂ + pll!, that can be chosen from this ring, corre-
sponds to the energy in the middle between Er and E,,;, and equals to
p',',}*;z = 2y/E1 + E; — hw + 2E|. This is the restriction, which promi-
nently appears in the angular distributions by making certain final state
geometries forbidden for DPE. For example, suppose for simplicity, that
k; is normal to zy-plane and fixed. This means that le + p{l = kg. But

such a condition may be not always fulfilled, if e.g. kg becomes long

enough to exceed p',l,f;x. The similar considerations apply to less sym-

metrical geometries. This is demonstrated in Fig.5, where the vertical
axis is the fixed 6;-angle of the first electron, the horizontal axis is the
variable 62-angle of the second electron, and the hatched region between
two curves gives the allowed values of 6, for the given 6; (@, varies in
plane ¢ = 0). For the case of equal kinetic energies of two electrons
the zero in the angular distribution due to the selection rule will be
always present (diagonal line fully inside the hatched region), and the
zero due to the Coulomb repulsion will be visible only at some angles 6,
(second diagonal). Sharp cut-off of angular distributions may serve as
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Figure 5 Example of
the angular restrictions

fol IR N\ imposed by the energy and
_______________________ momentum conservation.
» At a given 6; the value

of 02 inside the hatched

6o OXON region is only possible.

________________ Two diagonal lines show

B N N the positions of zeros

of angular distribution

I N N due to the selection rule

----------------- and Coulomb repulsion,

ra—— " m w Y electron kinetic energies
are equal.

an additional information for the estimation of bound state energies in
1 -direction with respect to the Fermi level.

The remaining electrons screen the mutual Coulomb interaction
within the ejected electron pair. The simplest model to account for
this shielding effect is given by the Thomas-Fermi theory which derives
the electron-electron potential as

_ exp(—Ari2) 4
U(ri2) = Ty Ug = Zt+2

(16)
The momentum-space potential U, indicates the decay rate of the two-
body interaction as a function of the inverse screening length A, which is
in turn determined by the mean electronic density. It is not possible to
proceed in the non-perturbative way as we did for the bare Coulomb
interaction because there is no closed-form expression for the Green
function of the screened interaction. Continuum wave function of the
screened Coulomb potential does not have well-defined zero-screening
limit [5]. Therefore we adhere to a perturbative framework.

The first-order Green’s function in screened Coulomb interaction
G12 = GoUGy is the first finite term in perturbation series of Gy2 (the
zero-order term G1g =~ Gy reduces the problem to the single-particle one
and T vanishes). The 6-fold DPE cross section reads

do
dE1dEoddSYy

€% [ ap* (G0 -k)

X |<p"',k1l+kj' —pl|¢>f2>|2. (17)

x / 8(E; — E;)d(k! + k! - pll - pl)d®pad?py x
2

X GOUGO

1
g (ki +ka) - pt - Pﬂ>
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Note that the unscreened Coulomb potential favors small momentum
transfer, i.e. large-distance, interactions. This situation changes when
the interaction is shielded. In the extreme of very strong shielding A > 1
only very large momentum transfers ¢ > A (hard collisions) do contribute
to T'. The possible geometry to visualize the role of screening is shown
in Fig.6(b). Both electrons have equal energies and equal angles with
respect to the surface normal. The polarization vector is normal to
the surface and parallel to k; + k. Let’s increase both angles 6y, 6,
gradually and simultaneously from 0 to 90°, so that k; + ko remains
always perpendicular to the surface. Fig.6(a) shows the DPE cross sec-
tion as a function of #=60;=60,. Two curves correspond to two values of
A. We remark at first that the intensity, in particular at the maximum,
falls down with increasing A. This is shown explicitly in Fig.6(c) and is
evident from the fact that the DPE process depends on the strength of
interaction between the electrons. Furthermore we notice that the angu-
lar position of maximum in Fig.6(a) grows with increasing A (Fig.6(b)).
Le. for more effective screening the photoelectrons escape at larger mu-
tual angles. At 6; = 0 no emission happens because electrons can not

a) b) 5
30 i~ =
K K,
320 N
§ 00/
> - /
10
£
0.
0 30 6 90
0
angle 0
d
C) ss )100
S0
50 3
) £ 60
o 45 > 40
g 40 g 20
25] £ o
0 2 4 6 8 10 0 2 4 6 8 10
Ma.u.) Afa.u)

Figure 6 Dependence of the DPE angular distributions on screening: (a) angular dis-
tributions at two values of A, circles show the maxima; (b) sketch of the experimental
geometry: @1 = 3 =0, §; = 02 = 0 from 0° to 90°;(c) position of the maximum as
a function of A; (d) DPE intensity in the maximum as a function of .
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follow the same direction with the same energies. At 8; = 90 emission is
impossible because of the DPE selection rules. The maximum is some-
where in between and finally seems to saturate with A\. Noteworthy,
that the shift of the maximum with changing X is purely due to the
dynamics (changes in the matrix element) of DPE. So, within the static
screening concept the material-dependent parameter A can be related to
the maxima in angular distributions, and hence the most efficient ex-
perimental conditions can be estimated. For example, for the values of
inverse screening length between 1 and 2 a.u. (holds for quite a lot of
metals) the favorable observation condition would be to set the angle of
about 80°-90° between the detectors.

5. CONCLUSION

The focus of this work has been put on the manifestation of quantum
size and correlation effects in DPE spectra for the systems with different
degree of confinement. We discussed simple systems, a quantum dot
and a thin film, and found out three main features in the DPE angu-
lar distributions, which could be attributed to the confinement effects.
First, the size of a quantum dot can effect the appearance of the an-
gular correlation plots substantially, and this is related to the degree of
localization of quantum dot bound states. Second, the energetics of the
film band structure can impose prominent restrictions on the allowed
ejection geometry. Third, the influence of screening on the DPE angu-
lar distributions was investigated. It was found that the positions of
their maxima are sensitive to the value of the screening length, and this
is a matter of further investigation whether it is an effect due to the
first-order approximation or it is a general conclusion.
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