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ABSTRACT

This work gives a brief overview on the recent
progress in the analytical treatment of correlated few-
body Coulomb continuum systems. Special emphasis
is put on the approximate separability of the long and
short-range dynamics. This separability is exposed
by expressing the total Hamiltonian of the system in
appropriate curvilinear coordinates in which case the
total Hamiltonian breaks down into two commuting
operators: An operator whose eigenstates decay for
large inter-particle distances. The states associated
with the second operator possess an oscillatory
behaviour in the asymptotic region and can thus be
assigned to the long-range behaviour of the few-body
system.

At finite distances the total Hamiltonian
contains in addition to these two operators a term
which mixes the long and the short range dynamics.

The many-body wave function in the asymptotic
region is derived and discussed. Methods that couple
the asymptotic region to finite distances are also
presented. The strength and weaknesses of the
derived  approximate  wave  functions  are
demonstrated by evaluating scattering transition
matrix elements and comparing to available
experimental data. We also discuss a recent Green
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function methodology that is capable of dealing
with large finite and extended systems of
charged particles. In addition, we give a brief
account of the Green function approach as
applied for the determination of the
thermodynamics  properties and  critical
phenomena of finite interacting systems.

2. INTRODUCTION

There are basically two fundamental
difficulties in the theoretical treatment of
systems consisting of few charged particles.
The first one stems from the inherent non-
separability of many-body interacting systems.
This problem appears basically for all forms of
the inter-particle interactions (apart from
special cases, such as contact two-body
potentials). In addition, theories for charged
particle systems have to deal with the infinite
range of the Coulomb interaction that precludes
free asymptotic states and hence limits
seriously the applicability of standard many-
body methods.

A prototypical example of many-particle
correlated systems is the interacting electron
gas (interacting jellium model). In their
seminal treatment of this system Pines and co-
workers [1] have pointed out that a dense,
interacting electron gas can be described
quantum mechanically by expressing the long -
range part of the inter-electronic Coulomb
interactions in terms of collective fields.

These fields represent organized plasma
oscillations of the electron gas as a whole. The
total Hamiltonian can then be written in a form
that describes these collective modes and a set
of individual electrons which interact with one
another via short-range screened Coulomb
potentials. The short-range part of the electron-
electron interaction can be parameterized
remarkably well by a Yukawa-type potential
(exponentially screened Coulomb potential)
with a screening length depending on the
density of the electrons. There is, in addition, a
mixing term that couples the individual
particles to the collective modes. This mixing

term can be eliminated under certain conditions
{17

This insightful knowledge that the long-
range dynamics can be decoupled from the short-
range one may seem somewhat restricted to the
high density limit where the mean kinetic energy
dominates over the mean potential energy. In fact
in the dilute gas case where the eclectronic
correlation is the dominating factor new physical
phenomena set in such as the particle localization
known as the Wigner crystallization. Therefore it
is not clear whether the concepts developed in the
realm of condensed matter theory will hold true
for few-particle systems.

In this work it will be shown that in a finite
electronic system and under certain conditions
specified below, it is indeed possible to decouple
the long-range part of the Hamiltonian from the
short range part. This is achieved by an analytical
consideration of the eigenstates of the many-
body, non-relativistic Schrodinger equation
without going through the procedures and
difficulties of the scattering theory for charged
particles.

In recent years, much efforts have been
focused towards the asymptotic separability of
the Schrédinger equation in the fragmentation
channel [2-13], ie. the solution of the
Schrédinger equation is sought for a large
hyperradius (size) of the system. Occasionally
the wave functions derived in this way are
called asymptotic wave functions. It should be
remarked however that while these wave
functions are asymptotically correct, they are
defined in the entire Hilbert space and
therefore they can be employed for the
evaluation of transition amplitudes. It is only
that in the asymptotic region the coupling to
the short range dynamics vanishes and
therefore the asymptotic treatment becomes
justified. In this context it is important to note
that the asymptotic region is reached for large
interparticle separations or at high particles’
energies. This means, for sufficiently high
energies, the asymptotic regime extends to
small inter-particle distances to cover a
considerable range of the Hilbert space.
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At short distances and low energies, the
short-range part of the Hamiltonian and it’s
coupling to the asymptotic region might play
a dominant role and a treatment, whose
justification is based only on asymptotic
arguments is not appropriate.

In this article we analyze the scattering
states of a finite electronic systems starting
from the two-body collision and closing the
discussion by a brief review of the few-body
Green function method and its application to
thermodynamic  properties  and  critical
phenomena in finite systems.

Unless otherwise stated we employ atomic
units throughout and neglect relativistic
corrections.

3. TWO-BODY COULOMB SCATTERING

For a transparent treatment it is important
to express the Schrodinger equation in an
appropriate coordinate system. To sense the
“natural”  coordinates for  fragmentation
processes involving Coulomb potentials it is
instructive  to consider the non-relativistic
scattering of two charge particles with charges
z and z,. The Schrodinger equation describing
the motion in the two-particle relative
coordinater r is

1 2129 .

Here k is the momentum conjugate to r and
E = K/2u is the energy whereas p is the
reduced mass of the two particles. To decouple
kinematics from dynamics we make the anastz:

Ui (r) = e (). (2)

The effect of the potential is totally described
by theterm ¥ in Eq.2). To inspect the
asymptotic properties of (1) we substitute (2) in
(1) and disregard terms that fall off faster than
the Coulomb potential which vyields the
equation

[--Ek V+ @} Y(r) = 0. ®)

P

This equation can be solved by the ansatz
U = exp (i) which, upon insertion in Eq.(3),
leads to the Coulomb-phases

¢ (r) = izlzw Ina(r Fk-r). 4)

The factor zyz,u/k is called the Sommer-feld
parameter and is an indicator for the strength of
the interaction. The integration constant ¢ has a
dimension of a reciprocal length and is usually
set to be a = k. The key point for the present
work is that the coordinate inherent to
Coulomb scattering is the so-called parabolic

coordinate & :=r ¥ k. r where the + or — sign
should be chosen if one is dealing with
incoming or outgoing-wave boundary condi-
tions.

4. THREE-BODY COULOMB SCA-
TTERING

For three-body continuum systems the
situation 1s much more complex since the
Schrodinger equation is not separable.
Nonetheless, as a first step, one might think of
a three-body system as the subsume of three
non-interacting  two-body  subsystems [9].
Since we know the appropriate coordinates for
ecach of these two-body subsystems, as
illustrated above, the obvious choice of
coordinates would be

{&F =ry + kij -1y},
ik 7 0; § > 4,k €[1,3], (5)

where r;; is the position of the particle i relative
to the particle j and 12,-1- denote the directions of
the momenta k;; that are conjugate to Fip .
Since we are dealing with a six-dimensional
problem three other independent coordinates
arc needed in addition to (5). To make a
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reasonable  choice for these remaining
coordinates we remark that, usually, the mo-
menta k; are determined experimentally, i. e.

they can be considered as the laboratory fixed
coordinates. In fact it can be shown that the
coordinates (5) are related to the Euler angles.
Thus, it is advantageous to choose body-fixed
coordinates. Those are conveniently chosen as
{&e=ryt,  ap#0; j>1,ke[4,6] (6)
Upon a mathematical analysis it can be shown
that the coordinates (5,6) are linearly
independent [9] except for some singular points
where the Jacobi determinant vanishes. The
main task is now to rewrite the three-body
Hamiltonian in the coordinates (5,6). After
factoring out the trivial plane-wave part [as
done in Eq.(2)] it turns out that the three body
wave function is determined as an eigen-
solution of an operator H with zero eigen
value- [9]. The differential operator H, ex-
pressed in the curvilinear coordinates (5,6), has
the structure

H= Hpur + Hinl + Hmix~ (7)

The operator H,, is differential in the
parabolic coordinates & ,; only whereas Hy,
acts on the internal degrees of freedom &
The mixing term H,, arises from the off-
diagonal clements of the metric tensor and
plays the role of a rotational coupling in a
hyperspherical treatment.

The essential point is that the differential
operators H,,, and H,, are exactly separable in
the coordinates &, 5 and &, g, respectively, for
they can be written as [9]

3
pur = ZH(Z, 3 flfj) Hf,‘} = 0;

Vi,5€{1,2,3}, (&)

and

[
Hipe =y He; [He, He] =
j=4

v i,7 € {4,5,6}, &)
where
H—-2 [6£~8+’k - 6,
6 = 19 & O +ikim €5 O,
—Him Zlm};
€jlm f,ﬁ O, ] & {1,2,3}, (10)
and
1 - &4
Hy = 52554 & 3&“2’%3 3 =0, |;(11)

1
Hy = Lﬁafs 65 O, + i2ky3 a- & 65655} i (12)

1 -
5 I:£2afa 56 656 +i2k12 5 EG 66856:| . (13)

=
|

In the equations above the reduced mass of the
pair ij is denoted by y; and its product charge
by z; . The operator Hyyx = H — Hyur Hiy
derives from the expression

Hmiz = Zg¢v=1 {(vr;jsu) : (vr;jfv)
+(Vr&u) - (VR &)} 0c, 0%,
(14)

where Ry indicates the position of the center of
mass of the pair i with respect to the particle k.
Noting that fe, ,j=1,2, 3 is simply the

Schrédinger operator for two-body scattering
rewritten in parabolic coordinates (after
factoring out the plane-wave part), one arrives
immediately, as a consequence of Eq.(8), at an
expression for the three-body wave function as
a product of three two-body continuum waves,
provided that f,, and H,; are negligible.
Fortunately, it turns out that the matrix
elements of H,, and H,. are in fact small
compared to those of /1, in case of large
interparticle separations [9] or at high particles’
energies. It should be emphasized, however,
that this ,,asymptotic separability” is not the
result of using the coordinate system (5). It is
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only that the operator H,, attains in the
coordinates (5) a very simple and transparent
form for an arbitrary three-body system. In
fact, this same operator f,,, has a much more
complex representation in the usual Jacobi
coordinates (cf. Ref. [9]).

With decomposing the total Hamiltonian
in Hy, , Hy and H,, we achieved a result
similar to that obtained by Pines and co-worker
for the electron gas: The system is decomposed
into a long-range and a short range components
described respectively by H,, and H,, . As
shown below, the eigen-function of H,,, has an
oscillatory asymptotic behaviour whereas the
eigenstates of H,, decay for large interparticle
distances [14]. The mixing term H,; couples
the short range to the long-range modes of the
system.

A popular method to obtain three-body
continuum wave functions has been to
diagonalize H,, and neglect all other terms in
the Hamiltonian H,,, and H,,;, . It is clear from
the above discussion however, that when
physical situations are considered in which the
short-range dynamics is important it will be
insufficient to treat only the long-range part of
the three-body wave function, ie. to
approximate this wave function by the eigen-
functions of H,,, . For example, In the extreme
case where all particles are close to each other
the terms H,, and H,, are the important
ingredient of // whereas H,,, is then irrelevant.
Hence, it i1s comprehensible that the behaviour
of the eigenfunctions of H,,, is at variance (cf.
[9, 16]) with the Fock expansion [15] that has
to be satisfied at the three-body collision point.

4.1. REMARKS ON THE APPROXIMATE
SEPARABILITY

The analytical structure of the Egs.(8-14)
warrants several remarks:

The total potential is contained in the
operator H,,, , as can be seen from Eqgs.(10).

Thus, the eigenstates of H,,. treats the
total potential in an exact manner. This means
on the other hand that the operators H,, and
H,; arc parts of the kinetic energy operator.

This situation is to be contrasted with other
treatments [17-25] of the three-body problem
in regions of the space space where the
potential is smooth, e.g. near a saddle point.
In this case one usually expands the potential
around the f point and accounts for the kinetic
energy in an exact manner.

In Eq.(10) the total potential appears as a
sum of three two-body potentials. It should be
stressed, that this splitting is arbitrary, since
the dynamics is controlled by the total
potential. Le., any other splitting that leaves
the total potential invariant is equally
justified. This fact we will use below for the
construction of three-body states. For large
inter-particle separation the operators H,,, and
Hyix are negligible as compared to H,,, and the
splitting of the total potential as done in
Eqgs.(10) becomes unique. This means, for
large particles' separation the three-body
dynamics is controlled by sequential two-
body scattering events.

The momentum vectors k; enter the
Schrédinger equation via the asymptotic
boundary conditions. Thus, their physical
meaning, as two-body relative momenta, is
restricted to the asymptotic region of large
inter-particle distances. The consequence of
this conclusion is that, in general, any
combination or functional form of the
momenta k; is legitimate as long as the total
energy is conserved and the boundary
conditions are fulfilled (the energies and the
wave vectors are liked via a parabolic
dispersion relation). This fact has been
employed in Ref. [6] to constructed three-
body wave functions with position-dependent
momenta kij and in Ref. [26] to account for
off-shell transitions.

The separability of the operators (11-13)
may be used to deduce representations of
three-body states [14] that diagonalize simul-
tancously H,,. and H,;, . It should be noted
however, that generally the operator H,;,
which has to be neglected in this case, falls
off with distance as fast as H,, .

As well-known, each separability of a
system implies a related conserved quantity. In
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the present case we can only speak of an
approximate scparability and hence of
approximate conserved quantum numbers.

If we discard H;,, and H,;, in favor of
Hyara » which is justified for k; &, € # 0, &
e [1, 3] (i.e. for a large &; or for a high two
particle momentum kj; ), the three-body good
quantum numbers are related to those in a
two-body system in parabolic coordinates.
The latter are the two-body energy, the
eigenvalue of the component of the Lenz-
Runge operator along a quantization axis z
and the eigenvalue of the component of the
angular momentum operator along z. In our
case the quantization axis z 1s given by the

linear momentum direction IA<,:,- .

In Ref. [9] the three-body problem has
been formulated in hyperspherical-parabolic
coordinates. In this case the operator H,
takes on the form of the grand angular
momentum operator. This observation is
useful to expose the relevant angular
momentum quantum numbers in case Hy;y
can be neglected.

In Ref. [5, 27] the three-body system
has been expressed in the coordinates 1), =
€7.j=123 and T;=&;,j=123.This is the
direct extension of the parabolic coordinates
for the body problem (cf. Section 3) to the
three-body problem. From a physical point
of view this choice is not quite suited, for
scattering states are sufficiently quantified
by outgoing or incoming wave boundary
conditions (in contrast to standing waves,
such as bound states whose representation
requires a combination of incoming and
outgoing waves). Therefore, to account for
the boundary conditions in scattering
problems, either the coordinates 7; or i; are

needed. The appropriate choice of the
remaining three coordinates should be made
on the basis of the form of the forces
governing the three-body system. In the
present case where external fields are absent
we have chosen &, = ry; , k=4, 5, 6 as the
natural coordinates adopted to the potential
energy operator.

4.2. COUPLING THE SHORT AND THE
LONG-RANGE DYNAMICS

In the preceding sections we pointed out
that the eigenstates of H,, can be deduced
analytically. These eigenfunctions, even though
are well defined in the entire Hilbert space,
constitute a justifiable approximation to the
exact three-body state in the asymptotic region
only (e.g. in the region of larger inter-particle
separation or for higher energies). This fact is
important when it comes to evaluating reaction
amplitudes, for such amplitudes involve the
many-body scattering state in the entire Hilbert
space. Therefore, an adequate description of
the short-range dynamics may be necessary, in
particular in cases where the contributions to
the matrix elements of the transition amplitudes
originates from the internal region, i.e. when
the reaction takes place at small interparticle
distances. Nevertheless the eigenstates of Hy,,
can, and have been used for the calculations of
transition matrix elements, as for example done
below. In this case the justification of this
doing must go beyond the asymptotic
correctness argument.

In this section we secek three-body wave
functions that diagonalize, in addition to H,,,,
parts of H,,; and H ..

One method that turned out to be
particularly effective for this purpose relies on
the observations: a) In a three-body system the
form of the two-body potentials z/r; are
generally irrelevant, as long as the total
potential is conserved. ¢) To keep the
mathematical structure of the operators (8,10)
unchanged and to introduce a splitting of the
total potential while maintaining the total
potential's rotational invariance one can assume
the strength of the individual two body
interactions, characterized by z; to be
dependent on &,54. This means we introduce
position dependent product charges as

Zi; = Zi;(&4, &5, €6)s (15)

with
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To  obtain  the potentials

Vij =7z, /r; we express them as a linear mixing

of the isolated two-body interactions Vy; =z;/ry,
1.e

Zzs Vas
Y_l3 = A V‘/'13 s (] 7)
Vi Via

where A(E4, &s, &) is a 3x3 matrix. The matrix
clements are then determined according to 1)
the properties of the total potential surface, 2)
to reproduce the correct asymptotics of the
three-body states and 3) in a way that
minimizes H,, and H,,, . It should be stressed
that the procedure until this stage is exact. It is
merely a splitting of the total potential that
leaves this potential and hence the three-body
Schrodinger equation unchanged.

many-body

4.3. AN ELECTRON PAIR IN THE FELD
OF A POSITIVE ION

To be specific let us demonstrate the method
for the case of two electrons moving in the
Coulomb field of a residual ions. This brings
about some simplifications since the ion can be
considered infinitely heavy as compared to the
electron mass. Traditionally, the electrons are
labeled a and b and their positions and
momenta with respect to the residual ion are
respectively called r,, r, and k,, k,. Adopting
this notation, the eigenstate of the operator H,,,
reads:

U jo(€io6) = 1F1 (88,1, ik, &)
(B, 1, —iky &)
11 (1B, 1, =ikap €3 ). (18)

Here we denoted the relative electron-electron

1

momentum by k., = 7(1(u - k;, ) whereas

Fi]a,b.x] stands for  the  confluent

hypergeometric function and 3, j € {a, b, ab}
are the sommerfeld parameters

Bi =22, j € {a,b,ab}, (19)
J

with v, being the velocities corresponding to
the momenta k; and z;, je {a, b, ab} are the
electrons-ion and electron-clectron effective
product charges, respectively. The form of z;,

J 1s still to be determined.
Below the functions z; (&4, ¢) are given

that preserve the total potential, possess the
correct three-body asymptotics and incorporate
features of the many-particle motion ‘at the
complete fragmentation threshold, namely
along the saddle point ofthe total potential, the

so-called Wannier ridge [17-25]. Since Z; are

assumed to depend on the internal co-ordinates
only (&, &s, &) the wave function (18) is still
an eigenstate of the long-range Hamiltonian
H,a (given by Eq.10). In physical terms it can
be said that the effect of the short-range part of
the Hamiltonian is to modify dynamically the
coupling strength of the isolated two particle
system (z;).

To ensure the invariance of the
Schrodinger equation under the introduction of
the product charges Z;(E4 ) the three

conditions

ij(ifms) = T2 ZEL L

b
g Ta Th Tab

7
j S3 {a, b, (lb}, (20)

have to be fulfilled (r,; is the electron-electron
relative coordinate and z is the charge of the
residual ion). The wave functions containing
Z; must be compatible with the three-body
asymptotic boundary conditions. These are
specified by the shape and size of the triangle
formed by the three particles (two electrons
and the ion): le., the derived wave function
must be, to a leading order, an asymptotic
solution of the three-body Schrédinger
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equation when the afrorementioned triangle
tends to a line (two particles are close to each
other and far away from the third particle) or in
the case where, for an arbitrary shape, the size
of this triangle becomes infinite. The latter
limit implies that all interparticle co-ordinates
Fasboas  USt  grow with the same order,
otherwise we eventually fall back to the limit
of the three-particle triangle being reduced to a
line [9], as described above. In addition we
require the Wannier threshold law for double
electron escape to be reproduced when the
derived wave functions are used for the
evaluation of the matrix elements.

All of the above conditions are sufficient

to determine z; and thus the wave function

(18). This wave function is called "dynamically
screened three-body Coulomb wave function”
Wpgie. This is because this wave function
consists formally of three Coulomb waves
where the short-range dynamics enters as a
dynamical screening of the strength of the
two-body interaction.

The applicability of the wave function
Wyssce to scattering reactions is hampered by
the involved functional dependence leading
to  complications in the numerical
determination of the normalization and of the
scattering matrix elements. Furthermore, the
incorporation of the three-body scattering
dynamics at shorter distances brings about
intrinsic practical disadvantages as compared
to an approach "vhere Z; are constant (this
approach is wusually called three-body
Coulomb wave method , 3C). Namely, the
construction of Wpsic has to be individually
undertaken for given charge and mass states
of the specific three particle system at hand.
This is comprihensible since properties of
the total potential are inherent to the
particular threebody system under
investigation .

As shown in Ref. [28] the normalization
of the 3C wave function is readily
determined from the asymptotic flux. This
procedure has not been accessible in the case

of  Wpsse due to the position dependence of
Zj .

To overcome this difficulty (and that
associated with the six-dimensional numerical
integration when evaluating transition matrix
elements) we note that the position dependence

of z; (ra, Fp, rap) oCcurs (due to dimensionality

considerations)  through  ratios of  the
interparticle distances. Thus, this dependence
can be converted into velocity dependence by
assuming that

T3 U4
—_— X .
i U @n

The proportionality constant in Eq. (21) could
be of an arbitrary functional dependence. It
should be emphasized that the approximation
(21) is not a classical one, 1. e. it 1s not assumed
that the particles’ motions proceed along
classical trajectories [conversely, if the motion
were classically free, Eq. (21) holds]. It merely
means that the total potential is exactly
diagonalized in the phase space where Eq. (21)
is satisfied, as readily deduced from Eq. (20).
Eq. (21) renders  possible  the
normalization of Wpgsc since in this case we

obtain Z; =12 (ky, kp, kp) and the arguments

used in Ref. [28] can be repeated to deduce for
the nor-malization N the expression

N = [] ¥ i€ {a,b,ba}
i

N; = exp|—Pj(ks, ks, ka)7/2]
FII - iﬁj(km kba kba)] (22)
Here T" (x) is the Gamma functions. The

velocity dependent product charges [29] have
the form

Za(Vavs) = [1-(f9)" "] d” @3
Za(Vayvs) = —1+ (1 — Z) %"

(o + ofvas 2
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1+4a
Uy

77 = =14 (1 = Zy) .
%(Va, Vi) + (1 = %) (i + wjom ()
The functions ocurring in Eqgs. (23,24) are
defined as (v,v, are the electron’s velocities
and Vap = Va'vb)

3 + cos? 4 v,
f o= — tan o = o (26)
e Yab
g = Vo + Up @27
_ 2v,upco8(0ap/2)
by = 'Ug n vf (28)
by = g*(—05+ 0
= Exos (30)

where F is being measured in atomic units and
I is the Wannier index (the value of [
depends on the residual ion charge value, the
numerical value of I for a unity charge of the
residual ion is g = 1-127). The interelectronic
relative angle 6, is given by 6,, =cos™ ¥,

v 5. In case of higher excess energies (E > 1)
it is readily verified that a —1 [Eq. (30)] and all
modifications of the charges (23-25) which are
due to incorporating the warnier treshold law
become irrelevant. The charges (23-25) reduce
then to those given in Ref. [9] with Eq. (21)
being applied. From the functional forms of the
charges (23-25) it is clear that when two
particles approach each other (in velocity
space) they experience their full two-body
Coulomb interactions, whereas the third one
‘sees’ a net charge equal to the sum of the
charges of the two close particles.
5. APPLICATIONS TO  ATOMIC
SCATTERING PROBLEMS

In this section we assess the analytical
methods developed above by performing a

numerical evaluation of many-body scattering
amplitudes. The reaction we are considering
here is the electron-impact ionization of atomic
hydrogen. In thenal channel of this collision
process two interacting electrons move in the
double continuum of a residual ion. Hence a
correlated three-body wave function is needed
to represent this state. For this wave function
we employ the approximate expressions given
in the preceding sections. The initial state
consists of an incoming single-particle wave
that represents the projectile electron and a
bound state of atomic hydrogen.

The complete information on this reaction
is obtained by measuring the coincidence rate
for the emission of two continuum electrons
with specified wave vectors, i.e. the energies
E,, E, and the emission solid angles Q,, O, of
the two electrons are determined for a given
incident energy of the projectile electron. Due
to energy conservation it suffices to determine
the energy of one of the electrons. Therefore,
one measures in this way a triply differential
cross section (TDCS), ie. a cross section
differential
Q,, Qp and E,.

If the spin of the electrons is not resolved,
the TDCS is a statistically weighted average of
singlet and triplet scattering cross sections

TDCS(ky, ky) = ¢ G]TS(Z + -Z[T‘;Z) 3

where k; is the momentum of the incident
projectile and ¢ = (2,)* (k, ky)/k;. The singlet T*
and triplet transition matrix elements 7' derive
from the corresponding transition operators 7
and T°, where

T° = (I+’Pab)7“ﬁ(ka,kb)
T = (I—Puw)Tri(ka, ks). (32)

The action of the exchange operator Pab on the
operator T5i is given by PaTri(k, k,) = Tn
{(kp,k,). The prior representation of 7r: (ka, kb)
is given by



10

J. Berakdar

Til(kas bep) = (W]Vi[ @) - (33)

The wave function ¥ is obtained from Eq. (18)
as

Uy, k. = Nexpi(ky - o+ ky - 1) T, i, -

The three-body system in the initial channel is
described by |®y). Assuming |Py;) to be the
asymptotic initial-state, i. e. (r,r|®Py) is a
product of an incoming plane wave
representing the incident projectile electron and
an undistorted ls-state of atomic hydrogen, the
perturbation operator V; occurring in Eq. (33) is
given by 1/jr,—x}—1/r, (which is the part of the
total Hamiltonian not diagonalized by |®k; }).
In what follows we choose the x axis as the

incident direction k,. The final state electrons
are detected in a coplanar geometry, 1. €. k; .
(k Xk ) = 0. The z axis lies along the direction
perpendicular to the scattering plane, i. e.

parallel to ﬂa X k ». The polar and azimuthal
angles of the vector k, (k) are denoted by ka
(kb) are denoted by 6,, ¢, (6, @), respectively.
In the coplanar geometry considered here the
polar angles are fixed to 6, = w/2 =6,. In the
calculation of the DS3C model we employ the
approximation (21) and use the product charges
(23-25). If we use the unit matrix for the
transformation (17), i.e. if we assume 4 = I, the
three-body  wave  function reduces the
eigenfunction of the asymptotic part H,,, of the
Hamiltonian without any coupling to the internal
region. This wave function is commonly known
as the 3C wave function [3, 28]. In addition we
compare the results of the analytical methods
presented here with those of the convergent
close coupling method (CCC). This is a purely
numerical method that attempts at evaluating
exactly the ftransition matrix elements fully
numerically. In Fig.1 the angular distribution of
one of the electrons is shown for two fixed
angular positions of the other electron. The two
electrons are ¢jected with equal energies £, = £,
= 6:8 eV . As clear from Fig. 1 the etfect of the
coupling to the internal region 1s very important,
since the results of the 3C model that neglects

the short-range dynamics are at clear variance
with the experiment. The differences between
the CCC method and the experiments are still
the subject of current research. The main
advantage of analytical methods is that they
allow an insight into the origin of the structures
observed in the cross sections. An extensive
analysis underlying this statement has been
carried out in Ref.{ [31]) where the main peaks
in Fig. 1 have been assigned to certain sequence
of collisions between the participating particles.

011 |

o

Cross Section [atomic units]

=45

0.00 T & —
0 90 180 270 360

0, [deg.]

Figure 1: The fully differential cross section
for the electron-impact ionization of atomic
hydrogen in the co-planar, symmetric energy-
sharing geometry. The incident energy is £; =
27.2 eV. One ejected electron is detected at
fixed angle ®, withe respect to the incident
direction [®, = 30° ( upper panel ) and @, =
45° (lower pannel)]. The angular distribution
of the other emitted electron is measured . The
emission angle of this electron with respect to
the incident direction is denoted by @,. Both
electrons have the same energyn, namely F, =
Ep= 6.8 eV. Full squares are experimental data
Ref. [30,31]. The solid thick lines show the
predictions of the DS3C theory employing the
matrix A (cf. Eq.(17)) whereas the dotted
curves indicated the results of the 3C theory,
i.c. whin using A = 1. Thin solid lines are the
full  numerical  calculations  using  the
convergent close coupling method (CCC).
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At higher incident energies the
discrepancies between the DS3C and the 3C
results disappear and both of those models (as
well as the CCC calculations) are in overall
agreement with the experiments [36]. From this
situation one can conclude that at higher
energies the short-range parts of the
Hamiltonian (H,, and H,, ) are of less
importance, for they have been neglected in the
3C model whereas the DS3C theory accounts
for them via the dynamical screening (we note
the asymptotic region is reached for large k; &,
i.e. for large momenta the distance &, does not
need to be very large).

This means in physical terms that the two
electrons attains their asymptotic momenta
swiftly without much of scattering from
intermediate  states whose behaviour s
determined mainly by H,,,and H,,, .

Integrating over all emission angles of the
two eclectrons we end up with a single
differential cross section depending on the
energy of one of the electrons. Since the energy
of the other electron is then determined via the
energy-conservation law, the single differential
cross section has to be symmetric with respect
to the point where both electrons have the same
energy. Fig. 2 shows the results for the single
differential cross sections as calculated within
the DS3C method along with the calculations
within the 3C method. The excess energy is
very low (200 meV ).

For small excess energies the Wannier
theory, which relies on phase space arguments,
predicts a flat energy distribution between the
clectrons, i.e. a flat single-differential cross
section. This prediction has been substantiated
by full numerical calculations [37]. As seen in
Fig. 2 the DS3C predicts a flat energy sharing
between the electrons close to the complete
fragmentation threshold, in contrast to the 3C
results which are strongly peaked around the
equal energy-sharing configuration. This
deviation of the 3C results from those of the
Wannier theory is not surprising since in the
Wannier approach one expands the potential
around a saddle point (accounting for terms up
to a fourth order) and neglects higher order

10 v 1 :
/’/’ ~\‘\
o . ~
16" & i . E
, N
, \
/ N
] ’ \
= - ¢ \

: L / \ N
< 10 , .
— / \

' ’ \
% ‘ N

Y s v
= - v
s} 10 ’ [y
o : [
] \
' v
P I 1
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E
L 2 L :

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 2: The single differential cross section
for the electron-impact ionization of atomic
hydrogen as function of the ratio E,/E where E,
is the energy of one of the final-state electrons
and £ = E,+ E, is the total excess energy which
is chosen as £ = 200 meV. The use of the Wpgsc
approximation yields the solid curve whereas
the dashed curve represents the results when
employing the 3C model (4 = I). The 3C
results have been multiplied by a factor of 10"
for a better shape comparison.

terms while the kinetic energy is treated fully.
In contrast the 3C model neglects the short-
range part of the kinetic energy. Obviously it is
this part which is most important for the Wan-
nier mode and the resulting predictions.
Sampling over the energy sharing between
the two electrons, i.e. integrating the single
differential cross section shown in Fig. 2, one
obtains the total cross section as function of the
excess energy £ = E, + E, (or equivalently as
function of the incident energy E)). Close to the
three-body break-up threshold the total cross
section o(F) for two continuum electrons
receding from a charged ion has been
investigated by Wannier [17] using a classical
analysis. Wannier [17] pointed out that the
excess-energy functional dependence of the
total ionization cross section at the three-
particle fragmentation threshold can be
deduced from the volume of the phase space
available for double escape of the two
electrons. For the present case of atomic
hydrogen Wannier deduced the threshold law
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O(E) o< E"'*7 . Since then an immense amount
of theoretical and experimental studies ( e.g.
[18-25,38-41]) using quite different
approaches have been carried out which
basically confirm the Wannier-threshold law.
The Wannier treatment predicts the
scaling behaviour of the cross section o(£), but
it does not provide any information about the
magnitude of o(£). That the magnitude is a
very sensitive quantity is illustrated by the
behaviour of the cross section in the indepen-
dent Coulomb particle model which is obtained
n our case by switching off
the interaction between the two electrons in the
final channel. In this case the cross section
reveals a lincar dependence on the excess
energy, O(E) o E [42]. Although the latter
dependence of o(£) does not deviate much from
the Wannier threshold faw (o(E) = £ ''¥7 ) the
absolute value of o(E) within the inde-pendent
Coulomb particle model is largely overestimated
[compare Fig.3]. If we employ the wave
function Wpgie, with the dynamical product
charges described in the preceding sections we
end up with results in good accord with the
experimental measurements (cf. Fig.3). The
absolute magnitude of the total cross section is
satisfactorily reproduced when the DS3C model
is employed. To examine the analytical
behaviour of o(E) calculated using Wpge we
plot in Fig. 3(b) the quantity o(EYE"') .
According to the Wannier-threshold law the
latter quantity should be a constant function of £
and gives the absolute value of the cross section.
As seen in Fig. 3(b) the Wannier threshold law
is in fact reproduced by the cross section results
of the Wpgsc within a range of £ [0, 0.5¢V ]. For
E > 0:5 eV the analytical dependence of o(£)
evaluated with Wpgse slowly deviates from the
Wannier threshold law. When using the 3C
method for the description of the two escaping
electrons (A = I in Eq.(17)) we obtain an
analytical behaviour for o(F) which is not
compatible with the Wamnier theory. The
absolute value for the total cross section is as
well not reproduced by the 3C model, for the
reasons discussed above. Also included in Fig.3

10
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Figure 3: The total cross section o(£) for the
electron-impact ionization of atomic hydrogen
as a function of the excess energy £. The solid
(long dashed) curve shows the results for o(E)
when treating the DS3C theory (3C model)
whereas the dashed dotted curve denotes the
results of the independent Coulomb particles
model (see text). Results of the CCC method
are also included (short dashed curve).
Experimental data are due to Shah ef af. [32].
Te inset in the panel (a) shows the results of the
3C theory on a logarithmic scale. In the upper
panel (b) the quantity o(E) /E"'?" is depicted as
a function of E as evaluated using Wpgsc.

are the results of the convergent-close coupling
method, CCC, [33]. The results of the CCC are
in good agreement with the experimental o(£)
for higher energies [33], however, close to
threshold the evaluation of o(E) is limited by
the computational resources as an ever increa-
sing number of pseudo states is needed to
achieve convergence.

In addition to the magnitude of the cross
sec-tion, the spin asymmetry, 4, offers a further
way of probing the dynamical properties of the
electron-impact ionization of atomic systems.
The spin asymmetry A is defined as
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_ o°(B) - d'(B)
)= o)+ 30 (my oy

where ¢® and o ' are the total ionization cross
sections for singlet and triplet scattering, re-
spectively. The Wannier theory for threshold
ionization predicts a constant value of 4 with
Increasing excess energy but provides no
information on the numerical value of 4 [43].
Measurements of A4 at threshold reveals a
shightly positive slope of the spin asymmetry
with increasing excess energies [44]. In Fig4
the results for 4 are shown in the case where
the two-clectron continuum final state is
described by the 3C theory and by ¥pgic. Also
depicted in Fig.4 are the results of the CCC
approach [33] and the method using hidden-
crossing theory [25]. Although all theories,
except for the 3C model, are in reasonable
agreement with experimental finding the
positive slope of 4 at threshold is not
reproduced.

0.0

0.6
B
E
E 03
S
(2]
<
=
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13.0 180 23.0 280 330
Incident Energy [eV]

Figure 4: The spin asymmetry [Eq.(34)] in the
total ionization cross section o(E) for the
electron-impact ionization of atomic hydrogen.
Results of the hidden crossing theory [25]
(long dashed curve) and those of the CCC
method [33] (solid curve ) are depicted.
Treating the final stated according to the DS3C
theory (3C theory) yields for the spin
asymmetry the results shown by the short-
dashed (dot-dashed) curve. The experimental
data are due to Fletcher ef al. [34] (full squares)
and Crowe et al. [35] (open circles).

Neglect of the short-ranged part of the
Hamiltonian H,;, and H,; , i.e. using the 3C
model, results in a completely wrong behaviour
of the calculated spin asymmetry. With increa-
sing excess energy the inner region of the
Hilbert space becomes of less importance for
the present reaction and the results of the 3C
method become more and more in better
agreement with the experimental data.

We note here that since the spin asymme-
try is a ratio of cross sections it is expected that
the spin asymmetry is rather sensitive to the
detailed of the radial part of the wave
functions. From the agreement between the
experiment and the DS3C theory observed in
Fig. 4 we conclude that the radial part of
Wpgsc is well behaved at lower excess ener-
gies and that the short-range parts of the total
Hamiltonian H,,, and H,,, plays a dominate role
at lower energies, as far as the value and the
behaviour of the spin  asymmetry are
concerned.

6. GREEN FUNCTION THEORY OF
FINITE SYSTEMS

In the preceding sections we investigated the
two and three-body problem. With increasing
number of particles the treatment becomes
more complex and a methodology different
from the wave function technique is more
appropriate. A method which is widely used in
theoretical physics is the Green function
approach which we will followup in this
section.

For a canonical ensemble, we seek a non-
perturbative method which allows to distribute
systematically the total energy between the
potential and the kinetic energy parts. This is
achieved by the development of an incremental
method in which the N correlated particle
system is mapped exactly onto a set of systems
in which only N — M particles are interacting
(M e [1, N — 2]}, i.e. in which the potential
energy part is damped. (In contrast to re-
normalization group theory we do not reduce
the strength of interactions, but the number of
them). This 15 particularly interesting from a
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thermodynamic point of view since for a
number of thermodynamic properties the
kinetic energy contributions can be separated
out from the potential energy parts, as shown in
the next section for the internal energy. By
virtue of the present method the potential
energy part is systematically reduced.

For a formal development let us consider a
nonrelativistic ~ system  consisting of N
interacting particles. We assume the total
potential to be of the class U™ = ZFL:,"!‘/’
without any further specification of the
individual potentials vy For three-body
potentials v;. For three-body potentials the
development of the theory poceeds along the
same lines.

The potential U™ satisfies the recurrence
relations

N
1 -
Ny _ (V-1)
vt = N—Q;uf ! (35)
[ ¥l -2
N-1) N-2) .
u; = mzujk » 1# Kk, (36)
k=1
where 11" is the total potential of a system of

N — 1 interacting particles in which the j
particle is missing , i.e in terms of the physical

pair potentials V,,, one can write u(l-N -
= .
- m>n:10”'"’ m=j#+n.

The fundamental quantity that describes
the microscopic properties of the N body
quantum system is the Green operator G
which is the resolvent of the total Hamiltonian.
It can be deduced from the Lippmann
Schwinger equation G" = Gyt GoUNG™
where G, is the Green operator of the non
interacting N body system. An equivalent
approach to determine the dynamical behavior
of a system is to derive the respective transition
operator T which satisfies the integral
equation 7 = UM UM Gor ™ These
integral equations for G™ and 7™ provide a
natural framework for perturbative treatments.

However, for N = 3 the application of the
above Lippmann Schwinger equations (and
those for the state vectors) is hampered by
mainly two difficulties: 1.) as shown in Refs.
[45,46] the Lippmann Schwinger equations for
the state vectors do not have a unique solution,
and 2.) as shown by Faddeev [47-49] the kernel
of these integral equations K = G,U™ is not a
square integrable operator for N > 3, i.e. the
norm |K|| = [Tr(KK' )]'"? is not square
integrable. The kernel K is also not compact.
The reason for this drawback is the occurrence
of the so-called disconnected diagrams where
one of the N particles is a spectator, i.e. not
correlated with the other N — 1 particles. For
the three-body problem Faddeev [47,48]
suggested alternative integral equations with
square integrable kernel.

Our aim here is twofold: (a) We would
like to derive non-perturbative integral equa-
tions that treat all NV particles on equal footing
and are free from disconnected diagrams. (b)
These equations should allow to obtain, in a
computationally  accessible  manner, the
solution of the correlated N body problem from
the solution when only N — M particles are
mteracting (where M € [1, N-2]).

According to the decomposition (35), the
intergral equation for the transition operator
can be written as

N
TN ZY}(N—U (37)
j=1

T]A(Nﬁl) _ ﬁ§N—l)+T(N)GOﬁ§N—1)7 je[L,N). (38)

Here we introduced the scaled potential
al =y = (u;.N-1>) /(N —2).
The transition operator of the system,

when N-1 particles are interacting via the
scaled potential a§”"), 18

t§N—1) _ {ngv-x) n ﬁgN—1)GOt§N—1)_

With this relation Eq. (38) can be

reformulated as
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T]_(N—l) S B

o N-T) L(N-T) (N-1)
=6 Uty Gy T (39)

Eq.(39) can be expressed in a matrix form as
follows

Tl(N—l) t§N~l)
TQ(N—I) th-l)
-y || v
TIEVN‘H; té’\f_lli
TN tN
T‘(N-!)
T2(N~1)
+ KO
7D (40}
N-1
TI(\,N—I)

The kernel [K®V] is a matrix operator and is
given by

[KY V)=
0 VD D V0
A S St RO V-0
e T 5 Go. (41)
ty_y e tyoy 0ty
(- A A )

From Eq. (36) it is clear that r_,,-(N‘” can also
be expressed in terms of the transition
operators of the system where only N - 2
particles are interacting:

(-1 _ N

N-1) N-2)

(V= 3,
oy

The operators T2 gre deduced from Eq.
(40) with N being replaced by N — 1.

From the relation G™ = G, + GoT™M G, we
conclude that the Green operator of the
interacting N particle system has the form

N
GM = Go+ S G (42)

j=1
The operators ¢V are related to the Green
operators gj(N'l) of the systems in which only
. . (N1
N-1 particles are correlated by virtue of U,( ).

This interrelation is given via

ngval) g§N~1) e
ngv-n géN-l) — G
Gy g - Go
GgN_l)
GgN—n
+ [KW] : ) (43)
G(N_—ll)
V-1

where [K¥-1] = Go[KW-DIG5 L. From
Egs. (40,43) we conclude that if the Green
operator of the interacting N — 1 body system is
known (from other analytical or numerical
procedures, e.g. from an effective field method,
such as density functional theory) the Green
operator of the N particles can then be deduced
by solving a set of N particles can then be
deduced by solving a set of N linear, coupled
integral cquations (namely Egs. (40,43)).
According to the above equations (namely Egs.
(40,43)). According to the above equations, if
only the solution of the N — M problem is
known where M e [1, N —~ 2] we have to
perform a hierarchy of calculations starting by
obtaining the solution for te N- M + 1 problem
and repeating the procedure to reach the
solution of the N body problem.

At first sight the kernels of Egs. (40,43)
appear to have disconnected diagrams since
they contain transition operators of systems
where only N — 1 particles are interacting and
one particle is free (disconnected). It is,
however, straightforward to show that any
iteration of these kernels is  free of



16

J. Berakdar

disconnected terms (the disconnected terms
occurs only in the off-diagonal elements of
K" 1 and [KY™). For N=3 the present
scheme reduces to the well-established
Faddeev equations. As for the functional
structure of the Eqs. (40,43) we remark that for
the solution of the N particle problem we need
the (off-shell) transition operators of the N ~1
sub-system. The interaction potentials do not
appear in this formulation ( in contrast to the
Lippmann Schwinger approach). On the other
hand the (on-shell) transition matrix elements
can be determined experimentally, This fact
becomes valuable when the potentials are not
known.

6.1. APPLICATION TO FOUR-BODY
SYSTEMS

Over the years a substantial body of
knowledge on the three-particle problem has
been accumulated. In contrast, theoretical
studies on the four-body problem are still scare
due to computational lmitations whereas an
impressive amount of experimental data is
already available [50{54]. Thus, it is desirable
to apply the above procedure to the four-body
system and to express its solution in terms of
known solutions of the three body problem. For
N = 4 the first iteration of Eq.(43) yields

4
G =3¢ - 36, (44)
j=1

Here g,-m is the Green operator of the system
where only three particles are interacting and
can be taken from other numerical or analytical
studies. This means, to a first order, methods
treating the correlated three-body problem can
be extended to deal with the four-body case
using Eq.(44). We note that for the case of non-
interacting system g,-(3 ) reduces to g,(?’) = (G and
hence Eq. (44) reduces to GY = G, as
expected.

The Green function encompasses the
complete spectrum of the many-body system,
i.e. the wave function approach can be

retrieved from the Green function. For
example, Eq. (44) leads to an expression for the
four-body state vector in the form

3 3 3
W@y = 1) + S + [ + [
— 3Pl (45)

Here [v)) is the state vector of the system in
which the three particles i, j and k are in-
teracting whereas 1602} is the state vector of the
non-interacting four-body system. The state
vectors | can be approximated by Eq. (18)
or by the other procedures discussed in the
preceding section on the three-body problem.
Since the state vector (45) is expressed as

a sum of correlated three-body states, the
evaluation of the four-body transition matrix
elements for a specific reaction simplifies
considerably. In  addition, the spectral
properties of a many-body interacting system
can be obtained in a straightforward way from
those for systems with a reduced number of
interactions, for in this case the matrix
clements of the total Green functions are
expressed as sums of matrix elements of
reduced Green functions, as evident from
Eq.(44). This spectral feature can be exploited
to study the thermodynamical properties of
finite correlated systems.

7. THERMODYNAMICS AND PHASE
TRANSITIONS OF INTERACTING
FINITE SYSTEMS

To investigate the thermodynamical
properties of N interacting particle system we
remark that at the critical point divergent
thermodynamical quantitics, such as the
specific heat Cy are obtained as a derivative
with respect to the inverse temperature 3 of the
logarithm of the canonical partition function

ZP).
Cy = B3 Z(B) = f(B, Z(8))/Z(B).

Here f1s some analytical function and for the
Boltzmann constant we assume k= 1.
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Therefore divergences in the thermo-
dynamic quantities, which signify phase
transitions are connected to the zero points of
Z(). These zero points are generally complex
valued. Therefore an analytical continuation of
Z(B) to complex temperatures is needed.

The connection between the phase
transitions and the complex zero points of the
grand canonical partition function have been
uncovered by Yang and Lee [55]. In this case
one seecks an analytical continuation of the
fugacity z = exp(fu) (here ¢ is the chemical
potential) to the complex plane z — Rz) +
i3(z). In the thermodynamic limit the zero
points condense to lines. The transition points
are the crossing points of these lines with the
real fugacity axis.

Grossman ef al. [56] generalized the con-
cept of Yang and Lee to the canonical
ensemble. In this case the inverse temperature
B = /T is continued analytically to 8 = R(f)+
iS(f). The phase ftransitions are then the
crossings of the zero points line of Z(f8) with
the real [ axis. The advantage here is that a
classification of the phase transitions can be
given in terms of how the zero-points line do
cross the real f axis [56].

The crucial point is that in the thermo-
dynamic limit N — oo, V' ~> oo and v = V=N <
oo (V' is the volume) the zero points approach,
to an in infinitesimal small distance the real
axis. For this reason, the characteristic phase-
transition  divergences appear in  the
thermodynamical quantities. For finite systems
Z(P) has only finite zero points that do not
approach infinitely close the real axis.
Therefore, the thermodynamic quantities show
smooth peaks rather then divergences. The
positions and widths of these peaks can be
obtained from the real and imaginary parts of
the zero points laying closest to the real axis
[57].

To apply this method to correlated finite
systems we need a representation of the canon-
ical partition function that can then be
continued analytically to the complex tempera-
ture plane.

7.1. REPRESENTATION OF THE
CANONICAL PARTITION FUNCTION

The canonical partition function of a
correlated system can be expressed in terms of
the many-body Green function as

Z(B) = / dE Q(E) e %, (46)

Here Q(FE) is the density of states which is
related to imaginary part of the trace of G™ via

2E) = ~-$Te GV (B) (47)

From the Green function expansion Eq.(42) we
deduce

z(B) = w%%/df}' T GM(B) e~#2

= zwnézj(m (48)
where
Zo(B) = —%s?/dE TrGo(B) e (49)
N

To a first order 7, = 29 - 2, where 2" is the
partition function of a system in which only N
— 1 particles are interacting. For the
applications of the Grossmann method let us
remark that Z (f ) is an integral function and
can be expressed in a polynomial form.
Recalling the  analytical properties of
meromorphic functions one can write Z (f3) in
terms of its complex zero points as

— 2058 [ (1- £) et
29 =20 I (1- )% o

7.1.1. APPLICATIONS: THE INTERNAL
ENERGY AND THE SPECIFIC HEAT

As an application let us consider the
internal energy and the specific heat of an
interacting system. The internal energy is
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defined as U= - dg In Z (). From Eq. (51) we
deduce

U = ~%hlz®k%%11<lwﬁ)e%}
pat Br
R
0 ;% e B +ﬁk
__Z0 L1
=70 LA A (52)
The part _ZO corresponds  to the
z(0)
internal energy of the ideal gas (~%8)): 32%/),

since for B - — 0 (T — oo ) the kinetic energy
dominates over any other interaction energy in
the system and the internal energy admits thus
the form of the ideal gas internal energy. Eq.
(52) means that in a finite (or extended system)
it is always possible to separate out the kinetic
energy part. This part is smooth and has no
zero points. The potential energy will thus be
the dominant factor as far as the zero points of
the partition function are concerned. The zero

points of Z occur as pairs of complex
conjugates.  [Br, Bl =  [R(Bx) +  iS(Br),
R(Be) — i9(B:). The internal energy can
therefore be written as

3N 1 1
U= = —
2+% +

BB AP
LI
Be B
_ 3N R(B) - B
= T L - ST
~ R(Bx)
1Be|? o

For the specific heat we arrive at

Cy = —B205U = 283 In(Z(8))

3N . 1
=L (75)

k

3N B \?

Y <ﬂ;ﬂ>
3N
2 ,

[R(Be) — A" — [S(B)
 ([R(B) — B7 + [S(80R)
Now we can employ the formulas Eqs.(46-50)
to derive the zero points which enter
Eqgs.(53,54). In this context it is important to
recall that the reduction procedure presented
here expresses the total interacting Green
function in terms of systems with the same
number of particles but with less number of
interactions. That means in each reduction
cycle of G (N) the interaction energy is reduced
while the kinetic energy is kept constant.

2

3 (54)

8. CONCLUSIONS

In this work an overview was given on the
recent development in the analytical treatment
of correlated few charged-particle systems. For
a three-body system we discussed the existence
of an approximate separability of the long and
short-range dynamics. This separability 1s
exposed by introducing curvilinear coordinates
in which case the total Hamiltonian of the
system is expressed as a sum of two
commuting operators: A short range operator
that decays for large inter-particle distances
and a long-range operator that possesses an
oscillatory behaviour in the asymptotic region.
At finite distances the total Hamiltonian
contains in addition to these two operators a
term which mixes the long and the short range
dynamics.

Approximate many-body wave functions
in the asymptotic region and at finite distances
have been derived and their range of validity
have been discussed. The strengths and
shortcomings of the derived wave functions are
exposed by evaluating scattering transition
matrix elements and comparing to available
experimental data. In a further section we
introduced a Green function methodology that
is capable of dealing with large finite
interacting systems. A numerical
implementation of this method for the
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calculations of scattering amplitudes can be
found in Ref. [58] whereas an extension to
include ordered and disordered scattering
potentials can be found in Ref. [59]. As a
further application of this method we discussed
briefly the thermodynamic properties of
interacting finite systems and derived an
expression for the canonical partition function.
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