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Quantum crystal structure in the 250-kelvin 
superconducting lanthanum hydride

Ion Errea1,2,3, Francesco Belli1,2, Lorenzo Monacelli4, Antonio Sanna5, Takashi Koretsune6, 
Terumasa Tadano7, Raffaello Bianco2, Matteo Calandra8, Ryotaro Arita9,10, Francesco Mauri4,11 
& José A. Flores-Livas4*

The discovery of superconductivity at 200 kelvin in the hydrogen sulfide system at 
high pressures1 demonstrated the potential of hydrogen-rich materials as high-
temperature superconductors. Recent theoretical predictions of rare-earth hydrides 
with hydrogen cages2,3 and the subsequent synthesis of LaH10 with a superconducting 
critical temperature (Tc) of 250 kelvin4,5 have placed these materials on the verge of 
achieving the long-standing goal of room-temperature superconductivity. Electrical 
and X-ray diffraction measurements have revealed a weakly pressure-dependent Tc for 
LaH10 between 137 and 218 gigapascals in a structure that has a face-centred cubic 
arrangement of lanthanum atoms5. Here we show that quantum atomic fluctuations 
stabilize a highly symmetrical Fm m3  crystal structure over this pressure range. The 
structure is consistent with experimental findings and has a very large electron–
phonon coupling constant of 3.5. Although ab initio classical calculations predict that 
this Fm m3  structure undergoes distortion at pressures below 230 gigapascals2,3, 
yielding a complex energy landscape, the inclusion of quantum effects suggests that it 
is the true ground-state structure. The agreement between the calculated and 
experimental Tc values further indicates that this phase is responsible for the 
superconductivity observed at 250 kelvin. The relevance of quantum fluctuations 
calls into question many of the crystal structure predictions that have been made for 
hydrides within a classical approach and that currently guide the experimental quest 
for room-temperature superconductivity6–8. Furthermore, we find that quantum 
effects are crucial for the stabilization of solids with high electron–phonon coupling 
constants that could otherwise be destabilized by the large electron–phonon 
interaction9, thus reducing the pressures required for their synthesis.

The potential of metallic hydrogen as a high-Tc superconductor10 
was identified shortly after the development of Bardeen–Cooper–
Schrieffer theory, which explains superconductivity using the elec-
tron–phonon coupling mechanism. The main argument in favour of 
metallic hydrogen was that Tc can be maximized for light compounds 
owing to their high vibrational frequencies. Because high pressures 
are required to metallize hydrogen11, chemical precompression with 
heavier atoms12,13 was suggested as a pathway by which to decrease the 
pressure needed to reach metallicity and, therefore, superconductivity. 
These ideas have been realised using modern ab initio crystal structure 
prediction methods based on density functional theory (DFT)7,14,15. 
Hundreds of hydrogen-rich compounds have been predicted to be ther-
modynamically stable at high pressures, and their Tc values have been 
estimated by calculating the electron–phonon interaction6,7. The suc-
cess of this co-operation between DFT crystal-structure predictions and 
Tc calculations was exemplified by the discovery of superconductivity 

in H3S at 200 K1,16,17. The prospects for discovering hydrogen-based 
high-Tc superconductors in the near future are therefore high, with 
rare-earth hydrides with sodalite-like clathrate structures showing 
particular promise2,3. This is in clear contrast to other high-Tc super-
conducting families such as cuprates or pnictides, in which the lack 
of a clear understanding of the superconducting mechanism hinders 
an in silico-guided approach.

DFT predictions of the La–H system proposed LaH10 to be thermo-
dynamically stable against decomposition at high pressures2. A soda-
lite-type structure with space group Fm m3   and Tc ≈ 280 K at pressures 
greater than around 220 GPa was suggested as a candidate for high-Tc 
superconductivity2,3 (Fig. 1). Distorted versions of the Fm m3  structure 
with space group C2/m and a rhombohedral lanthanum sublattice were 
also discussed18, and shortly after the first predictions2,3, a lanthanum 
superhydride was synthesized by heating a lanthanum sample with a 
laser in a hydrogen-rich atmosphere inside a diamond anvil cell (DAC)19. 
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On the basis of the unit cell volume obtained by X-ray diffraction, the 
hydrogen-to-lanthanum ratio was estimated to be between 9 and 12. 
The lanthanum atoms adopted a face-centred cubic (fcc) arrangement 
at pressures greater than about 160 GPa, whereas at lower pressures 
the lattice was rhombohedral with a lanthanum sublattice of the R m3  
space group. Owing to the small X-ray cross-section of hydrogen, it is 
not experimentally possible to resolve the hydrogen sublattice directly. 
More recently, evidence of a superconducting transition at 260 K and 
188 GPa was reported in a lanthanum superhydride4,20. These findings 
were subsequently confirmed by the measurement of a Tc of 250 K from 
137 to 218 GPa in a structure with an fcc arrangement of the lanthanum 
atoms, suggesting a LaH10 stoichiometry5.

Although it is tempting to assign the superconductivity at 250 K to 
the previously predicted Fm m3  phase2–5, there is a clear problem: the 
Fm m3  structure is predicted to be dynamically unstable over the whole 
pressure range in which a 250 K Tc has been observed. This would imply 
that the Fm m3  phase is not a minimum of the Born–Oppenheimer 
energy surface, and consequently a Tc has not been estimated for this 
phase in the experimental pressure range. The contradiction between 
the observation of superconductivity and the predicted instability of 
the Fm m3  phase may indicate a problem with the classical treatment 
of the atomic vibrations in the calculations. Considering that quantum 
proton fluctuations symmetrize hydrogen bonds in the high-pressure 
X phase of ice21 and in H3S22,23, a similar situation is expected in LaH10. 
Here we show how quantum atomic fluctuations completely reshape 
the energy landscape by removing classical local minima, rendering 
the Fm m3  phase the true ground state and the state responsible for 
the observed superconducting critical temperature.

We start by using DFT to calculate the lowest-enthalpy structures of 
LaH10 as a function of pressure, using state-of-the-art methods for the 
prediction of crystal structure24. The contribution associated with 
atomic fluctuations is not included, so that the energy corresponds 
solely to the Born–Oppenheimer energy V(R), where R represents the 
position of atoms treated classically as simple points. As shown in Fig. 1, 
different distorted phases of LaH10 are thermodynamically more stable 

than the Fm m3  phase. At pressures greater than about 250 GPa, all 
phases merge to the Fm m3   symmetric phase. These results are in agree-
ment with previous calculations2, even though we identify other pos-
sible distorted structures with lower enthalpy—such as the R m3 , C2 
and P1 (not shown) phases. These phases feature distortion not only 
in the position of the hydrogen atoms but also in the lanthanum sublat-
tice, leading to a non-fcc arrangement that should be detectable by 
X-ray analysis (see Extended Data Fig. 1). The fact that many structures 
are predicted emphasizes that the classical V(R) energy surface has a 
multifunnel structure that is tractable to many different saddle and 
local minima, as shown in Fig. 1.

This picture completely changes when we include the energy of 
quantum atomic fluctuations—the zero-point energy. We calculate the 
zero-point energy within the stochastic self-consistent harmonic 
approximation (SSCHA)25,26. The SSCHA is a variational method that 
calculates the energy of the system RE( ( )) including atomic quantum 
fluctuations as a function of the centroid positions R, which determine 
the centre of the ionic wave functions. The calculations are performed 
without approximating V(R), keeping all of its anharmonic terms. We 
perform a minimization of RE( ) and determine the centroid positions 
at its minimum. By calculating the stress tensor from RE( ) (ref. 26),  
we relax the lattice parameters in order to find structures with isotropic 
stress conditions considering quantum effects. We start the quantum 
relaxation for both R m3  and C2 phases with the lattice that yields a 
classical isotropic pressure of 150 GPa and vanishing classical forces—
that is, calculated from V(R). All quantum relaxations quickly evolve  
into the Fm m3  phase (Extended Data Fig. 4). This suggests that the quan-
tum energy RE( ( )) landscape is much simpler than the classical V(R)  
landscape, as shown in Fig. 1, and that the ground state of LaH10 over  
the pressure range of interest is the Fm m3  phase with sodalite-type  
symmetry. The quantum effects are substantial, reshaping the  
energy landscape and stabilizing structures by more than 60 meV  
per LaH10.

Our results further confirm that the Fm m3  phase of LaH10 is respon-
sible for the superconductivity at 250 K. This is consistent with the fcc 
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Fig. 1 | Quantum effects stabilize the symmetric 
Fm m3  phase of LaH10. a, Enthalpy as a function of 
pressure for different structures of LaH10, 
neglecting zero-point energy in the calculations. 
Here, pressure is calculated classically from V(R), 
neglecting quantum effects on V(R). b, Left, a Born–
Oppenheimer energy surface V(R), exemplifying 
the presence of many local minima belonging to 
distorted structures. R represents the positions of 
atoms treated classically as simple points. Right, the 
configurational energy surface RE ( ), including 
quantum effects. R represents the quantum 
centroid positions, which determine the centre of 
the ionic wave functions—that is, the average atomic 
positions. By including quantum effects, all phases 
collapse to a single phase: the highly symmetric 
Fm m3 .



68 | Nature | Vol 578 | 6 February 2020

Article

arrangement of lanthanum atoms that is found experimentally5. We 
verified that the experimental resolution reported5 is sufficient to 
discard the classically obtained distorted structures (Extended Data 
Fig. 1). However, another study19 observed a rhombohedral distortion 
at pressures lower than about 160 GPa, in which the lanthanum sublat-
tice occupied the R m3  space group and the rhombohedral angle was 
approximately 61.3° (c/a ≈ 2.38 in the hexagonal representation). Our 
calculations show that this distortion is compatible with the hypoth-
esis of slight anisotropic stress, which could be present in some exper-
iments inside the DAC. Indeed, by performing an SSCHA minimization 
for the R m3  phase but keeping the rhombohedral angle fixed at 62.3° 
(the value that yields an isotropic pressure of 150 GPa at the classical 
level), the quantum stress tensor shows a 6% anisotropy between the 
diagonal direction and the perpendicular plane. This suggests that 
anisotropic conditions inside the DAC can produce the R m3  phase, 
although we cannot rule out the possibility that other experimental 
stress conditions could favour other crystalline phases.

The phonon spectra of the Fm m3  phase, calculated in the harmonic 
approximation from the Hessian of V(R), show clear phonon insta-
bilities in a broad region of the Brillouin zone (Fig. 2). These instabilities 
appear at pressures lower than about 230 GPa, which is consistent with 
the finding that many possible atomic distortions lower the enthalpy 
of this composition at these pressures. Conversely, when the calcula-
tion is performed using the Hessian of RE( ) (ref. 25)—which effectively 

captures the full anharmonicity of V(R)—no phonon instability is 
observed (Fig. 2). This again confirms that the Fm m3  phase is a mini-
mum in the quantum-energy landscape over the whole pressure range 
in which superconductivity at 250 K was observed. Whereas the Fm m3  
phase of LaH10 remains a minimum of RE( ) at pressures as low as 129 
GPa, instabilities are seen at 126 GPa in the case of LaD10. This implies 
that—at this pressure—the Fm m3  phase of LaD10 distorts to a new  
phase, as has been suggested previously5.

The breakdown of the classical harmonic approximation for phonons 
hinders the estimation of Tc at pressures lower than around 230 GPa in 
the Fm m3  phase. It also calls into question the certainty of harmonic 
calculations at higher pressures2,27, considering that large anharmonic 
effects are persistent well above 260 GPa (Fig. 2). However, with anhar-
monic phonons derived from the Hessian of RE( ), we can readily cal-
culate the electron–phonon interaction and the superconducting Tc 
over the experimental pressure range (137–218 GPa). Tc is estimated 
fully ab initio—without any empirical parameter—by solving Migdal–
Eliashberg equations and applying superconducting DFT (SCDFT). As 
shown in Fig. 3, the numerical solutions of Migdal–Eliashberg equations 
with an anisotropic energy gap match well with the experimental values. 
The values obtained from SCDFT calculations systematically show a 
slightly lower Tc. Our reported values of Tc provide evidence for the 
phonon-driven mechanism of superconductivity, and confirm that the 
Fm m3  structure of LaH10 is responsible for what is, to our knowledge, 
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Fig. 2 | The phonon band structure of Fm m3  LaH10 at different pressures. The 
harmonic phonons show large instabilities in several regions of the Brillouin 
zone. Only at the high-pressure limit—for example, at pressures greater than 
220–250 GPa— is dynamic (harmonic) stabilization reached. The anharmonic 
phonons obtained from the Hessian of the quantum energy RE ( ) within the 
SSCHA are dynamically stable over the experimentally relevant pressure range. 

In the case of deuterium, an instability develops at low pressures (126 GPa), 
which is consistent with experimental evidence. The pressure stated 
corresponds to that calculated from RE ( ), which considers quantum effects. 
The grey shading marks the regions with imaginary phonon frequencies, which 
are depicted as negative frequencies.
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the highest Tc reported to date. Our calculations for LaD10 in the Fm m3  
phase are also in agreement with the experimental data point reported. 
Despite the presence of large anharmonic effects, the isotope coeffi-
cient α = −[lnTc(LaD10) – lnTc(LaH10)]/ln2 is close to 0.5 (0.43 at around 
160 GPa)—as expected by Bardeen–Cooper–Schrieffer theory—and is 
in agreement with the experimentally reported value of α = 0.46.

Finally, we also calculated Tc in the presence of the subtle rhombo-
hedral distortion that can be induced in experiments by anisotropic 
pressure conditions. When the rhombohedral angle is fixed at 62.3°, 
the Tc obtained for the R m3  phase at 160 GPa is 9% lower than for the 
Fm m3  phase. The observed weak pressure dependence of Tc is there-
fore consistent with the absence of a rhombohedral distortion, as 
suggested by the X-ray data5. However, as argued above, undesired 
anisotropic stress conditions in the DAC can induce phase transitions. 
For cases in which measurements of Tc have yielded lower values 
(around 200 K), it is highly probable that the corresponding structures 
are distorted as a result of anisotropic pressure conditions. We can 
also safely rule out the possibility that compositions such as LaH11—
which are proposed to have a high superconducting critical tempera-
ture5—are responsible for Tc values in the range observed here 
(Extended Data Fig. 8).

In summary, this work demonstrates the importance of quantum 
effects in determining the ground-state structures of superconduct-
ing hydrides—challenging current predictions and evidencing flaws 
in standard theoretical methods. Similar effects are expected in other 
high-Tc compounds with hydrogen clathrate structures, for which 
syntheses have recently been reported28–30. We also illustrated that 
quantum fluctuations are essential in order to sustain crystals with 
large electron–phonon coupling constants (the value of 3.6, found 
at 129 GPa for LaH10, is to our knowledge the highest reported); such 
structures would otherwise be destabilized by the substantial elec-
tron–phonon interaction, resulting in distorted (low-symmetry) 
structures in which the electronic density of states at the Fermi level 
is reduced9 (Extended Data Fig. 7). Our results may therefore help 
to increase the prospect of attaining high-Tc superconductivity in 
hydrogen-based structures at much lower pressures than would be 
expected classically.
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Methods

Calculation details
First-principles calculations were performed within DFT and the gen-
eralized gradient approximation (GGA) as parametrized by Perdew, 
Burke and Ernzerhof (PBE)31. Harmonic phonon frequencies were 
calculated within density functional perturbation theory (DFPT)32 
making use of the Quantum ESPRESSO code33,34. The SSCHA25,26,35,36 
minimization requires the calculation of energies, forces and stress 
tensors in supercells. These were also calculated within DFT at the 
PBE level with Quantum ESPRESSO. For the final SSCHA populations, 
1,000 configurations were used to reduce the stochastic noise. In all 
calculations we used ultrasoft pseudopotentials including 11 electrons 
for the La atoms, a plane-wave cut-off energy of 50 Ry for the kinetic 
energy and 500 Ry for the charge density.

In the harmonic phonon calculations for the Fm m3  and the R m3  
phases, we used the primitive and rhombohedral lattices, respectively, 
with one LaH10 formula unit in the unit cell. A 20 × 20 × 20 Monkhorst–
Pack shifted electron-momentum grid was used for these calculations 
with a Methfessel–Paxton smearing of 0.02 Ry. The DFT calculations 
performed for the SSCHA on supercells were performed on a coarser 
electron-momentum grid, which would correspond to a 12 × 12 × 12 
grid in the unit cell. We explicitly verified that this coarser mesh yields 
a fully converged SSCHA gradient with respect to the electron-momen-
tum grid, thus not affecting the SSCHA minimization. The DFT super-
cell calculations for the SSCHA minimization on the C2 phase were 
performed keeping the same k-point density.

All phonon frequencies for q-points that were not commensurate 
with the supercell used in the SSCHA minimization were obtained by 
directly Fourier-interpolating the real space force constants obtained 
in this supercell, which are calculated form the Hessian of RE( ). For 
the Fm m3  phase, the SSCHA calculation was performed both on a 
2 × 2 × 2 and on a 3 × 3 × 3 supercell containing, respectively, 88 and 297 
atoms. The phonon spectra shown in Fig. 2 for the Fm m3  phase were 
obtained by directly Fourier-interpolating the SSCHA energy Hessian 
force constants obtained in a 3 × 3 × 3 supercell. In Extended Data Fig. 2 
we show that the phonon spectrum obtained by directly interpolating 
the force constants in a 2 × 2 × 2 supercell yields similar results, indicat-
ing that the energy Hessian force constants are short-range and can 
be Fourier-interpolated. Indeed, the Tc calculated with the 2 × 2 × 2 and 
3  ×  3  ×  3 force constants for interpolating phonons differs by  
only around 3 K. Because the value of estimated Tc only negligibly 
depends on the cell size for the Fm m3  phase, the SSCHA quantum  
structural relaxations in the R m3  and C2 phases were performed in  
2 × 2 × 2 supercells with 88 atoms.

As shown in ref. 25, the Hessian of RE( ) is
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 the quantum statistical averages taken with the SSCHA 
density matrix of the nth order derivatives of V(R), and Λ a tensor that 
depends on the temperature and Φ. 1 is the identity matrix. As we show 

in Extended Data Fig. 2, setting Φ
(4)

 = 0 has a negligible effect on the pho-

nons obtained from the Hessian defined in equation (1). Therefore, Φ
(4)

 
is neglected throughout, and all superconductivity calculations in the 
Fm m3  and R m3  phases are performed making use of the phonon fre-
quencies and polarization vectors obtained from the Hessian of RE( ) 

with Φ
(4)

 = 0. We also estimated Tc with the phonon frequencies and 
polarization vectors obtained instead from Φ, resulting in a critical 
temperature 12 K lower within the Allen–Dynes-modified McMillan 

equation. This difference is small and within the uncertainty of the Tc 
calculation between SCDFT and anisotropic Migdal–Eliashberg calcu-
lations (see Fig. 3 and below).

The Eliashberg spectral function, which we used for the Tc calcula-
tions, is defined as
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where NEF
 is the electronic density of states (DOS) at the Fermi energy 

(EF), n and m are band indices, k is a crystal momentum, εnk is a band 
energy, ωqν is the phonon frequency of mode ν at wavevector q, and 

k k qg n m
ν

, +
 is the electron–phonon matrix element between a state  

nk and mk + q. We calculated α2F(ω) combining the SSCHA phonon 
frequencies and polarization vectors obtained from the Hessian of 

RE( ) with the electron–phonon matrix elements calculated with DFPT. 
For the Fm m3  and R m3  phases, the electron–phonon matrix elements 
were calculated in a 6 × 6 × 6 q-point grid and a 40 × 40 × 40 k-point 
grid. These were combined with the SSCHA phonons and polarization 
vectors obtained by Fourier interpolation to the 6 × 6 × 6 q-point grid 
from the real space force constants coming from the Hessian of RE( ) 
in a 3 × 3 × 3 supercell for the Fm m3  phase and in a 2 × 2 × 2 supercell for 
the R m3  phase. The Dirac deltas on the band energies are estimated by 
substituting them with a Gaussian of width 0.004 Ry. The calculated 
α2F(ω) functions for the Fm m3  phase are shown in Extended Data Fig. 3, 
and in Extended Data Fig. 5 we show the results for the R m3  phase.

Crystal phase diagram exploration
To sample the enthalpy landscape of LaH10 we used the minima-hopping 
method24,37, which has been successfully employed for global geom-
etry optimization in a large variety of applications—including super-
conducting materials such as H3S, PH3, and elemental solids at high 
pressure38–40. This composition was thoroughly explored with 1, 2, 3 
and 4 formula unit simulation cells. Variable composition simulations 
were also performed for other La–H compositions. Energy, atomic 
forces and stresses were evaluated at the DFT level with the GGA-PBE 
parametrization to the exchange-correlation functional. A plane wave 
basis-set with a high cut-off energy of 900 eV was used to expand the 
wave function together with the projector-augmented wave method 
as implemented in the Vienna Ab initio Simulation Package (VASP)41. 
Geometry relaxations were performed with tight convergence criteria 
such that the forces on the atoms were less than 2 meV Å−1 and the 
stresses were less than 0.1 eV Å−3. Extended Data Fig. 1 shows our calcu-
lated convex hull of enthalpy formation without considering the zero-
point energy at 100, 150 and 200 GPa. Notably, there are many stable 
compositions in the convex hull. LaH10 becomes enthalpically stable 
(classically) at around 175 GPa and remains in the convex well above  
300 GPa. We have verified that LaH10 Fm m( 3 ) does not decompose  
into LaH3 (Cmcm) and LaH11 (P4/nmm) by around 0.3 eV per LaH10 once 
quantum effects are included in the calculation of the enthalpy forma-
tion at 150 GPa, contrary to the conclusion drawn by classical calcula-
tions in ref. 3. Below 150 GPa, R m3  and C2 phases (LaH10) show unstable 
harmonic phonons at Γ, becoming saddle points of V(R). However, 
harmonically one can find P1 stable structures (decreasing symmetry) 
by following the instability pattern (softening direction—that is, along 
eigenvector polarization). P1 structures are degenerate in enthalpy 
within less than 3 meV per LaH10 with respect to C2. We therefore used 
the C2 as a representative of highly distorted structures for our study.

Superconductivity calculations in the Fm m3  phase
Superconductivity calculations were performed within two differ-
ent approaches that represent the state-of-the-art of ab initio super-
conductivity: SCDFT and the Eliashberg equations with full Coulomb 
interaction.



SCDFT is an extension to DFT for a superconducting ground state42,43. 
By assuming that the nk anisotropy in the electron–phonon coupling 
is negligible (see ref. 43 for further details), the critical temperature is 
computed by solving an (isotropic) equation for the Kohn–Sham gap:
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where ε is the electron energy and β the inverse temperature. The kernels 
K and Z come from the exchange correlation functional of the theory43–48 
and depend on the properties of the pairing interactions: electron– 
phonon coupling and screened electron–electron repulsion. Equation (3) 
enables us to calculate Tc completely ab initio, without introducing an 
empirical μ* parameter (Coulomb pseudopotential). Dynamic  
effects on the Coulomb interaction (plasmon) were also tested and did 
not show any substantial effect. In its isotropic form, the screened  
Coulomb interaction in SCDFT is accounted for by a function μ ε ε( , ′), 
which is given by the average49 random phase approximation (RPA)  
Coulomb matrix element on the iso-energy surfaces ε and ε′ times the 
DOS at ε′ N ε( ( ′)):
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The full energy dependence of the DOS is accounted for in the calcu-
lations, whereas the electron–phonon coupling is described by the 
α2F(ω) of equation (2).

The second approach we use to simulate the superconducting state 
is the anisotropic Eliashberg approach50. Here we include, together 
with the energy dependence of the electron DOS, the anisotropy of the 
electron–phonon coupling. The Green’s function form of the Eliashberg 
equation we solve is given as
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Here, Σnk(iωi) and Δnk(iωi) are the normal and anomalous self energy, 
and qV ω( , i )mn μ

ph  and qV ω( , i )mn μ
C  are the k-averaged phonon-mediated 

interaction and Coulomb interaction, respectively. The explicit form 
of qV ω( , i )mn μ

ph  is given as
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2 2 . The electron–phonon matrix elements 
are calculated through a DFPT calculation with 6 × 6 × 6 q-point grid 
and are combined with the phonon frequencies and polarization vec-
tors obtained by directly Fourier-interpolating to this grid the force 
constants arising from the RE( ) Hessian in the 3 × 3 × 3 supercell. For 
the Coulomb interaction, qV ω( , i )mn μ

C  is approximated by k-averaged 
static Coulomb interaction within the random phase approximation, 

k k k qV ω∑ (i = 0)N m n μ
1

, +
RPA

k
. Using equation (5), the Dyson equation was 

solved self-consistently and then equation (6) was solved to estimate 
Tc with 36 × 36 × 36 k-point grid and 512 Matsubara frequencies.

In Extended Data Table 1 we summarize all calculated Tc values 
within anisotropic ME and isotropic SCDFT. We also include the val-
ues obtained with the McMillan equation and the Allen–Dynes-mod-
ified McMillan equation (μ* = 0.1). The calculated electron–phonon  
coupling constant, λ ωα F ω ω= 2 ∫ d ( )/0

∞ 2 , and the logarithmic frequency 

average,   
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0
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, are also included in the table.

Quantum structural relaxations in the R m3  and C2 phases
In Extended Data Fig. 5 we show the evolution of the pressure calculated 
along the different Cartesian directions for the R m3  throughout the 
SSCHA minimization but keeping the rhombohedral angle fixed at 
62.3°. Thus, the centroid positions R are optimized only considering 
the internal degrees of freedom of the R m3  phase. Even if, at the clas-
sical level, the stress is isotropic (within a 0.5%), after the SSCHA quan-
tum relaxation an anisotropic stress of a 6% is created between the z 
and x–y directions. The phonons obtained at the end of the minimiza-
tion are shown in Extended Data Fig. 5. Second, in Extended Data Fig. 4, 
we show that starting from the result of this minimization but now also 
relaxing the lattice, the R m3  phase evolves into the Fm m3  phase. It is 
clear how the pressure calculated with quantum effects becomes iso-
tropic when the rhombohedral angle becomes 60°, the angle corre-
sponding to an fcc lattice in a rhombohedral description. It is also 
evident that the Wyckoff positions of the R m3  phase evolve clearly into 
the Fm m3  Wyckoff positions, which are summarized in Extended Data 
Table 2.

In Extended Data Fig. 6 we show the evolution of the diagonal compo-
nents of the pressure along the three different Cartesian directions for 
the monoclininc C2 when the lattice structure is relaxed with the SSCHA. 
The starting point is obtained by first performing a SSCHA relaxation 
of only internal atomic coordinates, keeping the lattice parameters 
that yield an isotropic stress of 150 GPa. It is clear that quantum effects 
create an anisotropic stress if the lattice parameters are not modified. 
When the quantum relaxation of the lattice is performed, the lattice 
parameters are modified and an isotropic stress is recovered.

Extended Data Fig. 7 shows the structures of the R m3  and C2 phases 
obtained classically and after the quantum SSCHA relaxation. After 
the quantum relaxation, the symmetry of both structures is recognized 
as Fm m3  with a tolerance of 0.001 Å for lattice vectors and 0.005 Å for 
ionic positions, consistent with the stochastic accuracy of the SSCHA. 
In the same figure, the electronic DOS as a function of pressure is plot-
ted. A highly symmetric motif Fm m( 3 ) maximizes NEF

, whereas in dis-
torted structures (R m3  and C2) the occupation at the Fermi level is 
reduced by more than 20%. This underlines that the classical distortions 
would lower NEF

, reducing λ, as expected in a system that is destabilized 
by the electron–phonon interaction.

Transition temperatures from other La–H compositions
Different compositions on the La–H phase diagram have been reported 
to be thermodynamically stable. Presumably, the stabilization of these 
compositions and the measurement of different Tc values (see ref. 5) 
demonstrate that other stoichiometries are responsible for these meas-
ured Tc values. Notably, these Tc values appear substantially lower—for 
instance, the values decrease from 250 K, to 215 K, 110 K and to 70 K. 
Experimentally there is not a clear correlation between sample prepara-
tion, Tc and pressure. In the sample preparation in ref. 5, pressures can 
vary from 100 to 200 GPa (gradient inside the DAC) and it was proposed 
that other stoichiometries (low-hydrogen content) are responsible for 
systematically lower values of Tc.

Conversely, in a later publication, the same authors suggested that 
another hydrogen-rich system that is enthalpically competitive (LaH11) 
could possibly be responsible for other high-Tc values. In order to verify 
this hypothesis, we considered structure-prediction runs with this 
stoichiometry, and found crystalline structures that were previously 
reported in ref. 3. Extended Data Fig. 8 shows the structural motif and 
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the corresponding phonons and α2F(ω) spectral function. We can rule 
out the possibility that high Tc values, as measured in different sam-
ples, arise from LaH11 in its P4/nmm (129) structure (lowest enthalpy 
structure for this composition at relevant experimental pressures). As 
seen in Extended Data Fig. 8, this phase has a strong molecular-crystal 
character, composed of H2 units weakly interacting with the La lattice. 
This phase is indeed a poor metal—with low occupation of electrons at 
the Fermi level—owing to its molecular character, and it cannot explain 
Tc values of 70 K or higher. Our estimated Tc with the Allen–Dynes for-
mula, harmonic phonons and using a μ* = 0.1 is 7 K at 100 GPa, reaching 
around 24 K at 200 GPa. More importantly, this phase does not show 
marked anharmonicity.

Data availability
All the data generated in this work is available upon request from I.E. 
and J.A.F.-L.

Code availability
Quantum ESPRESSO is an open-source suite of computational tools 
available at https://www.quantum-espresso.org. VASP is a proprietary 
program. The SSCHA and the SCDFT codes are private codes developed 
by some of the authors, and are being prepared for distribution as an 
open-source code.
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Extended Data Fig. 1 | Convex hull of enthalpy formation and diffraction 
pattern of candidate LaH10 phases. Top, classical calculations of enthalpy 
(without zero-point energy) at different hydrogen contents at 100, 150 and 200 
GPa. At low pressure (100 GPa), LaH10 is not stable and only develops as stable 
point in the convex hull of enthalpy formation at pressures above about 175 
GPa. Bottom, diffraction patterns of different structures at 150 GPa (classical 

pressure), compared to the experimental data reported in ref. 5 for LaH10 in the 
Fm m3  phase at 150 GPa. The pattern is shown in the vicinity of the (111) peak of 
the Fm m3  phase. This peak is clearly split in the distorted C2 and R m3  phases 
predicted classically. The figure provides confirmation that the experimental 
resolution in ref. 5 would have been sufficient to distinguish between these 
phases.
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Extended Data Fig. 2 | Convergence of SSCHA-phonon supercells and 
different anharmonic phonon calculations for LaH10 at 163 GPa. Left, the 
phonon spectra shown are calculated by directly Fourier-interpolating the 
force constants obtained from the Hessian of RE ( ) in a real space 2 × 2 × 2 and a 
3 × 3 × 3 supercell. The similarity of both phonon spectra obtained by Fourier 
interpolation indicates that these SSCHA force constants are short-ranged and 
can be Fourier-interpolated. Right, phonon spectra obtained from the SSCHA 
energy Hessian of equation (1), making different level of approximations. The 
purple solid line is the phonon spectrum calculated with the full-energy 

Hessian without any approximation. In the blue dotted spectrum we set Φ
(4)

 = 0 

in the equation. For the orange dash-dotted line we set Φ Φ= = 0
(3) (4)

, so that the 
phonon spectra correspond to that arising directly from the SSCHA variational 

force constants Φ. These results clearly show that whereas the effect of Φ
(3)

 is 

important, setting Φ
(4)

 = 0 has minimal effect. All phonon spectra are obtained 
by directly Fourier-interpolating the real space anharmonic force constants in a 
2 × 2 × 2 supercell.



Extended Data Fig. 3 | α2F(ω) values for the Fm m3  phase of LaH10 and LaD10. 
Calculated α2F(ω) values for different pressures together with the integrated 
electron–phonon coupling constant, which is defined as λ ω Ωα F Ω Ω( ) = 2 ∫ d ( )/2ω

0
.  

The results show that high frequency, optical modes of hydrogen are 

responsible for the large value of the electron–phonon coupling constant λ. It is 
worth noting that acoustic modes with La character contribute between 0.2 and 
0.5 to λ and cannot be neglected when aiming to estimate an accurate value of Tc.
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Extended Data Fig. 4 | Details of the R m3  LaH10 cell relaxation, including 
quantum effects. The initial point for the relaxation is the output from the 
previous internal relaxation with fixed angle presented in Extended Data Fig. 5. 
The R m3  phase in the rhombohedral description is described by three vectors 
of the same length (a = b = c) and by the angles between them (α = β = γ). The top 
left panel shows the evolution of the rhombohedral angle and the top right 
panel shows the evolution of the rhombohedral lattice parameter (a = b = c). 
The progression of the stress tensor in the quantum SSCHA minimization is 
shown in the bottom left panel. It is clear that at the end of the minimization the 
structure has an angle of 60°, which matches the angle of an fcc lattice and, in 

this case, the stress is isotropic. In the bottom right panel, we show the 
evolution of the Wyckoff positions in the minimization and we compare it with 
that of the Fm m3 phase. The occupied Wyckoff positions for both R m3  LaH10 
and Fm m3  LaH10 are summarized in Extended Data Table 2. Here, the evolution 
of εa, εb, εx and εy parameters in the minimization can be seen. The atoms in the 
first set of 6c positions approach the 8c Wyckoff site of the Fm m3 phase, 
whereas the atoms in the second set of 6c positions and those in 18h sites 
approach the atoms in the 32f Wyckoff site of the Fm m3  phase, where 
ε = 0.12053.



Extended Data Fig. 5 | Phonon dispersion in R m3 -phase LaH10 and the 
anisotropic pressure created in a fixed-cell quantum relaxation. Left, 
harmonic and anharmonic phonon spectrum, maintaining a 62.3° 
rhombohedral angle. The harmonic calculation is performed with the internal 
atomic positions that yield classical vanishing forces. The anharmonic 
calculation is performed after relaxing (with the SSCHA) the internal degrees 
of freedom but maintaining the 62.3° rhombohedral angle. At the harmonic 
level there are unstable phonon modes even at Γ. Symmetry prevents the 
relaxation of this structure according to the unstable phonon mode at Γ. The 
harmonic phonons are calculated at a classic pressure of 150 GPa. Quantum 
effects add around an extra 10 GPa to the pressure. To the right of the graph is 
shown the behaviour of λ(ω) and α2F(ω) for the anharmonic calculation. Right, 
pressure along the different Cartesian directions during the SSCHA relaxation 
of the internal parameters, keeping the rhombohedral angle fixed at 62.3°. At 

step 0 the pressure reported is obtained directly from V(R), neglecting 
quantum effects. It is isotropic within 1 GPa of difference between the x–y and z 
directions. At each of the other steps it is calculated from the quantum RE ( ) 
and along the minimization it becomes anisotropic. When the minimization 
stops at step 12—that is, the internal coordinates are at the minimum of the 

RE ( ) for this lattice—the stress anisotropy between the z and the x–y directions 
is about 6%. This clearly indicates that quantum effects act to relax the crystal 
lattice—in particular, because Pz is larger—by reducing the rhombohedral angle. 
It is worth noting that quantum effects increase the total pressure by 
approximately 10 GPa, which is calculated as P = (Px + Py + Pz)/3. The initial cell 
parameters before the minimization are a = 3.5473398 Å and α = 62.34158°. The 
initial values of the free Wyckoff parameters, which yield classical vanishing 
forces and a 150-GPa isotropic stress, are εa = 0.26043, εb = 0.09950, 
εx = 0.10746 and εy = 0.12810. See Extended Data Table 2 for more details.
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Extended Data Fig. 6 | Anisotropic pressure of the C2 phase of LaH10 in a cell 
quantum relaxation. Pressure along the different Cartesian directions is 
plotted during the SSCHA cell minimization. The target pressure for this 
minimization is 160 GPa. At the end of the minimization the isotropy of the 
stress tensor is recovered. A symmetry analysis performed on the structure at 

the end of the minimization confirms that the C2 LaH10 evolves in the Fm m3
-phase LaH10. The initial values Px = 163.2 GPa, Py = 159.7 GPa, Pz = 155.0 GPa are 
obtained by an atomic internal relaxation performed using the SSCHA with a 
fixed cell.



Extended Data Fig. 7 | SSCHA minimization on LaH10 and DOS. Top left and 
top right, two initial structures (C2 and R m3 ) of low enthalpy that were 
considered in our SSCHA simulations. When considering quantum effects, 
both structures evolve towards the Fm m3  structure. The corresponding total 
electronic DOS at different pressures is plotted for each structure (for 
comparison, at the same energy scale). The highly symmetric motif Fm m( 3 ) 

maximizes NEF
, whereas in distorted structures (R m3  and C2) the occupation at 

the Fermi level is reduced by more than 23% for C2 and by 11% for R m3  (with 
respect to Fm m3  at 150 GPa). Values at classical pressures are shown for 
comparison. Note that the shape of the DOS plot is also strongly modified at 
different pressures.



Article

Extended Data Fig. 8 | Details of LaH11. Left, crystal structure of the P4/nmm 
phase of LaH11 at 100 GPa, which is thermodynamically stable in the convex hull. 
Top right, dispersion of harmonic phonons along the momentum space for 
LaH11: it is dynamically stable. Bottom right, superconducting Eliashberg 

spectrum function (α2F(ω)) calculated for LaH11 at the pressure indicated with 
harmonic phonons. The Tc estimated using the Allen–Dynes formula (μ* = 0.1) is 
around 7 K at 100 GPa (harmonic phonons).



Extended Data Table 1 | Summary of calculated Tc values

Values are calculated using different approaches ranging from empirical to fully ab initio: McMillan equation ⁎T( )c
Mc

μ =0.1
, Allen–Dynes-modified McMillan equation ⁎T( )c

AD
μ =0.1

, anisotropic treatment of 
Migdal–Eliashberg T( )anic

ME  and SCDFT T( )c
SCDFT . Values of λ and ωlog are also given.
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Extended Data Table 2 | Details of the crystal structures

Top, the table summarizes the occupied Wyckoff positions for different structures found with the minima hopping method and used in SSCHA for minimization. We describe the Wyckoff 
positions using crystal coordinates, so that the [x, y, z] coordinate should be understood as an xa + yb + zc atomic position with a, b, c the lattice vectors. For the R m3  phase we use the 
rhombohedral lattice (R), where the three lattice vectors have the same length (a = b = c) and the angle between them is the same (α = β = γ). The Fm m3  phase is described both in this 
rhombohedral description (R) and, for comparison, in the standard cubic conventional lattice (C). In the Fm m3  phase the lanthanum atom is described by the 4b sites, two hydrogen atoms 
occupy the 8c sites, and the remaining eight hydrogen atoms occupy the 32f sites. Most of the atomic positions are fixed by symmetry, and overall the Fm m3  structure can be described by one 
single free parameter (ε). In the R m3  phase the lanthanum atom is locked in the 3b sites, two pairs of hydrogen atoms occupy the 6c sites and the remaining six hydrogen atoms occupy the 18h 
sites. In this case symmetry allows for more freedom and overall the structure of the R m3  phase can be described by four free parameters (εa, εb, εx and εy). The bottom table shows lattice 
parameters and atomic coordinates for LaH10 (Immm) and LaH10 (C2) at 150 GPa and LaH11 P4/nmm at 100 GPa. These pressures are estimated classically. The positions below give vanishing 
forces at classical level.
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