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The theory of quantum information constitutes the functional value of the quantum entanglement, i.e.,
quantum entanglement is essential for high fidelity of quantum protocols, while fundamental physical processes
behind the formation of quantum entanglement are less relevant for practical purposes. In the present work, we
explore physical mechanisms leading to the emergence of quantum entanglement in the initially disentangled
system. In particular, we analyze spin entanglement of outgoing electrons in a nonrelativistic quantum (e, 2e)
collision on a target with one active electron. Our description exploits the time-dependent scattering formalism
for typical conditions of scattering experiments, and contrary to the customary stationary formalism operates
with realistic scattering states. We quantify the spin entanglement in the final scattering channel through the
pair concurrence and express it in terms of the experimentally measurable spin-resolved (e, 2e) triple differential
cross sections. Besides, we consider Bell’s inequality and inspect the regimes of its violation in the final channel.
We address both the pure and the mixed initial spin state cases and uncover kinematical conditions of the maximal
entanglement of the outgoing electron pair. The numerical results for the pair concurrence, entanglement of
formation, and violation of Bell’s inequality obtained for the (e, 2e) ionization process of atomic hydrogen
show that the entangled electron pairs indeed can be formed in the (e, 2e) collisions even with spin-unpolarized
projectile and target electrons in the initial channel. The positive entanglement balance—the difference between
entanglements of the initial and final electron pairs—can be measured in the experiment.
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I. INTRODUCTION

The quantum entanglement of particles in a particle pair
represents one of the marked phenomena that falls beyond the
scope of the conventional paradigm of classical physics [1]. It
stems from the impossibility of assigning specific properties
to one constituent of the pair being in an entangled quantum
state. The famous example is the singlet state of two spin-1/2
particles [2] termed as a Bell state �−

Bell. Whatever the dis-
tance between particles is, their spin states remain inherently
correlated in such a way that the measurement of the spin state
of the first particle determines the spin state of the second par-
ticle. This feature owes to the nonseparability of the pair wave
function �−

Bell and reflects the intrinsic nonlocality of quantum
mechanics as opposed to its classical counterpart relying on
local realism. Beyond its fundamental significance, the con-
cept of quantum entanglement lies in the basement of quantum
information theory and quantum computing [3–19]. Quantum
entanglement is a natural ingredient for any communication
channel connecting futuristic quantum engines and devices.
Harvesting, storage, or manipulation of quantum information
requires a substantive degree of quantum entanglement. The
incisive issue is either quantification of quantum entanglement

or minimization of adverse environmental effects. In the liter-
ature, quantum entanglement is mainly considered as a tool
[20–31]. Nevertheless, the problem of vital interest concerns
quantum mechanical processes leading to the emergence of
quantum entanglement in an initially disentangled system.
Therefore, in the present work, we aim at revealing theoret-
ically the mechanisms responsible for the formation of spin
entanglement of two identical fermions, specifically of an
outgoing electron pair emerged in an ionizing electron-target
collision. We also propose an experimentally feasible protocol
for measuring the spin entanglement in (e, 2e) scattering
processes [32,33].

A simple picture of the quantum (e, 2e) scattering process
involves the initial and final asymptotic states. The projectile
and target electrons in the initial asymptotic state before the
collision are far apart. The projectile impinges on the target
so that the particles interact and diverge from each other,
approaching the final asymptotic state when particles again
are far apart. Suppose that the initial electron-pair state is
not entangled, and the final state is. Then one could char-
acterize the quantum (e, 2e) scattering process by a positive
entanglement balance. Usually, the details of the interparticle
interactions during the collision are inaccessible, and one is
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only able to measure the probability of the transition between
the initial and final asymptotic states. The basic question that
we address in this study is whether or not such information
suffices for signaling the formation of quantum entanglement
as a result of the collision.

It is well known (see, for instance, the textbooks [34,35])
that in the free electron-electron scattering the differential
cross sections for the singlet and triplet electron pairs are not
the same. The reason is the difference between the symmet-
ric and asymmetric electron-pair spatial wave functions. In
particular, the triplet cross section vanishes in the symmetric
kinematics, i.e., at equal energy sharing, while the singlet one
remains finite. This feature can be used [36] for selecting sin-
glet electron pairs in free electron-electron collisions, thereby
creating a maximally entangled Bell state �−

Bell of two elec-
trons in the final scattering channel. One might expect that the
singlet electron pairs can be also selected in electron-electron
collisions where one of the electrons is initially bound (for
example, bound to the solid surface [37,38]). It should be em-
phasized that the spin entanglement is formed as a result of the
scattering process in the system of two electrons which are ini-
tially disentangled. This fact cannot be properly accounted for
within the time-independent scattering formalism, in which
one describes the electrons in the initial and final asymptotic
states with non-square-integrable, spatially delocalized wave
functions (plane waves) that are not spatially separated. The
spatial indistinguishability of particles leads to the spurious
entanglement [39,40]. This forces one [36] to modify the
standard criteria of entanglement, for example, such as the von
Neumann entropy of the reduced density matrix of the pair
state. Another important issue that one should address in
the theoretical treatment of spin entanglement formed in the
scattering process is the case of a mixed initial pair spin state,
i.e., when prior the collision the projectile and target electrons
are only partially polarized or even unpolarized. Indeed, such
a case is most typical for scattering experiments, where the
preparation of a pure spin-polarized initial electron-pair state
constitutes practically an intractable task (see, for instance, a
very useful monograph of Kessler [41]). This means, in par-
ticular, that the modified von Neumann entropy usually em-
ployed as the entanglement measure is not valid in the inter-
pretation and analysis of the data of the scattering experiments
since this measure is generally valid only for pure pair states.

In the present work, we develop the comprehensible the-
oretical formulation avoiding the drawbacks indicated above.
First, we employ the time-dependent scattering theory [34],
which operates with square-integrable, spatially localized
electron wave functions (wave packets) in the initial and final
scattering channels. In this way we have spatially separated
projectile and target electrons before and after the collision
and, accordingly, no spurious entanglement can arise provided
one performs local measurements of the electrons. Second,
to quantify the entanglement balance of the (e, 2e) scatter-
ing process, we utilize such criteria as the pair concurrence
and entanglement of formation [42]. In contrast to the von
Neumann entropy of the reduced density matrix of the pair
state, the pair concurrence and entanglement of formation
are applicable for both the pure and mixed pair states. Note
that due to the spatial separation of the electrons in our ap-
proach they can be treated as distinguishable particles [43–45]

and therefore no modification of the pair concurrence and
entanglement of formation is needed.

The paper is structured as follows. In Sec. II we deliver the
general theory for an elementary (e, 2e) collision and derive
the spin state of the final electron pair. The entanglement
measures and Bell’s inequality for quantifying the entangle-
ment balance of the studied quantum scattering process are
formulated in Sec. III. Then, in Sec. IV, we take into account
the ensemble average over impact parameters and spin states
of the colliding electron pairs in a scattering experiment.
Section V is devoted to the general symmetry properties of
the (e, 2e) scattering amplitudes. In Sec. VI we present and
discuss numerical results for the entanglement measures and
Bell’s inequality violation in the case of (e, 2e) ionization of
atomic hydrogen. Section VII summarizes this work. Atomic
units, e = h̄ = me = 1, are used throughout unless otherwise
specified.

II. GENERAL FORMULATION

We consider the process where an electron with momen-
tum k0 impinges on a target T with one active electron
(e.g., atomic hydrogen) and induces the (e, 2e) collision

e− + T → T + + 2e−. (1)

As a result, two outgoing electrons (scattered and ejected)
are emerged having asymptotic momenta kA and kB. In what
follows, we assume the target to be infinitely heavy and at rest,
so that the center-of-mass and laboratory frames of reference
coincide.

We focus on the analysis of spin entanglement in the
outgoing electron pair. Therefore, we should examine how
the initial spin state of the projectile-target system changes
due to the (e, 2e) collision (1). First, we construct the so-
called in asymptote |�in〉 [34] of the projectile-target system
accounting for electron spins and, for the moment, treating
electrons as distinguishable particles. Let the spin states of the
ingoing and target electrons be given by, respectively,

|χ (1)〉 = α|1↑〉 + β|1↓〉, |η(2)〉 = γ |2↑〉 + δ|2↓〉, (2)

where |↑〉 (|↓〉) is a spin-up (spin-down) spinor and |α|2 +
|β|2 = |γ |2 + |δ|2 = 1. The two-electron in asymptote can be
presented as [34,35]

|�in(1, 2)〉 = ∣∣ψ (b)
k0

(1)χ (1)
〉 ⊗ |ψT (2)η(2)〉, (3)

where ψ
(b)
k0

is the projectile wave packet displaced by the im-
pact parameter b from the axis directed along k0 and intersect-
ing the center of the target, according to 〈p|ψ (b)

k0
〉 = φ

(b)
k0

(p) =
e−ipbφk0 (p), with the momentum-space wave function φk0 (p)
peaked about k0, and ψT is a bound state of the target. The
state (3) is the asymptotic state of the projectile-target system
before the collision, namely as t → −∞, in the interaction
representation. In the Schrödinger representation it is given
by

|�(1, 2)〉t=−∞ = lim
t→−∞ Û (1)

0 (t, 0)|�in(1, 2)〉

= ∣∣ψ (b)
k0

(1, t = −∞)χ (1)
〉

⊗ |ψT (2, t = −∞)η(2)〉, (4)
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with the evolution operator

Û (1)
0 (t, t ′) = e−iĤ (1)

0 (t−t ′ ), Ĥ (1)
0 = Ĥ − V̂1T ,

where Ĥ is the full Hamiltonian of the projectile-target system
and V̂1T is the projectile-target interaction. Now let us take
into account the indistinguishability of electrons by antisym-
metrizing the wave function of the system. Acting with the
antisymmetrization operator �̂a on Eq. (4) yields

�̂a|�(1, 2)〉t=−∞
= |� (a)(1, 2)〉t=−∞

= 1√
2

[∣∣ψ (b)
k0

(1, t = −∞)χ (1)
〉 ⊗ |ψT (2, t = −∞)η(2)〉

− |ψT (1, t = −∞)η(1)〉 ⊗ ∣∣ψ (b)
k0

(2, t = −∞)χ (2)
〉]
.

(5)

This is a Slater determinant of the two one-electron
states which are orthogonal due to 〈ψ (b)

k0
(t = −∞)|ψT (t =

−∞)〉 = 0 that stems from the spatial nonoverlap of the
projectile wave packet with the target wave function in the
asymptotic limit t → −∞. Therefore, though it cannot be
expressed as a product of one-particle states, the state (5)
describes two independent spatially separated electrons and,
hence, is not genuinely entangled (see, for instance, Ref. [45]
and references therein). This means that a local measurement
of a property of one electron, for example, such as spin,
will always yield the state |χ〉 (|η〉) if the electron is located
at |ψ (b)

k0
〉 (|ψT 〉) [43]. The state of the system at any given

moment t0 is

|� (a)(1, 2)〉t0 = Û (t0,−∞)|� (a)(1, 2)〉t=−∞,

Û (t, t ′) = e−iĤ (t−t ′ ). (6)

At t0 = ∞ it contains asymptotic components corresponding
to the final channels of the possible scattering processes in the
system, including the (e, 2e) collision (1) and the elastic and
inelastic scattering processes

e− + T → T + e−, e− + T → T ∗ + e−.

The (e, 2e) asymptotic component is determined by∣∣� (a)
(e,2e)(1, 2)

〉
t=∞ = lim

t→∞ Û0(t, 0)
∣∣� (e,2e)

out (1, 2)
〉
,

Û0(t, t ′) = e−iĤ0(t−t ′ ), (7)

where Ĥ0 = Ĥ − V̂1T + − V̂2T + − V̂12 is the asymptotic free
Hamiltonian1 in the final channel of the process (1). The
(e, 2e) out asymptote is given by

|� (e,2e)
out (1, 2)〉 = 1√

2
[Ŝ(e,2e)(1, 2)|�in(1, 2)〉

− Ŝ(e,2e)(2, 1)|�in(2, 1)〉], (8)

1In general, the potentials V̂1T + , V̂2T + , and V̂12 are long range, so
that the Hamiltonian Ĥ does not become free, i.e., Ĥ0, in the dis-
cussed asymptotic limit. This implies that the usual formalism of the
multichannel scattering theory developed for short-range potentials
is not directly applicable. The difficulty is circumvented by properly
modifying the S and T matrices [46].

where Ŝ(e,2e)(1, 2) and Ŝ(e,2e)(2, 1) are the scattering operators
for the (e, 2e) transition in the case of distinguishable elec-
trons [35]:

Ŝ(e,2e)(1, 2) = Û †
0 (∞, 0)Û (∞,−∞)Û (1)

0 (−∞, 0), (9a)

Ŝ(e,2e)(2, 1) = Û †
0 (∞, 0)Û (∞,−∞)Û (2)

0 (−∞, 0). (9b)

The state (7) describes two outgoing electrons that propagate
freely at asymptotically large distances from the collision
region with their spatial wave functions being well separated.

For obtaining the spin state |Xf 〉 of the outgoing electron
pair in the final channel of the process (1) we must project the
(e, 2e) asymptotic component (7) onto the two-electron plane-
wave state |kA, kB〉 = |kA〉 ⊗ |kB〉. The indicated projection
mimics the typical coincident measurement of the electron en-
ergies and angles in two spatially separated, distinct detectors
A (Alice) and B (Bob). Using Eqs. (7) and (8), we get for the
(unnormalized) final spinor

|Xf 〉 = 〈kA, kB|� (a)
(e,2e)(1, 2)〉t=∞

= 1√
2

{
lim

t→∞ exp

[
−i

(
k2

A

2
+ k2

B

2

)
t

]}

× [(〈kA, kB|Ŝ(e,2e)(1, 2)
∣∣ψ (b)

k0
, ψT

〉)|χ (1)〉 ⊗ |η(2)〉
− (〈kA, kB|Ŝ(e,2e)(2, 1)

∣∣ψT , ψ
(b)
k0

〉)|η(1)〉 ⊗ |χ (2)〉].
(10)

Here it is taken into account that in the discussed nonrela-
tivistic case the interactions in the colliding system are spin
independent and, hence, the scattering operator does not act
on the spin states. The S-matrix elements can be expressed in
terms of the T matrix [34] as

〈kA, kB|Ŝ(e,2e)(1, 2)
∣∣ψ (b)

k0
, ψT

〉
= −i

∫
d3 p

(2π )2
t (p, ψT → kA, kB)e−ipbφk0 (p)

× δ

(
p2

2
+ ET − EA − EB

)
, (11)

〈kA, kB|Ŝ(e,2e)(2, 1)
∣∣ψT , ψ

(b)
k0

〉
= −i

∫
d3 p

(2π )2
t (p, ψT → kB, kA)e−ipbφk0 (p)

× δ

(
p2

2
+ ET − EA − EB

)
, (12)

where EA,B = k2
A,B/2 are the energies of the outgoing electrons

and ET is the energy of the target electron state. If the region in
the vicinity of k0 where φk0 (p) is appreciably different from
zero is so small that the variation of the T matrices in this
region is insignificant, one can replace [34] their values in the
integrands of Eqs. (11) and (12) by those at p = k0. One thus
obtains

〈kA, kB|Ŝ(e,2e)(1, 2)
∣∣ψ (b)

k0
, ψT

〉 = tdF (k0, b; EA, EB, ET ), (13)

〈kA, kB|Ŝ(e,2e)(2, 1)
∣∣ψT , ψ

(b)
k0

〉 = teF (k0, b; EA, EB, ET ), (14)

022311-3



KONSTANTIN A. KOUZAKOV et al. PHYSICAL REVIEW A 100, 022311 (2019)

where

td = t (k0, ψT → kA, kB), te = t (k0, ψT → kB, kA) (15)

are the on-shell T matrices (E0 + ET = EA + EB, with E0 =
k2

0/2) called the direct and exchange (e, 2e) scattering ampli-
tudes, and

F (k0, b; EA, EB, ET )

= −i
∫

d3 p

(2π )2
e−ipbφk0 (p)δ

(
p2

2
+ ET − EA − EB

)
. (16)

Taking into account Eqs. (13) and (14), from Eq. (10) we
deduce that

|Xf 〉= 1√
2

{
lim

t→∞ exp

[
−i

(
k2

A

2
+ k2

B

2

)
t

]}
F (k0, b; EA, EB, ET )

×[td |χ (1)〉 ⊗ |η(2)〉 − te|η(1)〉 ⊗ |χ (2)〉]. (17)

Using the Bell states

|±
Bell〉 = 1√

2
(|1↑〉 ⊗ |2↑〉 ± |1↓〉 ⊗ |2↓〉),

|�±
Bell〉 = 1√

2
(|1↑〉 ⊗ |2↓〉 ± |1↓〉 ⊗ |2↑〉), (18)

we can recast Eq. (17) into the form

|Xf 〉 ∝ (td − te)[(αγ + βδ)|+
Bell〉 + (αγ − βδ)|−

Bell〉
+ (αδ + βγ )|�+

Bell〉] + (td + te)(αδ − βγ )|�−
Bell〉.

(19)

From Eq. (19) it follows that the properties of the final spin
state of the electron pair depend on the values of the direct
td and exchange te scattering amplitudes. In particular, when
td = te this state becomes a completely entangled Bell’s state
�−

Bell, which is known to maximally violate Bell’s inequality.
For addressing the issue of quantification of entanglement of
the pair spinor |Xf 〉 in the next section, we shall need the
normalized density matrix of the state (17):

ρ̂ f = |Xf 〉〈Xf |
||Xf ||2

= 1

u
[|td |2(|χ (1)〉〈χ (1)|) ⊗ (|η(2)〉〈η(2)|)

+ |te|2(|η(1)〉〈η(1)|) ⊗ (|χ (2)〉〈χ (2)|)
− tdt∗

e (|χ (1)〉〈η(1)|) ⊗ (|η(2)〉〈χ (2)|)
− t∗

d te(|η(1)〉〈χ (1)|) ⊗ (|χ (2)〉〈η(2)|)], (20)

where

u = |td |2 + |te|2 − 2 Re(tdt∗
e )|αγ ∗ + βδ∗|2

= |td − te|2 + 2 Re(tdt∗
e )|αδ − βγ |2. (21)

We can interpret Eq. (20) as a state of two effectively dis-
tinguishable electrons, since it describes the spin state of
electrons 1 and 2 which are measured by two distinct detectors
A and B [44], respectively. Let us also introduce the following

unnormalized density matrix:

ˆ̃ρ f =
∫ ∞

0
dEA

∫
d2b

2kAkB

(2π )6
|Xf 〉〈Xf |

= kB

(2π )6

∫ ∞

0
dEA kAuρ̂ f

∫
d2b |F (k0, b; EA, EB, ET )|2.

(22)

The integration in the case of the ingoing wave packet φk0 (p)
sharply peaked about k0 is straightforward (see Appendix A),
yielding

ˆ̃ρ f = kAkBu

(2π )5k0
ρ̂ f , (23)

where EA = E0 + ET − EB. Using the density matrix (23) one
can derive [35] the triple differential cross section (TDCS) of
the (e, 2e) scattering process. For the TDCS in the case of the
(e, 2e) transition to the spin state |χA(1)〉 ⊗ |ηB(2)〉 one has

dσχη→χAηB

dEBd�Ad�B
= Tr( ˆ̃ρ f (|χA(1)〉〈χA(1)|) ⊗ (|ηB(2)〉〈ηB(2)|)),

(24)

where �A and �B specify solid angles of the outgoing elec-
trons. In particular, the spin-unresolved TDCS is given by

dσχη

dEBd�Ad�B
= Tr ˆ̃ρ f = kAkBu

(2π )5k0
. (25)

From Eq. (24) the following basic results [47] can be derived:

I↑↑ = dσ↑↑→↑↑
dEBd�Ad�B

= dσ↓↓→↓↓
dEBd�Ad�B

= kAkB

(2π )5k0
|td − te|2,

(26a)

I (d )
↑↓ = dσ↑↓→↑↓

dEBd�Ad�B
= dσ↓↑→↓↑

dEBd�Ad�B
= kAkB

(2π )5k0
|td |2,

(26b)

I (e)
↑↓ = dσ↑↓→↓↑

dEBd�Ad�B
= dσ↓↑→↑↓

dEBd�Ad�B
= kAkB

(2π )5k0
|te|2.

(26c)

Since for all other spin transitions the TDCS is zero, the quan-
tities I↑↑ and I↑↓ = I (d )

↑↓ + I (e)
↑↓ amount to the spin-unresolved

TDCSs for (e, 2e) scattering with parallel and antiparallel
electron spins, respectively.

III. ENTANGLEMENT CRITERIA

There are various entanglement witnesses either for pure
or mixed bipartite quantum states ρ̂12 [48]. For a bipartite
quantum system in the disentangled pure state, tracing out
one of the parts, ρ̂1 = Tr2ρ̂12, leaves the system still in
the pure state, that is, Tr ρ̂2

1 = 1. In contrast, in the case
of the entangled pure state, the reduced density matrix ρ̂1

appears to be always mixed, i.e., Tr ρ̂2
1 < 1, and hence has a

nonzero linear entropy SL = 1 − Tr ρ̂2
1 > 0, which is a lower

approximation to the customary von Neumann entropy S =
−Tr(ρ̂1 log2 ρ̂1) � SL. Thus, if the bipartite quantum state is
pure, mixedness of the reduced density matrix expressed in
terms of the entropy measures is a valid entanglement witness.
However, for mixed bipartite quantum states the nonzero
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entropy of the reduced density matrix is not a reliable criterion
of entanglement anymore: one can get SL > 0 for a statistical
mixture ρ̂12 = ∑

i piρ̂
(i)
12 , where pi > 0 and

∑
i pi = 1, of

disentangled pure bipartite states ρ̂
(i)
12 , but it is not genuinely

entangled.2 A proper generalization of the entropy-based mea-
sure of entanglement that includes the case of mixed bipartite
states is the entanglement of formation. The latter is typically
calculated on the basis of the pair concurrence, which was
originally introduced in Ref. [42] as an auxiliary quantity but
can be considered as an independent entanglement witness.
Therefore, in order to explore the spin entanglement of the
outgoing electron pair which can be both in a pure and in a
mixed state, below we adopt the pair concurrence. In addition,
we consider a violation of Bell’s inequality.

A. Entanglement measures

As mentioned above, a frequently used measure of entan-
glement of a pure pair state is the von Neumann entropy of the
reduced density matrix of this state. For the case of Eq. (20) it
is given by

S f = −Tr(ρ̂1, f log2 ρ̂1, f ), (27)

where

ρ̂1, f = Tr2ρ̂ f

= 1

u
[|td |2|χ (1)〉〈χ (1)| − tdt∗

e (α∗γ + β∗δ)|χ (1)〉〈η(1)|
− t∗

d te(αγ ∗ + βδ∗)|η(1)〉〈χ (1)| + |te|2|η(1)〉〈η(1)|].
(28)

The entropy measure (27) becomes in general inapplicable
as a criterion of entanglement if we deal with a mixed pair
state ρ̂ = ∑

i pi|�i〉〈�i|, where pi > 0. In the latter case one
should rather use the entanglement of formation [42]

EF (Cρ̂ ) = h

⎛
⎝1 +

√
1 − C2

ρ̂

2

⎞
⎠,

h(x) = −x log2 x − (1 − x) log2(1 − x), (29)

with the pair concurrence Cρ̂ defined as follows: Cρ̂ =
max(0,

√
λ1 − √

λ2 − √
λ3 − √

λ4), with the eigenvalues
λn=1,2,3,4, in decreasing order, of the matrix R = ρ̂(σ̂ (1)

y ⊗
σ̂ (2)

y )ρ̂∗(σ̂ (1)
y ⊗ σ̂ (2)

y ). This definition of the concurrence is
equivalent to

Cρ̂ = inf
{pi,�i}

∑
i

piC�i , (30)

where C�i is the concurrence of the pure pair state �i and the
infinum is taken over all possible decompositions of ρ̂ into
pure states.

For a pure pair state such as (20) the concurrence is given
by [49]

Cf =
√

2
(
1 − Tr ρ̂2

1, f

)
(31)

2A marked example is the disentangled mixed state ρ̂12 = ρ̂1 ⊗ ρ̂2,
with ρ̂1,2 = 1

2 Î , for which one has SL = 1/2 and S = 1.

and the entanglement of formation (29) amounts to the von
Neumann entropy (27). Inserting the reduced density matrix
(28) into Eq. (31), for the pair concurrence we obtain

Cf = 2

u
|td ||te||αδ − βγ |2. (32)

Both the concurrence (32) and the von Neumann entropy,

S f = −
1 +

√
1 − C2

f

2
log2

⎛
⎝1 +

√
1 − C2

f

2

⎞
⎠

−
1 −

√
1 − C2

f

2
log2

⎛
⎝1 −

√
1 − C2

f

2

⎞
⎠, (33)

range from 0 to 1, with Cmin
f = Smin

f = 0 and Cmax
f = Smax

f = 1
corresponding to the disentangled and completely entangled
pair states, respectively.

As was pointed out in the previous section, the pair spin
state in the initial, prescattering channel is disentangled (Ci =
Si = 0). From Eqs. (32) and (33) it follows that the pair spin
state remains disentangled in the final, postscattering channel
if either of td , te, and αδ − βγ equals zero. In contrast, when
td = te we have Cf = 1 and S f = 1, so that the state is a
maximally entangled Bell state �−

Bell.
Let us adopt the Bloch-sphere representation of the spin

states (2):

α = cos
ϑ1

2
, β = sin

ϑ1

2
eiϕ1 ,

γ = cos
ϑ2

2
, δ = sin

ϑ2

2
eiϕ2 , (34)

where 0 � ϑ1,2 � π and 0 � ϕ1,2 < 2π . The angles ϑ1 (ϑ2)
and ϕ1 (ϕ2) specify the unit vector ζ1 (ζ2) of spin polarization
of the ingoing (target) electron, namely

ζ1(2) = (sin ϑ1(2) cos ϕ1(2), sin ϑ1(2) sin ϕ1(2), cos ϑ1(2)). (35)

Using the representation (34), we can recast Eq. (32) into the
form

Cf (ζ1, ζ2) = |td ||te|(1 − ζ1ζ2)

|td |2 + |te|2 − Re(tdt∗
e )(1 + ζ1ζ2)

. (36)

Equation (36) can be related to the basic spin-resolved TDCSs
(26):

Cf (ζ1, ζ2) =
2
√

I (d )
↑↓ I (e)

↑↓ (1 − ζ1ζ2)

I↑↓(1 − ζ1ζ2) + I↑↑(1 + ζ1ζ2)

=
√

I (d )
↑↓ I (e)

↑↓
Iζ1,ζ2

(1 − ζ1ζ2), (37)

where I↑↓ = I (d )
↑↓ + I (e)

↑↓ is the spin-unresolved TDCS for
(e, 2e) scattering with antiparallel spins and Iζ1,ζ2

is the spin-
unresolved TDCS given by Eq. (25).

If ζ1 = ζ2 the concurrence is Cf (ζ1 = ζ2) = 0, reflecting
the fact that the two-electron spin state is a disentangled triplet
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state. On the contrary, if ζ1 = −ζ2 the concurrence is

Cf (ζ1 = −ζ2) = 2|td ||te|
|td |2 + |te|2 =

2
√

I (d )
↑↓ I (e)

↑↓
I↑↓

, (38)

reaching the maximum value Cmax
f = 1 when |td | = |te|

(I (d )
↑↓ = I (e)

↑↓ ). The latter condition allows for formation not only
of the Bell state �−

Bell, as in the td = te case, but also of the Bell
state �+

Bell provided td = −te. In the intermediate case, when
spin polarizations are aligned perpendicular to each other,
ζ1 ⊥ ζ2, one has for the concurrence

Cf (ζ1 ⊥ ζ2) = |td ||te|
|td |2 + |te|2 − Re(tdt∗

e )
=

√
I (d )
↑↓ I (e)

↑↓
I

, (39)

where I = (I↑↓ + I↑↑)/2 is the spin-averaged TDCS for
(e, 2e) scattering with unpolarized electrons. It can be seen
that Cf (ζ1 ⊥ ζ2) � Cf (ζ1 = −ζ2), with the maximum value
Cmax

f = 1 realized only when I↑↑ = 0 (td = te).

B. Bell’s inequality

The phenomenon of quantum entanglement plays a fun-
damental role in Bell’s theorem [50], which states that any

theory based on local realism is unable to reproduce all quan-
tum mechanical predictions. In particular, quantum mechanics
predicts violation of Bell’s inequality for a pair of electrons in
the entangled, singlet spin state, thus rejecting the principle
of local realism. The violation of Bell’s inequality appears to
be a sufficient criterion of an entangled state, i.e., the state
violating this inequality is entangled.3 Here we wish to inspect
in this context the pair spin state (20).

Cirel’son [51] presented an elegant formulation of Bell’s
inequality (see, for instance, Ref. [52] for technical details).
Following this formulation we consider the operator

�̂ = Â1(B̂1 − B̂2) + Â2(B̂1 + B̂2), (40)

where the operators Â1,2 = a1,2σ̂
(1) and B̂1,2 = b1,2σ̂

(2) stand
for projections of the first σ̂ (1) and second σ̂ (2) elec-
tron spin operators in detectors A and B, respectively.
The projection directions are set by the unit vectors a1 =
(0, 0, 1), a2 = (1, 0, 0) and b1 = (−1/

√
2, 0,−1/

√
2), b2 =

(−1/
√

2, 0, 1/
√

2). The classical limit of Bell’s inequality
leads to the condition [52]

〈�̂〉 = Tr(ρ̂ f �̂) � 2. (41)

Violation of this inequality signals an entangled state ρ̂ f .
Using Eqs. (20) and (40), we deduce that

〈�̂〉 =
√

2
2 Re(tdt∗

e )(1 − ζ1,yζ2,y) − (|td |2 + |te|2)(ζ1,xζ2,x + ζ1,zζ2,z )

|td |2 + |te|2 − Re(tdt∗
e )(1 + ζ1ζ2)

� 2, (42)

where we utilized the Bloch-sphere representation (34) and
expressed Bell’s inequality in terms of the components of
the unit spin-polarization vectors ζ1 = (ζ1,x, ζ1,y, ζ1,z ) and
ζ2 = (ζ2,x, ζ2,y, ζ2,z ). As anticipated, for the specific case
td = te the inequality is maximally violated: 〈�̂〉 = 2

√
2 > 2.

Equation (42) can be presented in terms of the basic TDCSs
(26):

I↑↓(1 − ζ1ζ2) − I↑↑(1 − ζ1,yζ2,y)

I↑↓(1 − ζ1ζ2) + I↑↑(1 + ζ1ζ2)
� 1√

2
. (43)

The advantage of this representation is that the quantities
I↑↑ and I↑↓ are in principle measurable with polarized initial
electrons without invoking spin resolution of the outgoing
electrons. Moreover, it is also not necessary to carry out
absolute measurements, for the knowledge of the I↑↑ and I↑↓
intensities on a relative scale suffices. Finally, we note that
Bell’s inequality (43) depends not only on the relative orien-
tation of the initial-electron spins but also on their orientation
with respect to the detectors’ axes.

IV. ENSEMBLE AVERAGE OVER ELECTRON PAIRS

In the (e, 2e) scattering experiment one measures out-
going electron pairs emerged in collisions of electrons in
the incident electron beam with electrons in target systems
(atoms, molecules, clusters, etc.). The result of measurements

3At the same time, not all entangled states violate Bell’s inequality.

represents thus an average over the colliding electron pairs,
in particular, over their impact parameters b and initial spin
states (2). This aspect must be properly taken into account in
the above formulas for the entanglement measures and Bell’s
inequality.

We only briefly outline the role of different impact-
parameter values in the ensemble. Under typical conditions
of scattering experiments, the projectile-target systems have
random impact parameters. This implies a uniform impact-
parameter distribution in the ensemble of the colliding pairs
of the ingoing and target electrons. The average with such
distribution has been already accounted for when deriving
the unnormalized density matrix (22). Since the normalized
spin density matrix ρ̂ f = ˆ̃ρ f /Tr ˆ̃ρ f remained the same as
in Eq. (20), the results for the entanglement measures and
Bell’s inequality thus also remain unaltered. This owes to the
properties of the projectile wave packet, which is assumed to
be sharply peaked in momentum space as is usually realized
in scattering experiments.

Let us turn to the effect of the partial spin polarization of
the incident beam and the target. The ensembles of spin states
of electrons in the incident beam and target systems before the
(e, 2e) collision can be generally described by the statistical
operators

ρ̂1,i = 1
2 (Î + P1σ̂

(1) ), ρ̂2,i = 1
2 (Î + P2σ̂

(2) ). (44)

Here the polarization vectors P1,2 (0 � P1,2 � 1) are the aver-
ages of the spin polarizations of the individual electrons which
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are in pure spin states such as those given by Eq. (2):

|χn1 (1)〉 = αn1 |1↑〉 + βn1 |1↓〉,
|ηn2 (2)〉 = γn2 |2↑〉 + δn2 |2↓〉, (45)

where n1,2 label the electrons in the incident beam and the
target systems, respectively. Despite the fact that the one-
electron spin functions preserve unitarity |αn1 |2 + |βn1 |2 = 1,
|γn1 |2 + |δn1 |2 = 1, ∀n1,2 ∈ N , the values of the coefficients
are different for different electrons. Therefore, in the generic
case, ensemble averaging leads to the mixed state P1,2 < 1.
Only in the special case when the coefficients are equal αn1 =
α, βn1 = β, γn2 = γ , and δn2 = δ for ∀n1,2 ∈ N the averaging
procedure preserves the pure state P1,2 = 1. The ensembles of
the ingoing and target electrons in the pure state case P1,2 = 1
are characterized by the single spin states (2) which, using
Eqs. (34) and (35), can be presented respectively as

|χ (1)〉 = |1↑ζ1
〉, |η(2)〉 = |2↑ζ2

〉, (46)

where ζ1,2 = P1,2 and |↑ζ〉 designates a spin-up spinor for the
ζ quantization axis, i.e., ζσ̂|↑ζ〉 = |↑ζ〉. According to Eq. (46),
the statistical operators (44) for P1,2 = 1 acquire the form

ρ̂1,i = |1↑ζ1
〉〈1↑ζ1

|, ρ̂2,i = |2↑ζ2
〉〈2↑ζ2

|, (47)

explicitly showing the presence of a single state in the statis-
tical mixtures of the ingoing and target electron spin states.

In practice the electrons are only partially polarized
(P < 1) or even unpolarized (P = 0). To treat this situation,
we note that the statistical operators can be presented as

ρ̂1,i = 1 + P1

2
|1↑ζ1

〉〈1↑ζ1
| + 1 − P1

2
|1↑−ζ1

〉〈1↑−ζ1
|,

ρ̂2,i = 1 + P2

2
|2↑ζ2

〉〈2↑ζ2
| + 1 − P2

2
|2↑−ζ2

〉〈2↑−ζ2
|, (48)

where ζ1,2 = P1,2/P1,2 and we used the fact that |↓ζ〉 = |↑−ζ〉.
From Eq. (48) it follows that the statistical mixture of the
ingoing (target) electron spin states is composed of two or-
thonormal spinors: the one has spin up and the other has
spin down with respect to the polarization vector P1(2). The
indicated spin-up and -down states are represented in the
mixture with the statistical weights w↑ = (1 + P1(2))/2 and
w↓ = (1 − P1(2))/2, respectively. This implies that we have
a statistical mixture of the following four spin states of the
colliding pairs before the collision:

|χ (1)〉 = |1↑ζ1
〉, |η(2)〉 = |2↑ζ2

〉,
wζ1,ζ2

= 1
4 (1 + P1)(1 + P2), (49a)

|χ (1)〉 = |1↑ζ1
〉, |η(2)〉 = |2↑−ζ2

〉,
wζ1,−ζ2

= 1
4 (1 + P1)(1 − P2), (49b)

|χ (1)〉 = |1↑−ζ1
〉, |η(2)〉 = |2↑ζ2

〉,
w−ζ1,ζ2

= 1
4 (1 − P1)(1 + P2), (49c)

|χ (1)〉 = |1↑−ζ1
〉, |η(2)〉 = |2↑−ζ2

〉,
w−ζ1,−ζ2

= 1
4 (1 − P1)(1 − P2), (49d)

where w±ζ1,±ζ2
and w±ζ1,∓ζ2

are the statistical weights of
these states in the mixture. Accordingly, the unnormalized

final density matrix is given by the statistical average

ˆ̃ρ f (P1, P2) = wζ1,ζ2
ˆ̃ρ f (ζ1, ζ2) + wζ1,−ζ2

ˆ̃ρ f (ζ1,−ζ2)

+w−ζ1,ζ2
ˆ̃ρ f (−ζ1, ζ2)

+w−ζ1,−ζ2
ˆ̃ρ f (−ζ1,−ζ2), (50)

where ˆ̃ρ f (±ζ1,±ζ2) and ˆ̃ρ f (±ζ1,∓ζ2) are the unnormalized
final density matrices calculated on the basis of Eqs. (22) and
(23) using the corresponding initial pair spin states (49). For
the normalized density matrix we have

ρ̂ f (P1, P2) =
ˆ̃ρ f (P1, P2)

Tr ˆ̃ρ f (P1, P2)
, (51)

where

Tr ˆ̃ρ f (P1, P2) = dσP1,P2

dEBd�Ad�B

= k1k2

(2π )5k0
[|td |2 + |te|2 − (1 + P1P2)Re(tdt∗

e )]

(52)

is the spin-unresolved TDCS for the initial spin polarizations
P1,2. The explicit form of the density matrix (51) is presented
in Appendix B. In contrast to Eq. (20), it describes a mixed
pair state, which reduces to the pure state only in specific
cases, for instance, when td = te (or, equivalently, I↑↑ = 0).
As opposed to the result (36) obtained for the pure pair
state, a general expression for the pair concurrence defined
in Eq. (30) becomes too cumbersome. For this reason, here
we restrict ourselves with the cases where one electron is un-
polarized, P1(2) = 1 with P2(1) = 0, and where both electrons
are unpolzarized, P1,2 = 0, which is most studied in (e, 2e)
scattering experiments. For the first case we derive the pair
concurrence the same as in Eq. (39), and for the second case
we get

Cf (P1,2 = 0) = θ (|td + te|2 − 3|td − te|2)

× 4 Re(tdt∗
e ) − |td |2 − |te|2

2[|td |2 + |te|2 − Re(tdt∗
e )]

, (53)

where θ is the Heaviside step function. Introducing the
singlet-channel Is and triplet-channel It components of the
spin-averaged TDCS with unpolarized electrons according to
the relations

dσP1,2=0

dE2d�1�2
= Is + It, Is = 1

4

k1k2

(2π )5k0
|td + te|2,

It = 3

4
I↑↑ = 3

4

k1k2

(2π )5k0
|td − te|2,

we may express Eq. (53) in the form

Cf (P1,2 = 0) = θ (Is − It )
Is − It

Is + It
. (54)

This result shows that the pair concurrence for unpolarized
initial electrons turns out to be nonzero only when the singlet-
channel scattering dominates, namely Is > It . The maximum
value Cmax

f = 1 is reached when the triplet scattering is absent,
i.e., It = 0, that amounts to td = te.
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Let us consider Bell’s inequality. Using the density matrix
(51) in Eq. (41), we derive

I↑↓(1 − P1P2) − I↑↑(1 − P1,yP2,y)

I↑↓(1 − P1P2) + I↑↑(1 + P1P2)
� 1√

2
. (55)

It is identical to Eq. (43), except for the replacement of the unit
vectors ζ1,2 with the polarization vectors P1,2. When at least
one of the electrons is unpolarized (P1 = 0 and/or P2 = 0) the
inequality takes the form

A � 1√
2
, A = I↑↓ − I↑↑

I↑↓ + I↑↑
, (56)

where A is the so-called spin asymmetry for (e, 2e) scattering.
Measuring A > 1/

√
2 thus provides an indication of the

violation of Bell’s inequality.

V. SCATTERING AMPLITUDES

For calculating both the entanglement measures and the
TDCSs for the (e, 2e) collision we need the knowledge of the
direct and exchange scattering amplitudes td and te. According
to the above discussion, the maximal effect of entanglement
of an outgoing electron pair appears to be always realized
if td = te �= 0. Therefore, it is interesting to determine such
situations where one has for the amplitudes td = te, even not
knowing their exact values. For this purpose one can make
use of the various symmetry transformations under which
the projectile-target system remains invariant, for example,
such as translation, rotation, inversion, time reversal, etc. We
focus on the parity transformation which is equivalent to the
combined inversion and rotation operations. In the discussed
case of a nonrelativistic projectile-target system without spin-
orbit couplings this transformation leaves unchanged the in-
teraction potentials between the fragments both in the initial
and in the final channel. Consider the reflection of electron
coordinates with respect to the plane containing the incident
electron momentum k0. If upon the indicated reflection the
outgoing electron momenta transform as kA,B → k′

A,B, then
the direct and exchange amplitudes (15) are

td = t (k0, ψ
′
T → k′

A, k′
B), te = t (k0, ψ

′
T → k′

B, k′
A), (57)

where ψ ′
T = P̂ψT is the target wave function after the ac-

tion of the corresponding parity operator P̂ . In the case of
symmetric kinematics (equal energy sharing EA = EB and
kAk0 = kBk0) we can always choose a mirror plane such that
k′

A = kB and k′
B = kA. Further, if the target Hamiltonian ĤT

is invariant under reflection with respect to this plane, i.e.,
[ĤT , P̂] = 0, then ψ ′

A = PT ψT , with PT = +1 (even parity)
or PT = −1 (odd parity). Hence, in Eq. (57), we have

td = PT t (k0, ψT → kB, kA), te = PT t (k0, ψT → kA, kB).

(58)

This leads to the relations td − te = −PT (td − te) and td +
te = PT (td + te), so that either td = te or td = −te depending
on whether the parity PT of the target wave function ψT is
even or odd, respectively. In the remainder of this section we
outline some specific approximations for the td,e amplitudes.

A. (e, 2e) electron momentum spectroscopy

Calculation of td and te strongly simplifies in a particular
case of the (e, 2e) process which is usually referred to as
electron momentum spectroscopy (EMS) [53]. The marked
feature of EMS is the (e, 2e) kinematics close to the kinemat-
ical regime of a free electron-electron collision. This validates
the plane-wave Born approximation for the T matrix. The
direct and exchange amplitudes (15) in this approximation
acquire the forms

td = 4π

|k0 − kA|2 φT (q), te = 4π

|k0 − kB|2 φT (q), (59)

where φT (q) = 〈q|ψT 〉 is the momentum-space wave func-
tion of the target electron and q = kA + kB − k0. It fol-
lows that in the kinematical regime |k0 − kA| = |k0 − kB|
or, equivalently, |kA − q| = |kB − q|, one has td = te. At the
same time, it should be noted that in this kinematical regime
one can encounter td = te = 0 at equal energy sharing EA =
EB if the wave function φT (q) has odd parity (PT = −1) in
Eq. (58).

B. (e, 2e) on atomic hydrogen in the 3C model

Atomic hydrogen is a benchmark target for (e, 2e) ioniza-
tion: (i) the hydrogen state |φH(1s)〉 is exactly known and (ii)
the scattering problem is a three-body Coulomb problem. The
T matrix in this case is given by

t (k0, ψH(1s) → kA, kB) = 〈
�

(−)
kA,kB

∣∣ 1

r12
− 1

r1
|k0, ψH(1s)〉, (60)

where r12 = |r1 − r2| and r1 are the distances between the
ingoing electron and the atomic electron and nucleus (proton).
|� (−)

kA,kB
〉 is a (time-reversed) scattering state of the three-body

system composed of two electrons and a proton. It is a
solution of the Schrödinger equation with the proper three-
body Coulomb asymptotic condition. Finding such a solution
is, in general, an intractable task. Therefore, we resort to a
well-known model usually referred to as 3C (or BBK) [54]. In
the 3C model, one employs the three-body scattering state in
the form

�
(−)
kA,kB

(r1, r2) = ψ
(−)
kA

(r1; Z = 1)ψ (−)
kB

(r2; Z = 1) f (−)
kAB

(r12),
(61)

where

ψ
(−)
k (r; Z ) = e−πξ/2�(1 − iξ )eikr

1F1(iξ, 1; −ikr − ikr)
(62)

is the Coulomb wave, with ξ = −Z/k, that describes the
scattering state in the electron-nucleus pair, and the electron-
electron Coulomb correlation factor is

f (−)
kAB

(r12) = e−πξAB/2�(1 − iξAB)1

× F1(iξAB, 1; −ikABr12 − ikABr12), (63)

where kAB = (kA − kB)/2 and ξAB = 1/2kAB. Using the
3C function (61) in Eq. (60), we get the following
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FIG. 1. Spin-unresolved TDCS (a), pair concurrence (b), and entanglement of formation (c) as functions of the electron emission angles
θA,B in the scattering plane when P1,2 = 1 with P1 ⊥ P2. The nonzero values are shown only in the areas where TDCS � 0.05×max(TDCS).

six-dimensional integral for the T matrix:

t (k0, ψH(1s) → kA, kB)

=
∫

dr1

∫
dr2 ψ

(−)∗
kA

(r1; Z = 1)ψ (−)∗
kB

(r2; Z = 1)

× f (−)∗
kAB

(r12)

(
1

r12
− 1

r1

)
eik0r1ψ1s(r2; Z = 1), (64)

with the 1s wave function

ψ1s(r2; Z ) =
√

Z3

π
e−Zr2 . (65)

We use the 3C model (64) in the next section devoted to
numerical results for (e, 2e) ionization of atomic hydrogen. In
this regard it should be noted that the integration in Eq. (64)
can be reduced to a two-dimensional one (see, for instance,
Appendix 2 of Ref. [54]). Since the 1s hydrogen state has even
parity, in symmetric kinematics we should have td = te. It can
be easily verified that the 3C model (64) obeys this condition.

VI. RESULTS AND DISCUSSION

For illustration purposes, we consider the (e, 2e) ionization
of atomic hydrogen

e− + H → H+ + 2e−

in the coplanar kinematics with equal energy sharing that
favors the formation of spin entanglement. The incident elec-
tron energy is chosen to be E0 = 54.4 eV (2 a.u.) so that
the ionization yield is close to maximum [55]. Accordingly,
the final electron energies are E1 = E2 = 20.4 eV (0.75 a.u.).
Using the 3C model (64), which is more valid for the chosen
incident energy than the plane-wave Born approximation (59),
we calculate numerically the TDCS, pair concurrence, and en-
tanglement of formation as functions of the electron in-plane
angles θA and θB measured with respect to the direction of
the incident electron momentum k0. These angles vary from
−180◦ to 180◦, so that the angular ranges 0◦ � θA,B � 180◦
and −180◦ � θA,B � 0◦ correspond to upper and lower half-
planes, respectively. In addition, we examine the violation of
Bell’s inequality in the scattering plane numerically. It should
be noted that the criteria of entanglement can signal its maxi-
mal effect even when the TDCS value is rather small and falls

FIG. 2. Same as in Fig. 1, but for P1 = −P2.
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FIG. 3. Same as in Fig. 1, but for P1,2 = 0.

beyond the experimental sensitivity. For mimicking such a
circumstance, we set a threshold of 0.05×max(TDCS): below
this threshold, all the quantities become “unmeasurable” or,
from the viewpoint of an experiment, have zero values.

We wish to inspect different cases of electron spin polariza-
tions in the initial channel. Here we study the following four
different situations in terms of the spin polarization vectors
P1,2 of the ingoing and target electrons: (i) P1,2 = 1 with P1 ⊥
P2, (ii) P1,2 = 1 with P1 = −P2, (iii) P1(2) = 1 with P2(1) = 0,
and (iv) P1,2 = 0. Note that we do not consider the trivial
case P1,2 = 1 with P1 = P2, where both the pair concurrence
and the entanglement of formation are zero irrespective of
kinematical conditions.

A. Pair concurrence and entanglement of formation

The numerical results when both electrons are fully polar-
ized (P1,2 = 1) are presented in Figs. 1 and 2. As anticipated,
they exhibit symmetric patterns with respect to the θA = ±θB

lines. The TDCS appears to be peaked in the regime θA =
−θB ∼ ±π/4, which is kinematically close to a free electron-
electron collision at equal energy sharing, where owing to the
energy and momentum conservation laws one has EA = EB =

E0/2 and θA = −θB = ±π/4. Due to the Coulomb repulsion
the electrons are preferably emitted in different half-planes.
Some structures also can be seen in the TDCS when the one
outgoing electron is emitted in the vicinity of the forward
(backward) direction, while the other in the vicinity of the
backward (forward) direction. The pair concurrence and en-
tanglement of formation behave similar to each other, for the
latter is the convex function (29) of the former with EF (0) =
0 and EF (1) = 1. They take the maximal value of unity if
θA = −θB, where one has td = te. The role of the mutual ori-
entation of initial electron-spin polarizations in entanglement
of the outgoing electron pair can be seen from a comparison
of Figs. 1 and 2: for the antiparallel orientation P1 = −P2

the effect of entanglement is much stronger manifested than
for the perpendicular orientation P1 ⊥ P2. This observation is
readily explained by maximization of the relative contribution
of the singlet state �−

Bell to the final pair state if P1 = −P2.
The TDCS, pair concurrence, and entanglement of forma-

tion for the case of one unpolarized electron (P1(2) = 1 with
P2(1) = 0) are the same as in Fig. 1 and therefore are not
presented here. Figure 3 shows the results when both electrons
are unpolarized. The TDCS is the same as in the case of P1,2 =
1 with P1 ⊥ P2 shown in Fig. 1(a). However, the entanglement

FIG. 4. Spin-unresolved TDCS (a) and the left-hand side of Bell’s inequality (55) [panels (b) and (c)] as functions of the electron emission
angles θA,B in the scattering plane when P1,2 = 1 with P1 ⊥ P2. The nonzero values are shown only in the angular regions where TDCS �
0.05×max(TDCS).
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FIG. 5. Same as in Fig. 4, but for P1 = −P2.

measures behave markedly different. Practically everywhere
in the scattering plane, the pair concurrence and entanglement
of formation are zero, except for those regions in the vicinity
of the θA = −θB line where the TDCS maximum is observed.
In this regard, it should be noted that a common feature of
the results presented in Figs. 1–3 lies in the overlap of the
maximum values of TDCS with those of the pair concurrence
and entanglement of formation. This can serve as a hint for
experimental investigation of the entanglement effects in the
discussed (e, 2e) scattering process.

B. Bell’s inequality violation

Experimental tests of quantum entanglement of particle
pairs usually are based on measuring the violation of Bell’s
inequality. Figures 4 and 5 present numerical results for Bell’s
inequality in the scattering plane of the (e, 2e) collision on
atomic hydrogen in the case of polarized incident and target
electrons (P1,2 = 1). The light areas in panels (b) and (c)
represent the angular domains in the scattering plane where
Bell’s inequality is both “measurable” and violated. Since
among the Bell states only the singlet state �−

Bell violates the

inequality, the violation is more pronounced for P1 = −P2.
The violation can also be controlled by tuning the P1,yP2,y

value. Such controlling is absent when at least one of the
two electrons in the initial channel of the (e, 2e) collision is
unpolarized. Figure 6 shows the results in this case, taking
into account that the left-hand side of Bell’s inequality (55) is
equivalent to the spin asymmetry (56). It can be seen that the
total area of angular regions violating the inequality turns out
to be even larger than in Fig. 5(b). This is due to the difference
in the “measurable” TDCS. Finally, similar to Figs. 1–3,
where one has overlapping of the maximal values of the
TDCS with those of the pair concurrence and entanglement
of formation, the TDCS maxima in Figs. 4–6 overlap with the
maximal violation of Bell’s inequality.

VII. SUMMARY AND CONCLUDING REMARKS

In this work, we have developed a theoretical apparatus
for treating the quantum electron-pair entanglement in the
nonrelativistic (e, 2e) collisions. The framework of the time-
dependent scattering theory has been employed to elucidate
how the spin entanglement of the electron pair can emerge as

FIG. 6. Spin-unresolved TDCS (a) and the spin asymmetry A (b) as functions of the electron emission angles θA,B in the scattering plane
for P1,2 = 0. The results for the case of P1(2) = 1 with P2(1) = 0 are identical. The light areas in panel (b) show the angular regions where the
spin asymmetry violates Bell’s inequality A � 1/

√
2 and is “measurable.”
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a result of the (e, 2e) scattering process. This also helped us
avoiding the confusion about the entanglement in the initial
channel of the process that arises in the time-independent
formalism due to the delocalized incident electron states. We
have derived the final spin state of the electron pair and
quantified its entanglement with the pair concurrence and
entanglement of formation. We have obtained the analytical
expressions for these entanglement measures in terms of both
the (e, 2e) scattering amplitudes and the (e, 2e) scattering
cross sections with polarized electrons. We also have ex-
pressed Bell’s inequality in the indicated terms. The problem
of averaging over impact parameters and spin states of the
projectile-target systems has been addressed and the ensemble
average for the entanglement measures and Bell’s inequality
has been carried out using the formalism of the electron-pair
spin density matrix. We have outlined symmetry properties
of the direct and exchange (e, 2e) scattering amplitudes and
formulated the well-known approximations for their evalu-
ation such as the plane-wave Born approximation and 3C
model. Using the 3C model, we have performed numerical
calculations of the pair concurrence and entanglement of for-
mation for the outgoing electron pair in the (e, 2e) ionization
of atomic hydrogen at equal energy sharing. At that, various
spin polarizations of the ingoing and target electrons have
been inspected. The violation of Bell’s inequality has been
also investigated numerically. It has been found that the areas
of the scattering plane where the TDCS is peaked overlap with
those where both the entanglement measures and the violation
of Bell’s inequality are maximal.

The above observation can be useful for experimental tests
of the entanglement phenomena in the discussed ionization
process, in particular for measuring the violation of Bell’s
inequality. Currently, such studies are beyond the capabil-
ities of the state-of-the-art (e, 2e) spectroscopy technique.
Nevertheless, the analytical expressions for the entanglement
measures and Bell’s inequality obtained in this work show
that the entanglement of the outgoing electron pair can be
already quantified in (e, 2e) experiments by studying the basic
spin-resolved TDCSs. It is important that such quantification
is free from the theoretical uncertainties associated with the
approximations involved in the calculations of the scattering
amplitudes. Finally, it is also worth noting that the present
theoretical formulation is not limited to the applications in
(e, 2e) spectroscopy and, in principle, can be extended to a
more general case, for example, to the studies of electron-
electron collisions in solids and plasmas.
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APPENDIX A: INTEGRALS WITH THE INGOING
WAVE PACKET

We perform integrations in Eq. (22) following the approach
to the derivation of the cross section for potential scattering of
a wave packet formulated in the textbook of Taylor [34]. First,

we consider the integral in the plane of the impact parameters
b:

J =
∫

d2b |F (k0, b; EA, EB, ET )|2

=
∫

d2b
∫

d3 p

(2π )2

∫
d3 p′

(2π )2
e−i(p−p′ )bφk0 (p)φ∗

k0
(p′)

× δ

(
p2

2
+ ET − EA − EB

)
δ

(
p′2

2
+ ET − EA − EB

)
.

(A1)

Using ∫
d2b e−i(p−p′ )b = (2π )2δ(2)(p⊥ − p′

⊥)

and the relation δ(a − b)δ(b − c) = δ(a − c)δ(b − c), we
obtain

J =
∫

d3 p

(2π )2
δ

(
p2

2
+ ET − EA − EB

)

×
∫ ∞

−∞
d p′

‖ φk0 (p⊥, p‖)φ∗
k0

(p⊥, p′
‖)δ

(
p2

‖
2

− p′2
‖

2

)
. (A2)

We have

δ

(
p2

‖
2

− p′2
‖

2

)
= 1

|p‖| [δ(p‖ − p′
‖) + δ(p‖ + p′

‖)]

= 1

k0
δ(p‖ − p′

‖),

where the latter equality owes to a sharply peaked about k0

wave packet. This leads to

J = 1

k0

∫
d3 p

(2π )2
δ

(
p2

2
+ ET − EA − EB

)
|φk0 (p)|2. (A3)

Finally, the integration over EA in Eq. (22) removes the delta
function in the above integral, so that we are left with the
normalization integral

∫
d3 p

(2π )3
|φk0 (p)|2 = 1.

APPENDIX B: TWO-ELECTRON DENSITY MATRICES

We present the final pair density matrices (20) and (51)
using the basis of Bell’s states:

|+
Bell〉 =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠, |−

Bell〉 =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠,

|�+
Bell〉 =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠, |�−

Bell〉 =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠. (B1)
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Employing the Bloch-sphere representation (34) and (35), from Eq. (20) we derive

(ρ f )11 = 1

4u
|td − te|2(1 + ζ1,xζ2,x − ζ1,yζ2,y + ζ1,zζ2,z ),

(ρ f )12 = (ρ∗
f )21 = 1

4u
|td − te|2(ζ1,z + ζ2,z + iζ1,xζ2,y + iζ1,yζ2,x ),

(ρ f )13 = (ρ∗
f )31 = 1

4u
|td − te|2(ζ1,x + ζ2,x − iζ1,yζ2,z − iζ1,zζ2,y),

(ρ f )14 = (ρ∗
f )41 = 1

4u
(td − te)(t∗

d + t∗
e )(iζ1,y − iζ2,y − ζ1,xζ2,z + ζ1,zζ2,x ),

(ρ f )22 = 1

4u
|td − te|2(1 − ζ1,xζ2,x + ζ1,yζ2,y + ζ1,zζ2,z ),

(ρ f )23 = (ρ∗
f )32 = 1

4u
|td − te|2(−iζ1,y − iζ2,y + ζ1,xζ2,z + ζ1,zζ2,x ),

(ρ f )24 = (ρ∗
f )42 = 1

4u
(td − te)(t∗

d + t∗
e )(−ζ1,x + ζ2,x + iζ1,yζ2,z − iζ1,zζ2,y),

(ρ f )33 = 1

4u
|td − te|2(1 + ζ1,xζ2,x + ζ1,yζ2,y − ζ1,zζ2,z ),

(ρ f )34 = (ρ∗
f )43 = 1

4u
(td − te)(t∗

d + t∗
e )(ζ1,z − ζ2,z − iζ1,xζ2,y + iζ1,yζ2,x ),

(ρ f )44 = 1

4u
|td + te|2(1 − ζ1,xζ2,x − ζ1,yζ2,y − ζ1,zζ2,z ), (B2)

with

u = |td |2 + |te|2 − (1 + ζ1ζ2)Re(tdt∗
e ).

For obtaining the density matrix (51), we note that according to Eqs. (23) and (B2) the unnormalized density matrices
ˆ̃ρ f (±ζ1,±ζ2) and ˆ̃ρ f (±ζ1,∓ζ2) in Eq. (50) depend linearly on the components of the unit spin-polarization vectors ζ1 and ζ2.
This makes the statistical averaging in Eq. (50) straightforward, and as a result we obtain the same expressions as in Eq. (B2),
but with ζ1 and ζ2 replaced by P1 and P2, respectively.

For the purpose of calculating the entanglement measures such as concurrence and entanglement of formation it is convenient
to transform from Bell’s basis to the conventional spin basis

|1↑〉 ⊗ |2↑〉 =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠, |1↑〉 ⊗ |2↓〉 =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠, |1↓〉 ⊗ |2↑〉 =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠, |1↓〉 ⊗ |2↓〉 =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠. (B3)

According to the relations (18), the corresponding unitary-transformation matrix Û , ρ̂ f → Û ρ̂ f Û †, is given by

Û = 1√
2

⎛
⎜⎝

1 1 0 0
0 0 1 1
0 0 1 −1
1 −1 0 0

⎞
⎟⎠. (B4)
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