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A complete understanding of a material requires both knowledge of the excited states as well as of the
ground state. In particular, the low energy excitations are of utmost importance while studying the electronic,
magnetic, dynamical, and thermodynamical properties of the material. Time-dependent density functional theory
(TDDFT), within the linear regime, is a successful ab initio method to assess the electronic charge and spin
excitations. However, it requires an approximation to the exchange-correlation (XC) kernel which encapsulates
the effect of electron-electron interactions in the many-body system. In this work we derive and implement the
spin-polarized XC kernel for semilocal approximation, the so-called adiabatic generalized gradient approxima-
tion (AGGA). This kernel has a quadratic dependence on the wave vector q of the perturbation, however the
impact of this on the electron energy loss spectra (EELS) is small. We show that the AGGA generally worsens
the spin-excitation spectra by overestimating the magnon energies and suppressing the intensity of spin waves.
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I. INTRODUCTION

Recent developments in the field of laser-induced spin
dynamics have opened up the world of femtomagnetism [1],
whereby the spin degree-of-freedom is controlled using ultra-
fast laser pulses [2]. As the name suggests, femtomagnetism
concerns charge and spin dynamics on the femtosecond
(=10−15 s) time scale, corresponding to energies in the meV
range. Electronic excitations in this energy regime can be
classified as either single-particle like, e.g., Stoner spin flips,
or collective in nature, e.g., charge density waves [3], excitons,
or magnons [4]. Long wavelength collective excitations occur
at relatively lower energies as compared to the single-particle
excitations. To exploit the vast potential femtomagnetism of-
fers, it is vital that we are able to accurately describe these ex-
citations in order to understand, and ultimately control, them.

Theoretical studies of spin excitations can be performed
using either simple models like the Landau-Lifshitz-Gilbert
equation [5], Heisenberg model [6], etc., or computationally
more demanding, parameter-free, ab initio methods. In con-
trast to ab initio methods, model based approaches are limited
by their lack of generality, as they are usually tailored to study
only specific problems and cannot be applied universally.

Time dependent density functional theory (TDDFT) [7–9]
is an ab initio method which can predict the excited state
properties of materials. Since its theoretical foundation in
1984 [7], it has been successfully applied to study excited state
properties of a wide range of materials [10,11]. Compared
to other ab initio methods, such as many-body perturbation
theory (MBPT), TDDFT provides a similar level of accuracy
but at far less computational cost.

The evolution of electronic charge and spin densities
is calculated using TDDFT by solving the single-particle
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Kohn-Sham (KS) equations. The effects of electron-electron
interactions come into this noninteracting KS system via an
effective potential, the so-called Hartree exchange-correlation
(XC) potential. Although TDDFT is an exact theory for
treating systems under the influence of strong time-dependent
external potentials [12–19], it is most commonly applied
within the weak perturbation limit. When working in this
linear regime, one requires the functional derivative of the
XC potential, the so-called XC kernel. In a practical TDDFT
calculation, an approximation to the XC potential and the
kernel is required.

There are many different flavors of XC energy functionals
in ground-state DFT, which can be divided into the local
density approximation (LDA), generalized gradient approx-
imations (GGAs), meta-GGAs, hybrids, and Fock-like ap-
proximations, comprising the so-called Jacob’s ladder [20]
of approximations, where the level of accuracy increases as
we climb from LDA to hybrids. The performance of these
approximations in static ground-state DFT has been well
studied, however much less is known about their behav-
ior in TDDFT. This is an active research field, involving
development of functionals, including those with adiabatic
approximation, and going beyond the adiabatic approximation
[21–24]. Most of the research deals with the optical absorption
spectra, and, in particular, the failure of simple XC kernels
to predict bound excitons. From these studies, we know the
importance of describing the long wavelength limit of the XC
kernel correctly in order to obtain reasonable exciton binding
energies, leading to a number of new approximations [25–33].
However for magnetic excitations, only the ALDA XC kernel
within the framework of TDDFT has been properly studied,
e.g., for calculations of the magnon spectra [34–36], where for
many cases it overestimates magnon energies as compared to
experiments. Besides TDDFT, many-body perturbation theory
can be used [37,38] to calculate magnon spectra. Additionally,
time-dependent generalization of all-electron Sternheimer
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approach [39] or exchange parameters [36,40] extracted from
ground state DFT calculations can also be used to calculate
the magnon spectra.

For the static DFT, it is well known that going from
LDA to GGA improves many ground state properties [41].
Hence, in the work presented here, we climb up to the next
rung of Jacobs’s Ladder within TDDFT and ask if including
gradient corrections to the XC kernel improves the charge
and spin excitation spectra. The paper is organized as follows:
Section II gives the basic equations of TDDFT and how they
may be used to calculate excitation energies via the linear-
response susceptibilities. We will also derive the adiabatic
GGA (AGGA) XC kernel for noncollinear spin systems in
this section. In Sec. III, we apply the AGGA kernel to first
study the electron energy loss spectra (EELS) for medium-
(diamond) and large- (LiF) band-gap insulators. A compari-
son is made with experiments and the ALDA kernel. Then a
more comprehensive study is made for magnetic excitations
of simple bulk ferromagnetic systems Fe, Co, and Ni, and
Heusler and half-Heusler materials. Again we compare with
experimental data, as well as previous theoretical works.
Finally, in Sec. IV, we give some concluding remarks on the
performance of AGGA.

II. THEORETICAL FORMULATION

When the external perturbation is small, the response of
the system to this stimulus can be studied through a suitable
linear response function and can be expanded in a Taylor
series with respect to the perturbation. The coefficients of
this expansion are the response functions which have useful
information embedded in them, such as the optical absorption
spectra, Pockels effect, optical rectification, second harmonic
generation, Kerr effect, etc. In this paper we primarily focus
on the first order response functions (the so-called linear
response) and particularly on the charge-charge response
(δρ/δvext) and the spin-spin response (δm/δBext), where
ρ(r, t ), vext (r, t ), m(r, t ), Bext (r, t ) correspond to the charge
density, electric scalar potential, magnetization density, and
magnetic field, respectively. For noncollinear systems, the
fully interacting response function is defined as:

χμν (r, r′, t − t ′) = δρμ(r, t )

δV ν
ext (r′, t ′)

, (1)

where ρμ=0;1−3 = [ρ, m], V ν=0;1−3
ext = [vext, Bext]. χ is a 4 × 4

matrix [42,43] of matrices as shown in Fig. 1. When cal-
culating linear response of a stationary state, we can fourier
transform χ to frequency space.

The noninteracting KS linear response functions can be
derived, in terms of the KS spinors φ(r), using first-order
perturbation theory:

χ
μν
0 (r, r′, ω) = lim

η→0

∑
κ

∑
ξ

σμσ ν (fκ − fξ )

× φ∗
κ (r)φξ (r)φκ (r′)φ∗

ξ (r′)

ω + (εκ − εξ ) + iη
, (2)

where κ, ξ are joint indices for the state and band, fκ, fξ

denote the Kohn-Sham occupation numbers, respectively, and
σμ = [I, σ x,y,z] are the Pauli spin matrices with I being the

FIG. 1. The structure of the fully interacting and noninteracting
response functions.

identity matrix. For convenience, Einstein summation is used
from here on.

TDDFT relates this noninteracting response function of the
KS system to that of the interacting system via a Dyson-like
equation (in fourier space):

χμν (r, r′, ω) = χ
μν
0 (r, r′, ω)

+
∫

d3r ′′
∫

d3r ′′′χμδ
0 (r, r′′, ω)

[
f

δγ

H (r′′, r′′′)

+ f δγ
XC (r′′, r′′′, ω)

]
χγν (r′′′, r′, ω), (3)

where f
μν
H (r, r′) = δμ0δν0v(r, r′) is the Hartree kernel,

v(r, r′) = 1/|r − r′| is the Coulomb potential, ω corresponds
to frequency, and f

μν
XC (r, r′, ω) is the XC kernel, which is the

Fourier transform of:

f μν
XC (r, t, r′, t ′) = δVμ

XC(r, t )

δρν (r′, t ′)
, (4)

where Vμ=0;1−3
XC = [vXC, BXC] is the combined XC potential for

the scalar field vXC and vector field BXC.
Since it is convenient to work in reciprocal space for

periodic systems, all quantities are represented as matrices in
reciprocal space vectors G. The Fourier transformed interact-
ing response has the form:

χ
μν

G,G′ (q, ω)

=
∫ ∫

e−i(q+G)·rχμν (r, r′, ω)ei(q+G′ )·r′
d3rd3r ′. (5)

Here G, G′ are the reciprocal lattice vectors and q is the wave
vector of the perturbation.

Conventionally, the excitations are studied in the decoupled
limit where the off-diagonal terms of Fig. 1 are set to zero
(i.e., δm/δvext = 0 = δρ/δBext). This allows us to separate the
dielectric response and magnetic response.

Experimental observables may then be extracted from the
response functions, for example, the inverse dielectric func-
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tion is

ε−1
G,G′ (q, ω) = δG,G′ +

(
4π

q2

)
χ00

G,G′ (q, ω). (6)

The imaginary part of ε−1 gives the EELS whereas the
imaginary part of ε gives the absorption spectrum. Likewise,
the neutron scattering cross section is proportional to the
transverse magnetic response [44]

d2σ

d�dω
∝

{(
1 − κ2

z

)
Im[χzz(q, ω)]

+ 1

4

(
1 − κ2

z

)
Im[χ−+(q, ω) + χ+−(q, ω)]

}
, (7)

where κz = (kf − ki )z/|kf − ki | is related to the q vec-
tor through q = kf − ki and is folded back into the first
Brillouin zone (BZ). Here, the transverse terms comprise
χ−+(= 2χxx + 2iχxy ) and χ+−(= 2χxx − 2iχxy ). The term
χzz does not contribute to the spin-flip excitations, rather it is
the transverse terms of the magnetic susceptibility which give
rise to the Stoner and magnon excitations.

A. GGA kernel

Within DFT, interactions between the electrons are encap-
sulated in the XC potential. However, the exact form of vXC is
not known and approximations are required for all practical
calculations. For linear response studies using time dependent
extension of DFT, one requires the functional derivative of
this vXC w.r.t. the density (i.e., the XC kernel). Here we will
derive the XC kernel for GGA functionals within the adiabatic
approximation (AA). This kernel is semilocal in space and
local in time; for the spin unpolarized case, the XC energy
functional, EXC, depends not only on the density, n(r), but
also on its gradient, ∇n(r), at each point r in space. The XC
potential and kernel can be obtained from first and second
order functional derivatives, respectively, of EXC with respect
to the density, i.e.,

vXC[ρ](r) = δEXC[ρ]

δρ(r)
(8)

fXC[ρ](r, r′) = δ2EXC[ρ]

δρ(r)δρ(r′)
, (9)

where EXC[ρ] = ∫
eXC(ρ,∇ρ)(�r )d3r for the GGA functional

and eXC is the XC energy density.
The variation of the XC energy is defined by:

δEXC = EXC[ρ + δρ] − EXC[ρ]

=
∫

vXC[ρ](r)δρ(r)d3r

+ 1

2

∫ ∫
fXC[ρ](r, r′)δρ(r)δρ(r′)d3rd3r ′ + · · ·

(10)

Taylor expanding the energy density up to first order gives

eXC(ρ + δρ,∇ρ + ∇δρ)(r)

= eXC(ρ,∇ρ)(r) + ∂eXC(ρ,∇ρ)

∂ρ
(r)δρ(r)

+ ∂eXC(ρ,∇ρ)

∂∇ρ
(r) · ∇δρ(r) (11)

leading to the expansion of energy functional,

EXC[ρ + δρ,∇ρ + ∇δρ]

= EXC[ρ,∇ρ] +
∫

d3r
∂eXC(ρ,∇ρ)

∂ρ
(r)δρ(r)

+
∫

d3r
∂eXC(ρ,∇ρ)

∂∇ρ
(r) · ∇δρ(r) (12)

and

δEXC =
∫

d3r

[
∂eXC(ρ,∇ρ)

∂ρ
(r)δρ(r)

+ ∂eXC(ρ,∇ρ)

∂∇ρ
(r) · ∇δρ(r)

]
. (13)

Carrying out integration by parts of the second term gives us:

δEXC =
∫

d3r

[
∂eXC(ρ,∇ρ)

∂ρ
(r)

−
{
∇ · ∂eXC(ρ,∇ρ)

∂∇ρ
(r)

}]
δρ(r). (14)

Comparing Eq. (14) with Eq. (10), we find the XC potential
as:

vXC[ρ](r) = ∂eXC(ρ,∇ρ)

∂ρ
(r) −

{
∇ · ∂eXC(ρ,∇ρ)

∂∇ρ
(r)

}

= ∂eXC(ρ,∇ρ)

∂ρ
(r)

− 2

{
∇ ·

(
∂eXC(ρ,∇ρ)

∂σ
(r)∇ρ

)}
, (15)

where σ = ∇ρ · ∇ρ is often used in practice. Variation of this
potential to first order will give the kernel:

δvXC(r) = vXC[ρ + δρ,∇ρ + ∇δρ](r) − vXC[ρ,∇ρ](r)

= ∂2eXC

∂ρ2
(r)δρ(r) + ∂2eXC

∂∇j ρ∂ρ
(r)∇j δρ(r)

− ∇k

[
∂2eXC

∂ρ∂∇kρ
(r)δρ(r)

+ ∂2eXC

∂∇j ρ∂∇kρ
(r)∇j δρ(r)

]
. (16)

Integrating these terms individually by introducing a delta
function gives us the kernel for GGA functional [33,45,46]

fXC(r, r′) = δ(r − r′)
[
∂2eXC

∂ρ∂ρ
(r′) − ∇′

j

∂2eXC

∂∇j ρ∂ρ
(r′)

]

− ∇′
j

[
[∇′

kδ(r − r′)]
∂2eXC

∂∇j ρ∂∇kρ
(r′)

]
. (17)

Repeating the above derivation for the spin polarized case
(see Appendix) gives us two equations comprising the sym-
metric terms f αα

XC (r, r′), f
ββ

XC (r, r′) and the asymmetric terms
f

αβ
XC (r, r′) = f

βα
XC (r′, r) of the XC kernel matrix, where α and

035151-3



SINGH, ELLIOTT, NAUTIYAL, DEWHURST, AND SHARMA PHYSICAL REVIEW B 99, 035151 (2019)

β label the up and down spins, respectively,

f αα
XC (r, r′) = δ(r − r′)

[
∂2eXC

∂ρα∂ρα

(r′) − ∇′
k

∂2eXC

∂∇kρα∂ρα

(r′)
]

− ∇′
k

[
[∇′

j δ(r − r′)]
(

∂2eXC

∂∇kρα∂∇j ρα

(r′)
)]

(18)

f αβ
XC (r, r′) = δ(r − r′)

{
∂2eXC

∂ρβ∂ρα

(r′)
}

−
{

[∇′
j δ(r − r′)]

(
∂2eXC

∂ρα∂∇j ρβ

(r)

)}

+
{

[∇′
j δ(r − r′)]

(
∂2eXC

∂ρβ∂∇j ρα

(r′)
)}

− ∇′
k

{
[∇′

j δ(r − r′)]
(

∂2eXC

∂∇kρβ∂∇jρα

(r′)
)}

(19)

which is extended to noncollinear cases by using the Kübler’s
method [47], see Eqs. (A9)–(A12).

III. COMPUTATIONAL DETAILS

All calculations are performed using the all-electron full-
potential linearized augmented plane wave electronic struc-
ture code ELK [48] with PW91 (LDA) [49] and PBE (GGA)
[50] functionals. For diamond and LiF, a fcc crystal structure
with experimental lattice spacings of 3.56 Å and 4.02 Å,
respectively, is used. A dense k-point grid is required to
obtain the response functions, hence the BZ is sampled on
a k-point grid of 25 × 25 × 25 for both. The interstitial
density and potential are expanded in a G-point grid of size
36 × 36 × 36 and the response is calculated using G vectors
of length 4 Bohr−1. The number of conduction bands included
in calculation are 20 for LiF and 36 for diamond. The method
to obtain response functions is a two-step procedure, firstly
a ground-state calculation is done to obtain the converged
density and potentials. The scissor operator has been used
to correct the optical band gap by 1.306 eV and 5.06 eV for
diamond and LiF, respectively. Then the EELS spectra of LiF
and diamond are obtained from the LDA and GGA kernels
using the corrected band gaps.

The magnon spectra are highly sensitive to a number of
parameters, hence convergence has to be checked with respect
to the k-point grid and the number of G vectors. In these
calculations we have used a 40 × 40 × 40 k-point grid. The
response functions are expanded in G space with the length of
G vector up to 6 Bohr−1. States up to 30 eV above the Fermi
level are included for calculation of the response function.
A smearing parameter, η, with the value 0.027 eV has been
used to smear out the delta function at the excitation energies.
The experimental lattice constant used for Co2MnSi is 5.640
[51] Å and for NiMnSb [52] is 5.897 Å. Additional high
convergence parameters for magnon spectra were used: (1) the
maximum length of |G| for expanding the interstitial density
and potential as 12 Bohr−1 and (2) RMT × max|G + k| as 8.

These parameters resulted in minimum Goldstone error and
then the spectra was shifted to satisfy the Goldstone theorem.

IV. RESULTS

A. Semiconductor spectra

It is well known that the q-dependent behavior of the
XC kernel is of vital importance for predicting the optical
response of materials. For example, in the long-wavelength
limit (q → 0), the XC kernel must go as 1/q2 in order to
capture excitonic effects [8,11,29,32,59,60]. However, the
first rung on Jacob’s ladder, the ALDA, does not display any
q dependence, owing to the local approximation for the XC
energy. This explains why ALDA does not yield excitonic
peaks [8]. The second rung consists of semilocal functionals
which include information not just about the density but also
its gradients. In this case, it has been shown that the AGGA
kernel shows q2 behavior [61]. Hence we explore if this has
any impact on the EELS spectra.

In Fig. 2(a) we plot the EELS for (i) LiF, which is a large
band-gap material with a bound exciton and (ii) diamond
which is a medium band-gap material with excitonic effects
appearing as a shift in the spectral weight towards lower ener-
gies. For LiF, we can see that AGGA shifts the peak energies
for q = 0.24�X, 0.48�X towards lower energies. But there
are very little differences w.r.t. the ALDA results. Both ALDA
and AGGA fail to capture the excitonic peak at 13 eV as
neither has the correct 1/q2 behavior in the long-wavelength
limit. Outside the first BZ (q = 1.52�X), ALDA and AGGA
exhibit similar behavior. For diamond, neither AGGA nor
ALDA captures the shift in spectral weight as can be seen
in Fig. 2(b). In fact there is little difference between the
results obtained using the two approximations. To conclude

FIG. 2. Electron energy loss spectra given by imaginary part of
the inverse dielectric tensor for different experimental values of q
(indicated in the figure) as a function of photon energy for (a) LiF
and (b) diamond, using the AGGA kernel (red dashed), the ALDA
kernel (black line), and the experimental data [53] (green dots).
Constrained by the k-point grid, the calculations are at q values as
0.24�X, 0.48�X, and 1.52�X for LiF and 0.64�X and 1.36�X for
diamond.
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TABLE I. Equilibrium lattice parameter a0 (in Å) is calculated
using the energy-volume curve fitted to the third order Birch-
Murnaghan equation of state. The magnetic moments (in μB ) cal-
culated at these a0 are given in columns 5 and 6. The experimental
magnetic moments, mexp. and lattice parameters, a0 (exp.), are also
listed.

a0 (exp.) a0 (LDA) a0 (GGA) mexp. mLDA mGGA

Ni(fcc) 3.524a 3.436 3.527 0.60b 0.591 0.636
Co(fcc) 3.539c 3.429 3.525 1.52d 1.525 1.641
Fe(bcc) 2.8665e 2.743 2.836 2.08f 1.996 2.174

aReference [62].
bReference [63].
cReference [64].
dReference [65].
eReference [66].
fReference [67].

this section, for EELS, the additional q dependence of the
AGGA kernel does not lead to any significant improvement
over the ALDA kernel.

B. Spin excitation spectra

An ab initio computational method, given the atomic com-
position, should be able to predict the equilibrium geometry.
Having found the minimum energy crystal structure from
ground-state calculations, we can then calculate the excited
state properties, all without reference to experimental data.
Only those methods which follow this prescription can be con-
sidered fully predictive. However, as we wish to disentangle
the effect of the kernel on the spin excitation spectra from that
of the lattice spacing, we will first use experimental lattice
spacings before exploring the dependence on equilibrium
lattice constant.

The ground-state DFT calculations with experimental and
optimized lattice parameters are summarized in Table I. From

FIG. 4. The transverse response at certain q values for (a) nickel
and (b) iron using ALDA (black lines) and AGGA (red dashed)
kernels.

this we conclude that (i) GGA is very good in reproducing the
structures of materials whereas (ii) LDA is better in predicting
the magnetic moments.

Within TDDFT the magnon spectra of a system can be
calculated from the transverse response function χ−+(q, ω),
which is found using the Dyson-like equation, Eq. (3). The
excitations in χ−+(q, ω) originate from two sources: (1)
renormalized poles of the KS response χ0 corresponding to
the Stoner continuum of single-particle spin-flips and (2)
additional peaks created by the XC kernel corresponding to
spin-wave excitations.

To find the magnon dispersion, we calculate
Im{χ−+(q, ω)} for each q value, extract the magnon peak
position, and then plot these as a function of q. This is
shown in Fig. 3 for nickel, cobalt, and iron [at a0(exp.) from
Table I]. Experimental data and past ALDA results obtained

FIG. 3. Magnon dispersion spectrum for (a) fcc nickel, (b) fcc cobalt along the �X direction, and (c) bcc iron along the �N direction
calculated using the ALDA kernel (black dots) and AGGA kernel (red triangles). A comparison is made with reported theoretical work
[34,35,37,54,55] and also the experimental result (green squares) taken from Mook et al. [44,56] for nickel, Balashov et al. [57] for cobalt, and
Lynn [58] for iron.
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FIG. 5. The imaginary part of the interacting response of nickel, cobalt, and iron at the experimental lattice constants using the ALDA
kernel [(a),(c),(e)] and the AGGA kernel [(b),(d),(f)] and the experimental results [56–58] (white dots).

within TDDFT or MBPT approach [34,37–40,54] are also
presented. For Ref. [38], the LSDA corrected values have
been taken. Our ALDA results are consistent with previously
reported data. Most importantly we note that the AGGA
kernel does not offer any improvement over ALDA spin
excitation spectra. In the following, we will discuss each
material individually before commenting on the general
behavior of the AGGA XC kernel.

For Ni, Fig. 3(a), both the ALDA and the AGGA show
quantitatively the same behavior from the BZ center to |q| =
0.4. As we move further away from the zone center, the
AGGA kernel tends to deviate from ALDA until it becomes

≈80 meV higher in energy at the zone boundary. For Co,
Fig. 3(b), the experimental results are well captured by both
ALDA and AGGA calculations. For Fe, Fig. 3(c), in con-
trast to ALDA which reproduces the experimental values,
the AGGA dispersion overestimates the magnon energies.
Beyond half �N, the transverse response function obtained
using AGGA becomes too broad to assign a single energy to
the excitation peaks although some features are still present,
as can be seen in Fig. 4.

The strength and width of the peak in Im{χ−+(q, ω)}
is related to the scattering amplitude and lifetime of the
magnon, respectively. To visualize how these properties

035151-6



ADIABATIC GENERALIZED GRADIENT APPROXIMATION … PHYSICAL REVIEW B 99, 035151 (2019)

FIG. 6. Imaginary part of the noninteracting response function for nickel using (a) LDA and (b) GGA and also the corresponding ALDA
and AGGA theoretical magnon spectra for comparison (cyan triangles).

change throughout the BZ, we can make a 2D contour plot
of Im{χ−+(q, ω)}. These are shown for both ALDA and
AGGA in Fig. 5 for Ni, Co, and Fe. Beginning again with
Ni, we see that the peaks in Im{χ−+(q, ω)} obtained by using
ALDA [Fig. 5(a)] are stronger in intensity and better resolved
than AGGA [Fig. 5(b)]. There exists a high probability of
observing a magnon at the BZ boundary with ALDA whereas
it is suppressed significantly beyond q = 0.5�X with AGGA.
We also observe a strong suppression in the magnon intensity
between |q| = 0.1 and 0.2 for both AGGA and ALDA [see
Figs. 5(a) and 5(b)]. Experimentally, Paul et al. [56] measured
a disruption to the magnon dispersion at |q| = 0.2, where they
observed a split into optical and acoustic branches. While
neither ALDA nor AGGA shows two branches, both correctly
predict an abrupt change in the magnon dispersion around
this value of q. This is due to the Stoner spin-flip transitions
[Eq. (2)] having energy comparable to the magnon energy
causing strong interference and intensity suppression [70] at
these values of q (see Fig. 6).

In contrast to Ni, the experimental dispersion for fcc Co,
obtained by Balashov et al. [57], along [100] does not show

any optical branches. Both ALDA and AGGA behave the
same and show good agreement with experiment, with AGGA
being slightly lower in energy. Observing the full transverse
response function over the whole BZ [Figs. 5(c) and 5(d)] we
again see a reduction in the peak strength and suppression of
the magnons by AGGA as compared to ALDA. Qualitatively,
AGGA also reproduces the jump in magnon energy witnessed
in experiments around |q| = 0.6, although at a higher |q|
value of 0.8.

For Fe, we see significant broadening in the AGGA trans-
verse response for |q| > 0.5 [Figs. 5(f) and 6(b)] to such an
extent that it becomes impossible to assign a single peak posi-
tion. We note that in Ref. [37] a jump to a higher branch occurs
in this region. Experimental data reported in Ref. [71] do see
magnon excitations in this region, although with a large full
width at half maximum indicating strong suppression. This
suppression can also be seen in our results due to interaction
with the Stoner continuum.

We now test the predictive power of LDA and GGA by
comparing their behavior for Ni, Co, and Fe at the exper-
imental and optimized lattice parameters (see Fig. 7). We

FIG. 7. The magnon spectrum with the theoretical and experimental lattice parameters for (a) fcc nickel, (b) fcc cobalt along the �X
direction, and (c) bcc iron along the �N direction calculated using the ALDA kernel (dots) and AGGA kernel (triangles). The lattice parameters
are given in Table I.
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FIG. 8. (a) The magnon spectra of Co2MnSi using the ALDA
(black dots) and AGGA (red triangles) kernels and compared with
Buczek calculations [68] with the ALDA kernel (violet triangle left).
(b) The magnon spectra of NiMnSb using ALDA and AGGA kernel
and the experimental results [69] (green squares).

find that the AGGA magnon spectra are more sensitive to the
lattice parameters than the ALDA. In most cases, the AGGA
results at the corresponding GGA parameter (a0)theo are lower
in energy than at (a0)exp, although still overestimated w.r.t.
experiment.

Next we investigate Heusler and half-Heusler materials
Co2MnSi and NiMnSb which, due to their geometry of inter-
locking magnetic fcc lattices, can (in principle) have multiple
magnon branches [68,72]. In Fig. 8, the AGGA magnon
spectra of Co2MnSi and NiMnSb are plotted along with
the experimental and ALDA calculations. For Co2MnSi [see
Fig. 8(a)] both, an acoustic branch and an optical branch are
observed. An increase in the energies of the acoustic branch is
noted when compared with earlier ALDA results [68], based
on loss function. However, energies of the optical branch with
AGGA are within the same range as reported by Buczek
[68] using ALDA. For NiMnSb [Fig. 8(b)], both ALDA and
AGGA predict only an acoustic branch, as is also the case
experimentally. This is likely due to Ni not possessing a strong
local moment as most of the total moment is localized on
the Mn atoms. In this case AGGA severely overestimates the
magnon energies.

Finally, we offer the underlying explanation as to why
AGGA tends to overestimate the magnon energies. The role
of the XC kernel is to transform the excitation structure of
Im{χ−+

0 } into the true response. From the Stoner single-
particle excitations, contained in Im{χ−+

0 }, it must create the
magnon peak. At q = 0, the gap in Im{χ−+

0 } is related to
the exchange splitting between spin-up and spin-down states.
This splitting dictates the position of the Stoner continuum
across the BZ. In Figs. 6(a) and 6(b), we plot Im{χ−+

0 }
for LDA and GGA, where we observe that the Stoner gap
has increased by approximately 60 meV for nickel. This
increment stems from the fact that GGA increases the ex-
change splitting in Ni by 59.9 meV compared to LDA, leading
to the shift in Stoner continuum towards higher energies. At
q = 0, the symmetries of the response equation will enforce

Goldstone’s theorem, however the increase in the exchange
splitting will cause the magnon energies also to increase as
we move across the zone. This can be seen in Fig. 6 where
both ALDA and AGGA have a similar behavior relative to
the background Stoner excitations. Similar behavior was also
observed for other materials, e.g., for Fe there is ≈150 meV
increase and even a 50% increase of the LDA Stoner gap in
χ−+

0 for the half-metal NiMnSb. The connection between the
exchange splitting and the magnon energies was previously
reported in Ref. [37] where the LDA value was artificially
reduced leading to lower magnon energies. Given that LDA is
well known to overestimate the exchange splitting, a further
enhancement on going from LDA to GGA leads to large
overestimation of the magnon energies.

V. CONCLUDING REMARKS

We have studied the charge and spin excitation spectra us-
ing the gradient dependent AGGA XC kernel within the linear
response regime of TDDFT. The calculated EELS for LiF
and diamond show that the AGGA kernel performs slightly
better than the ALDA kernel, although, as would be expected,
neither captures excitonic effects. For magnon dispersions,
we found that AGGA, in general, does not systematically
improve upon ALDA. This is due to the fact that the GGA XC
functional overestimates the exchange splitting which in turn
leads to higher magnon energies. Furthermore, the intensity of
the peaks is greatly suppressed in the spectra obtained by the
AGGA XC kernel due to interaction of spin waves with the
Stoner continuum. This suppression is also observed in ex-
periments, suggesting AGGA might provide better qualitative
understanding than ALDA. Heusler materials consisting of
multiple magnetic sublattices were also studied where it was
found that AGGA is better at resolving higher-energy optical
magnon branches.

In this work, we principally investigated the spin-spin
response of collinear ferromagnetic systems, which greatly
simplified the XC kernel. However, the AGGA XC kernel
derived here is valid for all systems, and, in particular, has
interesting terms for the spin-charge response and for non-
collinear systems. This will be explored in future work.

It is important to test the performance of adiabatic func-
tionals in TDDFT as their behavior can be quite different
from the ground-state case. Only by implementing, assessing,
and understanding this behavior can we gain insight into the
relevant features necessary for accurate XC kernels, which
can guide us towards improvement or in developing new
approximations in TDDFT.

APPENDIX

For the spin polarized case, the exchange-correlation (XC)
energy functional, EXC, depends on spin-up, ρα (r), spin-down,
ρβ (r), densities and their gradients, ∇ρα (r),∇ρβ (r). The XC
potential, vXC, and the kernel, fXC, can be obtained by the first
and second order functional derivative of EXC with respect to
the densities. Now adding variation in the two densities and
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their gradients and Taylor expanding one gets the XC energy density, eXC, (up to first order only).

eXC(ρα (r) + δρα (r), ρβ (r) + δρβ (r),∇ρα (r) + ∇δρα (r),∇ρβ (r) + ∇δρβ (r))

= eXC(ρα (r), ρβ (r),∇ρα (r),∇ρβ (r)) + ∂eXC

∂ρα

(r)δρα (r) + ∂eXC

∂ρβ

(r)δρβ (r) + ∂eXC

∂∇ρα

(r)∇δρα (r) + ∂eXC

∂∇ρβ

(r)∇δρβ (r) (A1)

and

EXC[ρα (r) + δρα (r), ρβ (r) + δρβ (r),∇ρα (r) + ∇δρα (r),∇ρβ (r) + ∇δρβ (r)]

= EXC[ρα (r), ρβ (r),∇ρα (r),∇ρβ (r)] +
∫

d3r

[
∂eXC

∂ρα

(r)δρα (r) + ∂eXC

∂ρβ

(r)δρβ (r) + ∂eXC

∂∇ρα

(r)∇δρα (r) + ∂eXC

∂∇ρβ

(r)∇δρβ (r)

]

δEXC =
∫

d3r

[
∂eXC

∂ρα

(r)δρα (r) + ∂eXC

∂ρβ

(r)δρβ (r) + ∂eXC

∂∇ρα

(r)∇δρα (r) + ∂eXC

∂∇ρβ

(r)∇δρβ (r)

]
(A2)

As we know

δEXC =
∫

d3rvα
XC(r)δρα (r) +

∫
d3rvβ

XC(r)δρβ (r) + 1

2

∫ ∫
d3rd3r ′f αα

XC (r, r′)δρα (r)δρα (r′)

+ 1

2

∫ ∫
d3rd3r ′f αβ

XC (r, r′)δρβ (r)δρα (r′) + 1

2

∫ ∫
d3rd3r ′f βα

XC (r, r′)δρα (r)δρβ (r′)

+ 1

2

∫ ∫
d3rd3r ′f ββ

XC (r, r′)δρβ (r)δρβ (r′), (A3)

so we could either expand Eq. (A1) to second order or use v
α,β
XC , where f αα

XC is the change in vα
XC when ρα changes and f

αβ
XC is the

change in vα
XC when ρβ changes, and similarly for the other spin channel. Using integration by parts in Eq. (A2), we obtain the

XC potential for the two spin densities as:

vα
XC[ρα, ρβ,∇ρα,∇ρβ](r) = ∂eXC

∂ρα

(r) − ∇j

[
∂eXC

∂∇j ρα

(r)

]
(A4)

and

vβ
XC[ρα, ρβ,∇ρα,∇ρβ](r) = ∂eXC

∂ρβ

(r) − ∇j

[
∂eXC

∂∇j ρβ

(r)

]
. (A5)

Now variation of vα
XC w.r.t. ρ gives the kernels f αα

XC (r, r′) and f
αβ

XC (r, r′) as

δvα
XC(r) = vα

XC[ρα (r) + δρα (r), ρβ (r) + δρβ (r),∇ρα (r) + ∇δρα (r),∇ρβ (r) + ∇δρβ (r)] − vα
XC[ρα, ρβ,∇ρα,∇ρβ]

=
{

∂2eXC

∂ρ2
α

(r)δρα (r) +
(

∂2eXC

∂∇kρα∂ρα

(r)

)
∇r

kδρα (r) − ∇j

[(
∂2eXC

∂ρα∂∇jρα

(r)

)
δρα (r)

]

− ∇j

[(
∂2eXC

∂∇kρα∂∇jρα

(r)

)
∇kδρα (r)

]}
+

{
∂2eXC

∂ρβ∂ρα

(r)δρβ (r) +
(

∂2eXC

∂∇kρβ∂ρα

(r)

)
∇kδρβ (r)

− ∇j

[(
∂2eXC

∂ρβ∂∇j ρα

(r)

)
δρβ (r)

]
− ∇j

[(
∂2eXC

∂∇kρβ∂∇j ρα

(r)

)
∇kδρβ (r)

]}

=
∫

f αα
XC (r, r′)δρα (r′)d3r ′ +

∫
f αβ

XC (r, r′)δρα (r′)d3r ′. (A6)

Solving each term separately by introducing an integration with a delta function, we obtain the kernels f αα
XC (r, r′) and f

αβ
XC (r, r′)

f αα
XC (r, r′) = δ(r − r′)

[
∂2exc

∂ρα∂ρα

(r) −
(

∇k

∂2exc

∂∇kρα∂ρα

(r)

)]
− ∇′

k

[
[∇′

j δ(r − r′)]
(

∂2exc

∂∇kρα∂∇j ρα

(r′)
)]

(A7)

f αβ
XC (r, r′) = δ(r − r′)

{
∂2eXC

∂ρβ∂ρα

(r′)
}

−
{

[∇′
j δ(r − r′)]

(
∂2eXC

∂ρα∂∇j ρβ

(r)

)}

+
{

[∇′
j δ(r − r′)]

(
∂2eXC

∂ρβ∂∇j ρα

(r′)
)}

− ∇′
k

{
[∇′

j δ(r − r′)]
(

∂2eXC

∂∇kρβ∂∇j ρα

(r′)
)}

. (A8)
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For noncollinear systems, the kernel comprises charge-charge f 00
XC , charge-spin f 0i

XC , and spin-spin f
ij

XC terms which consist of the
above f αα

XC and f
αβ

XC terms:

f 00
XC = 1

4

[
f ↑↑

XC (r, r′) + f ↑↓
XC (r, r′) + f ↓↑

XC (r, r′) + f ↓↓
XC (r, r′)

]
(A9)

f 0i
XC (r, r′) = 1

4

[
f ↑↑

XC (r, r′) − f ↑↓
XC (r, r′) + f ↓↑

XC (r, r′) − f ↓↓
XC (r, r′)

]
m̂i (r′) (A10)

f i0
XC (r, r′) = f 0i

XC (r′, r) (A11)

f ij
XC (r, r′) = 1

4

[
f ↑↑

XC (r, r′) − f ↑↓
XC (r, r′) − f ↓↑

XC (r, r′) + f ↓↓
XC (r, r′) − |BXC|

|m|
]
m̂i (r)m̂j (r′) + |BXC|

|m| I3, (A12)

where I3 is the 3 × 3 identity matrix, m̂ is the unit magnetization vector, |BXC| is the magnitude of magnetic field, and |m| is the
magnitude of the magnetization.
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[54] E. Şaşıoğlu, A. Schindlmayr, C. Friedrich, F. Freimuth, and S.

Blügel, Phys. Rev. B 81, 054434 (2010).
[55] A. Schindlmayr, C. Friedrich, E. Şaşıoğlu, and S. Blügel, Z.
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