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and unique construction

Ryan Requist' and E. K. U. Gross'?
"Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
2Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

® (Received 23 September 2018; published 12 March 2019)

An interacting lattice model describing the subspace spanned by a set of strongly correlated bands is rigorously
coupled to density functional theory to enable ab initio calculations of geometric and topological material
properties. The strongly correlated subspace is identified from the occupation number band structure as opposed
to a mean-field energy band structure. The self-consistent solution of the many-body model Hamiltonian and a
generalized Kohn-Sham equation exactly incorporates momentum-dependent and crystal-symmetric correlations
into electronic structure calculations in a way that does not rely on a separation of energy scales. Calculations

for a multiorbital Hubbard model demonstrate that the theory accurately reproduces the many-body macroscopic

polarization.
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I. INTRODUCTION

Predicting electronic properties of strongly correlated ma-
terials is an enduring challenge in condensed matter physics.
Homogeneous electron gas based semilocal density func-
tional approximations do not capture the strong correlations
between electrons hopping within a manifold of localized
states, as present in Mott insulators [1-4], cuprate supercon-
ductors [5-9], and heavy-fermion compounds [10-14]. While
progress has been made, there remains a need for ab initio
computational methods capable of accurately predicting the
emergent phenomena, phase diagrams and sensitive depen-
dence on external parameters in such systems.

Density functional theory (DFT) calculations of correlated
solids may encounter two types of deficiencies. First, a cal-
culation may deliver a qualitatively incorrect density or total
energy. By virtue of the Hohenberg-Kohn theorem [15], these
two quantities should be correct if the exchange-correlation
functional is accurate. The inability of semilocal approxima-
tions to correctly predict orbital ordering in some compounds,
e.g., KCuF; [16-19], LaMnO; [19-22], and KCrF; [23,24],
implies that not only the densities and energies but also
the structures are incorrect, since they lack the associated
symmetry-lowering Jahn-Teller distortion. Similarly, spin-
DFT [25,26] calculations of the spin state or pressure-induced
spin state crossover in transition metal atoms in oxides [27]
may fail qualitatively, or suffer from large uncertainties, as
seen for Fe in MgO [28,29] and MgSiO; [30-32].

A second type of deficiency occurs when the Kohn-Sham
system [33], an auxiliary noninteracting system that repro-
duces the density of the interacting system, does not pro-
vide a qualitatively correct reference state for subsequent
higher-level calculations. In the absence of spin-symmetry
breaking, Kohn-Sham band structures are metallic for Mott
insulators and as such do not provide an appropriate reference
state for calculations of the macroscopic polarization and
related quantities. An important unsolved problem is to find a
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way to perform accurate ab initio calculations of topological
invariants in strongly correlated systems. Topological invari-
ants were originally formulated in terms of the Bloch states
of a mean-field band structure [34-40], almost invariably
the Kohn-Sham band structure, an approach that may give
incorrect results in strongly correlated systems. Although
interacting topological invariants can be rigorously defined
in terms of the Berry curvature of the correlated many-body
wave function [41,42], those formulas have not been applied
in ab initio calculations of real materials due to the formidable
difficulty of approximating the correlated wave function of an
infinite solid. The mean-field-based geometric phase formula
for the macroscopic polarization [43,44] has been similarly
generalized to interacting systems [45], but the latter formula
has not been applied to real materials for the same reason.

To study the phases and physical properties of strongly
correlated materials, one typically introduces an effective
Hamiltonian defined on a lattice and comprising a small but
relevant subset of low-energy degrees of freedom. Thus, the
single narrow band in the Hubbard model [46-49] represents
the Mott insulator-metal transition in transition metal oxides,
while the coexistence of localized and itinerant electrons in
the periodic Kondo and Anderson models [14,50,51] embod-
ies the key physics of heavy fermion compounds. At this level
of theory, the interaction between high-energy and low-energy
degrees of freedom is one-way: the coupling to high-energy
states is assumed to renormalize the parameters of the low-
energy Hamiltonian, but the effects of many-body quantum
fluctuations within the correlated low-energy sector on the
high-energy degrees of freedom are neglected. Effective low-
energy models can be rigorously derived by a procedure called
downfolding [52-54].

The downsides of model Hamiltonian approaches are am-
biguities in the choice of the model and uncertainties in the
model parameters. Quantitative results depend on the precise
values of the model parameters, which are often estimated
from ab initio calculations or fixed empirically by comparison
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with experiment. Empirical approaches have limited predic-
tive power, and often there are more relevant parameters than
could conceivably be determined by fitting to experiment.
DFT has long been used to guide the choice of the relevant
orbital, spin, and lattice degrees of freedom to be included
in a model Hamiltonian and to estimate their mutual inter-
actions. The one-body hopping and on-site potential terms
of approximate tight-binding models are routinely derived
by fitting [55-57] Kohn-Sham band structures with Slater-
Koster parameters [58] or by transforming the Kohn-Sham
Hamiltonian from the basis of Bloch states to a basis of
localized (Wannier) functions [59-63].

The definition of two-body interaction parameters, on the
other hand, is fraught with difficulty. The largest Coulomb
matrix element is the Hubbard interaction U between two
electrons occupying the same atomic-like (e.g., d or f) or-
bital. The definition U = E(d"') + E(d"~") — 2E(d") [64]
in terms of atomic configurations with different numbers of
localized d electrons self-consistently screened by conduction
electrons [65] agrees well with photoemission spectra for
very localized orbitals, such as the 4f orbitals in rare-earth
metals [66], but still needs to be rigorously connected to
an interaction term U4y in a model Hamiltonian. If one
associates a localized Wannier function w;(r) = w(r — R;) to
the lattice site i of a model Hamiltonian, then it is natural
to define U as the on-site matrix element of the Coulomb
interaction, U = (w;w;|V,.|w;w;) [46,49,67]. However, this
gives unrealistically large values, since the bare Coulomb in-
teraction V,.(r, r') = €?/|r — 1’| should be screened [68-71].
Interatomic and interorbital Coulomb matrix elements are
usually not negligible and, if not included in the model
Hamiltonian, contribute to further renormalizing the value
of U [72,73]. Screening is accounted for in the constrained
random phase approximation [74-76], where Coulomb ma-
trix elements are defined as U;j; = (w,-w_,-|6"Vee|wkw1). The
dielectric function € is calculated from an ab initio irreducible
electronic polarizability in which the contribution from a
low-energy correlated subspace has been subtracted out to
avoid double-counting screening channels that are already
present in the many-body model. Since the width and shape
of conventional Wannier functions depend on the gauge of
the Bloch functions from which they are constructed, the Ujj;
determined in this way are dependent on the specific gauge
choices that are made.

The constrained occupation method in DFT provides a
seamless estimate of effective interaction parameters by relat-
ing them to how the energy changes in response to changes in
the occupation or magnetic moment of a local orbital [77-81].
Although the effective U is thus calculated self-consistently
in the presence of all screening channels and with only the
information contained in the exchange-correlation functional,
it still depends on the arbitrary definition of the local or-
bital whose occupation is to be constrained. All existing
approaches to the calculation of model parameters suffer from
this fundamental nonuniqueness. Even the one-body terms
evaluated in Wannier-based tight-binding approaches are not
unambiguously defined, as the hopping amplitudes depend
implicitly on the many-body configuration of the relevant
local orbitals [80,82] and should be renormalized by Coulomb
interactions [72].

A general procedure for deriving effective low-energy
models is to integrate out the high-energy degrees of freedom.
The Hamiltonian for the high-energy sector and the interac-
tion terms that couple the high-energy and low-energy sectors
are “downfolded” [52—54] into an effective operator that acts
on the low-energy Hilbert space, thus defining an effective
low-energy model with renormalized Hamiltonian parameters
[73,83]. This strategy has developed into a widely used ab
initio downfolding method [74-76,84-94]. After defining an
energy window for the construction of localized Wannier
functions and choosing a correlated subspace spanned by
Wannier functions of specific orbital character, the frequency-
dependent interaction parameters of an effective low-energy
model are calculated by applying the constrained random
phase approximation to the disentangled band structure. The
effective low-energy model depends on the number and char-
acter of the Wannier orbitals in the correlated subspace, as
well as the energy window and gauge choices used in con-
structing the Wannier functions [75,76].

Downfolding methods are justified when there is a sepa-
ration of energy scales. In ab initio downfolding methods,
the separation into low- and high-energy subspaces, as well
as the definition of the Wannier orbital basis for the many-
body model, are based on the mean-field Kohn-Sham band
structure. The low-energy localized Wannier orbitals are cho-
sen as the degrees of freedom to be correlated at a higher
level of theory by solving the many-body model [75,76,93].
Another approach to downfolding is to start from an ab initio
quantum Monte Carlo calculation and use a fitting procedure
to determine the effective Hamiltonian that best reproduces
the two-body reduced density matrix in a low-energy sector
[95].

Many materials of current interest have complex multi-
band character with several competing interactions, involv-
ing charge, spin, orbital and lattice degrees of freedom,
making it hard to arrive at a unique model Hamiltonian.
In several cases, multiple different models have been intro-
duced to describe the same material property; for example,
one-band [5,96] and three-band [97-100] extended Hubbard
models for high-T, cuprate superconductors with parameters
estimated early on from DFT band structure calculations
[60,61,79,81,83,101-103]; a Kane-Mele-type model [104]
and a Kitaev-Heisenberg model [105,106] with a raft of ad-
ditional interactions [107—117] for sodium iridate (Na,IrO3)
and its zigzag spin ordering [109,111,118], which has also
been studied with first-principles calculations [119-122];
one-band [123-126] and multiband [127] Hubbard models,
possibly with additional interlayer coupling [128,129], spin-
orbit coupling [130], disorder [126,131-133], and Hubbard-
Holstein renormalization [134] effects, for the Mott [135,136]
and superconducting [125,137,138] phases in the charge den-
sity wave state [139,140] of the transition metal dichalco-
genide 17-TaS,. The challenges one faces in defining a unique
model Hamiltonian make it difficult to reach agreement on
the underlying physical explanation for the observed phases
and emergent phenomena, particularly for cuprate supercon-
ductors, where various issues have been debated for decades
[141]. Does every material have a model Hamiltonian that
is unique in some well-defined sense for a chosen subset of
variables?
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While DFT is the standard framework for itinerant, nearly
free-electron-like states and model Hamiltonians are widely
used for strongly correlated localized states, both approaches
have limitations when local and itinerant electrons coexist.
The advantages of treating localized and itinerant electrons
differently was appreciated long ago in the works of Ander-
son, Hubbard, Kanamori, Gutzwiller, and others [46—49,67].
Several methods that combine model Hamiltonians with DFT
have since been developed. Most approaches involve a map-
ping to an auxiliary Anderson impurity model, i.e., they single
out an atomic-like orbital with strong on-site interactions and
treat it as an impurity that hybridizes with a band of non-
interacting electrons representing the remaining delocalized
degrees of freedom of the solid. In DFT+dynamical mean
field theory (DFT+DMFT) [84,142-144], the frequency-
dependent hybridization function of the Anderson impurity
model is determined by requiring self-consistency between
the local lattice Green’s function calculated within DFT
and the impurity Green’s function of the Anderson model.
In the DFT+numerical renormalization group (DFT+NRG)
approach [145-149], frequency-independent impurity model
parameters are determined by equating the mean-field scat-
tering phase shifts of the Anderson model to the scatter-
ing phase shifts calculated within DFT. In density matrix
embedding theory (DMET), the Schmidt decomposition be-
tween a few localized states and the rest of the system leads
to an effective Anderson model in which the frequency-
independent coupling to bath states is determined by imposing
self-consistency on the local reduced density matrix [150].
In site occupation embedding theory [151,152], one solves
self-consistently for the site occupation numbers of a lattice
model, with Hubbard interactions turned on only in a fragment
consisting of a few sites, in the presence of an embedding
potential derived from a bath correlation energy functional.

By limiting correlations to the impurity model subspace,
DFT+DMFT and all impurity-based embedding approaches
explicitly break lattice translational symmetry in the corre-
lated part of the problem. As a result, they do not provide
information on nonlocal momentum-dependent correlations.
This will cause inaccuracies in the calculation of geometric
and topological quantities, which are specifically related to
the k dependence of the single-particle Bloch functions in the
mean-field case and the total quasimomentum dependence of
the correlated wave function in the interacting case. Geomet-
ric and topological properties are therefore sensitive to the
momentum dependence of two-body correlations in strongly
correlated systems.

In this paper, we propose an ab initio theory that rigor-
ously couples DFT to a unique many-body lattice model.
The strongly correlated subspace described by the lattice
model is chosen by selecting a subset of natural occupa-
tion number bands (k-dependent eigenvalues of the one-body
reduced density matrix) that are isolated from all others.
Since natural occupation number bands are intrinsic vari-
ables directly calculable from the many-body wave function
without the introduction of auxiliary mean-field quantities,
they may provide a more accurate partitioning into strongly
and weakly correlated subspaces than a partitioning based
on mean-field energy bands. The one-body reduced density
matrix is invariant with respect to the symmetry group of the

crystal, and therefore its eigenfunctions, called natural Bloch
orbitals, transform exactly as mean-field Bloch functions do
and can be labeled by a wave vector k that is an element of
the true Brillouin zone of the crystal. The many-body model
Hamiltonian expressed in the subspace of strongly correlated
natural Bloch orbitals therefore preserves lattice translational
symmetry and all other symmetries of the crystal. Since the
Hamiltonian model parameters are frequency independent,
the many-body problem can be solved more efficiently than
models with frequency-dependent parameters, for which a
Lagrangian formalism is necessary. The lack of frequency
dependence is an exact feature of the theory and does not
imply that dynamical correlations are neglected.

Our theory provides a practical way to make ab initio
calculations of geometric and topological properties in
strongly correlated systems. It has recently been shown that
the natural Bloch orbitals, natural occupation numbers and
their conjugate phases, which combine to form a set of natural
orbital geometric phases, contain most of the information
about the effects of many-body correlations on geometric
and topological quantities in the Rice-Mele-Hubbard model
[153]. Since these variables are included in our theory through
the self-consistent solution of the many-body lattice model
and a generalized Kohn-Sham equation, we expect to obtain
accurate results for geometric and topological quantities in
real systems. These quantities can be problematic in standard
DFT. For example, the King-Smith—Vanderbilt formula [43]
for the macroscopic polarization is undefined for Mott insu-
lators and other systems for which the Kohn-Sham system is
metallic. Calculating topological invariants in terms of mean-
field Bloch states is similarly problematic, since it is only by
neglecting the interaction-induced broadening of the mean-
field band structure that one obtains a quantized result. In
contrast, the natural occupation numbers form exact, unbroad-
ened bands irrespective of the interaction strength. Hence,
topological invariants calculated in terms of the natural Bloch
orbitals are precisely quantized [153]. Quantum Monte Carlo
methods have been used to evaluate many-body topological
invariants in correlated model systems [154]. Although the ap-
plication of such many-body methods to real systems with all
electronic degrees of freedom is computationally prohibitive,
they could be used instead of exact diagonalization to solve
the model Hamiltonian in our theory, which self-consistently
retains all electronic degrees of freedom in a generalized DFT
framework.

Our main results from numerical calculations for a two-
orbital Hubbard model are (i) a demonstration that two
strongly correlated natural occupation number bands split off
from the weakly correlated bands as the on-site interaction U
increases and (ii) a demonstration that our theory accurately
predicts the many-body macroscopic polarization in strongly,
weakly and intermediately correlated regimes of the model.

The article is organized as follows. In Sec. II, we present
the fundamentals of the theory. In Sec. III, we define the
two-orbital Hubbard model for which all calculations are
made. In Sec. IV, we calculate the exact natural occupation
number band structure and demonstrate the partitioning into
weakly and strongly correlated bands. In Sec. V, we evaluate
the model Hamiltonian for the strongly correlated bands and
investigate its density dependence. In Sec. VI, we calculate the
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many-body polarization and verify that it is given correctly in
our theory. We provide conclusions and an outlook on future
challenges in Sec. VII.

II. THEORY

Our theory is based on the idea of partitioning the natural
occupation number bands into weakly and strongly correlated
subsets and treating the latter at a higher level of theory. To
define the natural occupation number bands, we first need the
one-body reduced density matrix

P1o0 (1, 1) = Tr[ ] (), (r) A1, (1)

where 1&2 (r) and v/, (r) are the electronic creation and annihi-
lation operators and p = ZN,Q Wy | W) (WYne| 1s the density
matrix of the system, which at equilibrium is an ensemble of
N-electron eigenstates with weights wy, = exp[—B(Eny —
uN)1/ ZNa exp[—B(Eny — uN)]. Our theory is formulated
in the grand canonical ensemble for a system with temperature
T (B = 1/kgt) and chemical potential . Since p; commutes
with lattice translations fa, its eigenfunctions, which we
call natural Bloch orbitals ¢,k (r), obey the Bloch condition
Guc(r +a) = e®2¢p, (r) and can be labeled by a band index
n, a wave vector k, and other possible quantum numbers
associated with the crystallographic space group. The natural
Bloch orbitals are spin orbitals, or generally two-component
spinors ¢ (r) = {¢uk4(r), P,k (r)}, determined by the eigen-
value equation

3 [ Proo 0¥k 60 = o @) @)

The occupation numbers f,x form bands in the Brillouin zone
of the crystal [153]. In our theory, these natural occupation
number bands take the place of mean-field energy bands.
Bands whose occupation numbers differ significantly from 0
and 1, if present, will be called strongly correlated, and the
remaining bands whose occupation numbers are close to 0 or
1 will be called weakly correlated. The natural Bloch orbitals
are correspondingly partitioned into weakly and strongly cor-
related sets S and D. In DFT, only a finite number of energy
bands are occupied at T = 0. In contrast, there are generally
an infinite number of nonvanishing natural occupation number
bands even at T = 0, due to many-body correlations. If the
Jfax are ordered in a nonincreasing sequence fik, fa, ... for
each Kk, there will not generally exist a lower bound bg > 0
such that f,x = bx Vn; zero is an accumulation point of the
spectrum.

Since there have been no many-body calculations of the
natural occupation number bands in real materials, the extent
to which they can be unambiguously partitioned into weakly
and strongly correlated subsets is presently unknown. Our
numerically exact results for a two-orbital Hubbard model
(Fig. 2) provide a concrete example of a system where two
strongly correlated bands clearly split off from the remain-
ing two weakly correlated bands as the Hubbard interaction
is increased. The distinction between weakly and strongly
correlated bands is only an approximate notion, e.g., if one
occupation number band hovers around 0.98 and another
around 0.99, it would hardly be possible to argue that the
former is more correlated than the latter. Moreover, if a band

whose occupation numbers differ significantly from O and 1
in some region of the Brillouin zone has symmetry-enforced
or accidental intersections with weakly correlated bands or is
otherwise strongly “entangled” with them, it might be ques-
tionable to single it out for special treatment. Nevertheless,
our theory is formally exact (in the DFT sense of returning
the exact equilibrium values of the functional variables) for
any partitioning of the occupation number bands. Specifically,
if none of the bands are treated as strongly correlated, then our
theory reduces to DFT (or current-DFT [155]). On the other
hand, if all of the bands are treated as strongly correlated,
then the model Hamiltonian is simply the full many-body
Hamiltonian expressed in the basis of natural Bloch orbitals.
For real strongly correlated materials, where a few relevant
bands would be treated at the full many-body level, we expect
that it will be easier to find accurate functional approximations
in our theory than in conventional DFT.

Even in cases where it is not possible to cleanly disentangle
the bands, there may still be advantages to using the natural
Bloch orbitals or natural Wannier functions [153], as opposed
to mean-field Bloch orbitals or mean-field Wannier functions,
in selecting a subset of degrees of freedom to treat at a higher
level of theory. Natural Bloch orbitals are intrinsic variables
of the system, being defined in terms of the one-body reduced
density matrix, a quantity obtained by simply tracing out
degrees of freedom—a linear operation—and may therefore
provide a more suitable starting point than mean-field Bloch
orbitals in strongly correlated systems.

The next step is to introduce a generalized density func-
tional theory in which the basic variables are the density
n(r), the paramagnetic current density j,(r), and the strongly
correlated natural Bloch orbitals ¢ k. (r). The paramagnetic
current density is included to correctly account for the cou-
pling to an artificial vector potential that will be introduced
to evaluate the macroscopic polarization, yet we expect that
the j,(r) dependence of the functionals can be neglected as a
first approximation. As we are working at temperature v and
chemical potential u, we define the following grand potential
functional for a system of interacting electrons in the presence
of scalar and vector potentials v(r) and A(r) (a uniform A is
sufficient for our purposes') [156]:

Q[n. jp. ax. fax. 3]

= [t - pmncerar + & [ a0 -jywr

+

2
2:1C2 / |A(r)|2n(l‘)dl' + F[l’l,jp, ¢dkv fdka pzd], (3)

where the universal functional F' is defined by the following
constrained search [157] over density matrices p that yield the
set of variables X = (1, j, ax, fax, P3):

F(n,jp, bax. fax. P ] = min Tr[(T + Vee — 18)p), (4

where T is the kinetic energy, V,, is the electron-electron
interaction, and § = —kgln p is the entropy operator. The

'A uniform vector potential A will be used to apply an artificial
magnetic flux to the system, viewed as living on a torus, which is
equivalent to imposing twisted boundary conditions [41,42,165].
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functionals 2 and F additionally depend on the natural occu-
pation numbers f;x and the two-body reduced density matrix
4 in the strongly correlated D subspace. The matrix elements
of pg are

(,051)121,2, = %Tr(cz/CI/CICZ ), 3)

where 1 = (d;k;) and CT is the creation operator for an
electron in the natural Bloch orbital state ¢4, € D. The grand
potential can be further decomposed by defining a kinetic-
energy-entropy functional for noninteracting electrons (with
Sy = —kgIn p;)

Ki[n, jp, ¢ax, faxl = Tr[(T — 8451 (6)

min
ps= (n.Jp-Pax. fax)
and a Hartree-exchange-correlation grand potential
Qe [, §ps Pax farcs 05 ]
= F[n,jp, bax, fax: 03] — K1, p, dax, faxl. (D)

The kinetic-energy-entropy functional K[n, j,, dax, faxl, de-
fined by a constrained search over ensembles of Slater deter-
minants p;, is intermediate between the corresponding func-
tionals in DFT [158] and reduced density matrix functional
theory [159]. Since Ki[n, j,, ¢ax, fax] accounts for the frac-
tional occupation numbers of the strongly correlated natural
Bloch orbitals, we expect it to provide a better approximation
to the true kinetic-energy-entropy than the DFT functional. 2
and F are defined on the domain of (n, j,, ¢ak, fik, ,og) that
can be obtained from a fermionic density matrix, which we
denote as the ensemble representable (ER) domain in analogy
to the ensemble N representable domain for fixed particle
number N [160]. Using the quantum generalization of Gibb’s
variational principle for ensembles [156], it is straightforward
to prove the following variational principle.

Theorem. The grand potential functional satisfies
QIn, jp, Pax, fax, p§1 > Qo for any (n,J,, Pax. fak. £5)
that are not equal to the correct equilibrium variables
(no, jpo, daxo» faxo, ,Ogo) yleldmg the potential Q.

The density and paramagnetic current density can be ex-
pressed in terms of the natural Bloch orbitals as

n(r) =" fuldms (0,

nko

h
Jp) = —Im Y fikdis (Vs (1), ®)

nko

Our strategy is now to postulate that a semilocal density func-
tional [25,33,161] provides a sufficiently accurate description
of the weakly correlated bands in the sense that their con-
tribution to the density in Eq. (8) can be well-approximated
by a sum Z(wke S &nk| Xnko (r)|2 over KS-like Bloch orbitals
Xnko (') that are eigenstates of a noninteracting Hamiltonian
with a scalar multiplicative potential v,(r). The thermal occu-
pation numbers in this sum, g = {1 + exp[B(eu — 1)1} 7",
follow the Fermi-Dirac distribution and therefore manifest
thermal fluctuations but not quantum fluctuations. At the same
time, we retain the fractional occupation numbers fyx of the
strongly correlated natural Bloch orbitals ¢, (r) as variational
parameters, since they do exhibit significant quantum fluctua-
tions.

The grand potential is minimized in an iterative fashion.
First, for fixed (fyx, ,og ), €2 is minimized with respect to n(r),
Jp(r), and ¢4, (r) by finding the self-consistent solution of a
generalized Kohn-Sham equation (see Appendix A)

BT [ Yie) = €l Vi) ©)

with the Hamiltonian (e is the absolute value of charge)
R 1 :
W= (13 - fo(fﬂ) + v (F)
2m c

+ Y Wakaw|Pa) (B, (10)
dkd'K’
where A;(r) = A(r) + A,.(r) and v,(r) = v(r) + vpxe(r) +
e>(JA(r)|? — |Ay(r)|?)/2mc?, similar to current-density func-
tional theory [155]. The set of eigenfunctions {yk} of hett
contains the strongly correlated orbitals ¢,k as well as the
Kohn-Sham-like orbitals y,k. The latter span the same space
as the weakly correlated natural Bloch orbitals ¢,k. These
orbitals, together with the strongly correlated natural occu-
pation numbers fyx, are used to evaluate the density and
paramagnetic current density

n(r) =Y gkl OF + Y farlpars O,

o,nk o,dkeD

h
ip(r) = alm[z 2k Xko ()Y Xk (r)} (1)

o,nk

h
+—Im Z Jax®as ()Y daxo (r) |

o,dkeD

Second, © is minimized with respect to fyx and p§ on
the ER domain for fixed (n, j,, ¢4k ). Instead of minimizing
Q directly, we minimize the grand potential of an auxiliary
system describing only the strongly correlated subspace and
constructed to have the same f; and ,og at its minimum. As
a first step to defining the auxiliary grand potential, the full
density matrix is expanded as

,6:Zaiﬂi+zbi9i+zci§i+zdi5i, (12)

where [;, ¥;, E}, and o; are a complete basis of Hermitian
operators that are mutually orthonormal with respect to the
Hilbert-Schmidt inner product (A, B) = Tr(ATB). The f1; form
a complete basis of one-body operators in the D subspace,
the ¥; form a complete basis for all two-body operators in
the D subspace that are linearly independent of all fi;, the &
form a complementary basis of one- and two-body operators
that are linearly independent of all fi; and ¥;, and 6; span
all remaining three-body, four-body, ... operators [162]; for
details, see Appendix B. Since f;, ¥;, and éf, are a complete
one- and two-body basis, we can expand the full two-body
reduced density matrix as

pr=) aifui+ Y bibi+ Y cii (13)

and the reduced density matrix in the D subspace as

pY = aifti+ Yy bib. (14)
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The one-body reduced density matrix in the D subspace,
which contains the information about fzx, can be written as
/3{’ = Zi a;f1;. Finally, the Hamiltonian, which is assumed to
contain only one-body and two-body terms, can be expanded
as

A=l =3 Vigi+ ) Ubi+ Y Wé (15
Next, we define the auxiliary grand potential functional
Q" ai, biln, jp, ¢l = Y Viai + Y _ Uib;

+ Flai, biln. jp. paxl.  (16)

where

Fla;, b;|n, j,, = min Tr W,'A,-—LSA' o
la;, biln, jp. dax] pogin [(Xl: § )Pi|
(I7)

is a universal functional that does not depend on {V;, U;}.
Now we use a reductio ad absurdum argument to prove that
o and p¢ uniquely determine {V;, U;} for fixed {W;}. Consider
two Hamiltonians A and A’ with {V;, U;} and {V/, U/} that are
different. The corresponding equilibrium density matrices are
denoted p and p’. Suppose that p and p’ yield the same ,of
and pg , 1.e., have the same {a;, b;}. Then, according to the
variational principle for the grand potential [156], we have

Tr[(H — uN — t8)p] < Tr[(H — uN — 84’1,
Tr[(A' — uN — t§)p'] < Tr[(A' — uN — 18)p],  (18)

which leads to

Tr| > (Vi = V)i Y (aj — d)i;
; j

+Te| Y (Ui —UDD Y (b — by | <0, (19)
i J
D Vi = V) ai —a) + Y (U = U)(bi — b)) < 0.

Since having a; =da; and b; = b, for all i would give
a contradiction, we find that if V;#V/ or U; # U/
for some i, then (pf,pg) #* (pf’,pg’); hence, there is a
unique mapping {a;, b;} — Vi, U}*. Q** and F are de-
fined on the ER domain, and Q' satisfies the variational
principle Q**[a;, bi|n, j,, pax] > Qo for (a;, biln, jp, pax) #
(aio, bio|nos jpo, Paxo)-

A Kohn-Sham-type construction will be used to derive the
model Hamiltonian for the auxiliary system. We first define

2For t =0 and particle number N we cannot prove {a;, b;} —
{Vi, U}, but we can still define energy functionals and a model
Hamiltonian, though the latter may have a degree of nonuniqueness
associated with conserved quantities [191].

the functional

Alai, biln, jp, dax] = "y, biln, jp, dax]
+ > hagalai, biln, jp, ¢al,  (20)

n

where 1, are Karush-Kuhn-Tucker multipliers [163] that im-
pose all ER constraints g, < 0 on {a;, b;}. In addition to
the usual stationary conditions, the minimum {a;y, b;o} must
satisfy the following necessary conditions for each ER con-
straint that is an inequality rather than a strict equality: (i)
the complementary slackness condition A, g,[ajo, bio] = 0 and
(i1) the feasibility conditions g,[ai, bio] <0 and A, >0
[163]. The stationary conditions A /da; = 0and 0A/db; = 0
yield

oF gy
Vit — Ay =0,
+ 861,‘ + " 861,‘
oF ogn
U+ — A— =0. 21
+ 3t Z 3 (21)

Setting W; = 0, we define the functional
Aai, bl = Qla;, b+ Y Mgilai bl (22)

where gﬁ[a,-, b;] < 0 are ER constraints and
Qlai, bi] = 3, V" + 30, U + Flla bl (23)
with

] m(inb )Tr[—rs"f,ad]. (24)
pt—a;,b;

Fla;, bl =

Here, $¢ = —kplnp? and p¢ =3y, Wi, |Pne)(Pre| is
a density matrix comprising many-body states built up
exclusively from natural Bloch orbitals in the D sub-
space, i.e. |Pyg) = ZDANa,DC:zlk, ...c;NkN|O), where D =
(diky, ..., dyky). The stationary conditions for A? are the
same as those in Eq. (21) if we set

n da;

(25)

del A(F—F¢ 9g, ag!
U =U + (ab, Y+ (k”ailn_)”gai

N———"

This defines a model Hamiltonian

Ijlmodel . MNd — Z Vimodelﬂi + Z U[mOdelf),' (26)

containing only one-body and two-body operators in the D
subspace; N ="\ p €y Cako - It is the unique Hamilto-
nian of this form such that the minimization of

Qmodel[pd] — Tr[([flm"del — MNd — rS’d)pAd], (27)
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on the ER domain yields the exact equilibrium ,of and pg . The
existence of A™%! is presently a working assumption® but
appears to be true for the two-orbital Hubbard model studied
in the following section.

The model Hamiltonian is a functional of the density,
paramagnetic current density and the strongly correlated nat-
ural orbitals ¢gk. Equations (9), (11), and the minimiza-
tion of QMm% in Eq. (27) lead to a set of coupled equa-
tions whose self-consistent solution returns the equilibrium
1, Jp» Pax, fax, pg ). The model Hamiltonian can be identified
with a lattice model by Fourier transforming from momentum
space to real space. Assuming Born-von Kdrmédn boundary
conditions, the number of lattice sites is equal to the number
of primitive cells times the number of bands. One can perform
numerical calculations for finite k point grids (a finite number
of primitive cells) and extrapolate to the thermodynamic limit
to obtain the result for the infinite crystal. In the following
sections, we demonstrate the viability of the above theory
by constructing A™%! and evaluating how it depends on the
density in a two-orbital Hubbard model.

III. TWO-ORBITAL HUBBARD MODEL

The effectiveness of the theory will depend on the ability
to find accurate density functionals for vn(r) and wgk sk
in Eq. (10) as well as the parameters in A™%!. Assuming
that vk (r) can be approximated by an existing semilocal
DFT approximation and that wgy 4 has a relatively weak
density dependence, the key issue is finding functional ap-
proximations for A™9! If the density dependence of the
model parameters is too strong or pathological, A™°%! will be
difficult to approximate. To investigate this issue, we perform
numerically exact calculations for a one-dimensional two-
orbital Hubbard model. The model is defined on a bipartite
lattice with each atom hosting two atomic orbitals, an s
orbital and a d orbital. Since the s orbitals are assumed to
be noninteracting and the d orbitals feel a strong on-site
Hubbard interaction, the model forms two strongly correlated
and two weakly correlated natural occupation number bands.
The difference n; = (ng; — nas)/2 in the s-orbital occupation
on the A and B sublattices serves as a representative for the
density n(r) in the continuum case, and we investigate how
strongly the effective model Hamiltonian for the d bands
depends on n, at temperature T = 0.

The Hamiltonian of our two-orbital Hubbard model is

A Zﬂs-i-l:ld +I:ISd (28)

We recently became aware of work [192] extending the exact
factorization concept [193-195] to a Fock space representation and
remark that at T = 0, one could replace the dependence on p{ in
our energy functional by a dependence on the marginal function
ps defined therein, where J = (j,01, j»02,...) can here be taken
to label all possible one-body, two-body, ..., N-body states |J) =
C;m ...C;N0N|O) that can be constructed from orbitals in the D
subspace. In this case, there exists a model Hamiltonian whose
ground state is ), py|J).

E (eV)
5
0
-5
b s
-7 -3 0 > 7T
ka

FIG. 1. Mean-field energy bands of the two-orbital Hubbard
model versus ka for t,y =14 =3, gs=g4 =10, A, = A, =0.5,
£a =0.0080, t,, =0.8, and U =2.0 (all in eV). The strongly
hybridized bands are colored according to their orbital character
(blue = s, red = d, purple = hybridized).

with
I:Is = - Z(ts.ii+l (S )CLCH—IU + HC) + Z GS,iC;UCi(T’
io io
Hy == (tain1 (€} dis1o +He.)

io

+ Z €a.idydic +U Z Ag,irfla iy,
o — T d e
Hsd = —Iy Z(Cigdl+10 +Hc. + d,'o—clJrlo + H.C.), (29)

; and c;, are the creation and annihilation operators

for an electron in the s orbital at site i and d; and d;, are
the corresponding operators for the d orbital. Odd sites cor-
respond to A atoms and even sites to B atoms. The staggered
on-site potentials are

where ¢

&= (=D"A,,

€ai=(=1)""Aq4, (30)
and the hopping amplitudes of the dimerized bonds are
i =odd

i=even’

Iy =t — 285&

31
to =t + ngé ( )

tyiit1(§) = {
and similarly for #; ;. Here, £ denotes the displacement
of sublattice B with respect to sublattice A and g, is the
electron-phonon coupling of orbital . Unlike in other models
of strongly correlated electrons, the d bands are not assumed
to be narrower than the s bands. In fact, we set t,0 = 140, so that
the paramagnetic mean-field energy bands shown in Fig. 1
cannot be separated into narrow low-energy bands near the
Fermi energy and high-energy bands farther away, as they
overlap energetically in a large region of the Brillouin zone.
H,, describes a nearest-neighbor s-d hybridization; on-site s-d
hybridization is forbidden by symmetry. We shall show that
the natural occupation number bands can be unequivocally
separated into strongly and weakly correlated sets even when
the mean-field energy bands, representative of KS energy
bands, do not separate into sets of wide and narrow bands.
In contrast to a common view, a partitioning into strongly
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fac 1.0 1.0
0.8 T 0.8
0.6 \/ 0.6

~_
0.4 ////\\\\ ‘///\\\‘OA

0.2 f—k\ 0.2

0.0 0.0
0 2n O 2m 0 2r O 2m

ka

FIG. 2. Natural occupation number bands of the two-orbital
Hubbard model are shown for the series U/, = 0.5, 2, 8, 32 (left
to rlght) for to = 1tgo = 3, 8s = 8d = 10, As = Ad = 05, Sa =
0.0080, and t,; = 0.8 (all in eV). The predominantly s-orbital bands
(blue) are close to 0 or 1 for all U, while the predominantly d-orbital
bands (red) split off as U increases. The bands are shown on the
domain ka € (0,2m) so that zone boundary is positioned at the
center.

and weakly correlated bands does not require some mean-field
bands to be narrower than others.

All our calculations are performed at half-filling for a
supercell consisting of three primitive cells (supercell length
L = 3a with lattice constant a), so there are 12 electrons
occupying 12 orbitals (6 sites x 2 orbitals/site). The many-
body basis and Hamiltonian were generated with the SNEG
program [164].

IV. NATURAL OCCUPATION NUMBER
BAND STRUCTURE

The natural occupation number band structure is an alter-
native, more intrinsic single-particle picture of the crystal-
symmetric electronic structure of a material that is useful
in identifying strongly correlated degrees of freedom and
calculating correlated geometric and topological properties.
To illustrate this point, we consider again the case shown
in Fig. 1, where the mean-field Bloch states are strongly
hybridized, i.e. they are nearly equal mixtures of s and d
orbitals, and relatively unaffected by U, provided we insist
on maintaining the spin-symmetry of the problem. The nat-
ural occupation number bands in Fig. 2 display a strikingly
different behavior. Already for moderate interaction strength
U/tgo = 2, there is a clear separation into two predominantly
d-character bands (red curves) with occupation numbers sig-
nificantly different from O and 1 and two predominantly s-
character bands (blue curves) with occupation numbers near 0
and 1. The d bands split off further as U increases, becoming
more strongly correlated as the occupation numbers approach
0.5; the deviation from O and 1 is a measure of the strength of
correlation. Our fundamental assumption is that the density of
the weakly correlated (blue) bands is already well-described
by semilocal DFT functionals, while the strongly correlated
bands are better described at a higher level of theory. Indeed,

0.25
0.20
fax 0.15
0.10
0.05
0.00

0.005
0.004
0.003
0.002
0.001

0.000
0 2m
ka

FIG. 3. Lower natural occupation number bands of the two-
orbital Hubbard model are shown for the series t,; = 0, 0.8, 1.6
(dark to llght) fortyy =1t40=3,8, =84 =10,A; = Ay =0.5,&a =
0.0080, and U/t 9 = 2.4; all parameters in eV.

since the occupation numbers of the weakly correlated bands
are very close to 0 and 1, the many-body wave function
approximately factors into the product of a Slater determinant
of weakly correlated orbitals and a strongly correlated wave
function in the D subspace, suggesting that a semilocal DFT
approximation will provide a sufficiently accurate approxima-
tion for the weakly correlated bands. Smooth and continuous
natural occupation number bands and natural Bloch orbitals in
the true Brillouin zone of the crystal are defined, as described
in Ref. [153], by unfolding the bands obtained from the full
many-body wave function under twisted boundary conditions
[41,42] or, equivalently, artificial magnetic fields [165].

If we express the Hubbard interactions in Eq. (29) in the
basis of the s-d hybridized eigenstates of the noninteracting
part of A, we generate Hubbard interactions between s-type
natural Bloch orbitals as well as interorbital interactions be-
tween s-type and d-type natural Bloch orbitals. Therefore,
the s-type natural occupation number bands begin to feel the
interactions and begin to correlate when the hybridization
t,q is turned on. Figure 3 shows that the natural occupation
numbers of the s bands correspondingly deviate from 0 and
1 and that this effect increases with increasing t,;,. However,
these deviations still remain much smaller than those of the
d bands even for #,; as large as 1.6, and hence we still have
a clear separation between weakly and strongly correlated
occupation number bands.

V. EFFECTIVE MODEL HAMILTONIAN

A model Hamiltonian whose minimum yields the occupa-
tion numbers fy; and two-body reduced density matrix ,ozd in
the strongly correlated subspace was introduced in Sec. II.
far and p§ generally contain contributions from many-body
states with all possible occupations of the d bands. As a
consequence of the particle-hole symmetry of the two-orbital
Hubbard model, the natural occupation number bands have
reflection symmetry about 1/2, i.e., for each fy; < 1/2, there
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is another related band with occupation number 1 — fy; [153].
Hence, for our chosen supercell, the mean number of electrons
occupying the strongly correlated subspace is an integer, N; =
6. Moreover, in the large U regime, interband fluctuations
are suppressed, so that states with N; # 6 occur with low
probability. Therefore we will attempt to find the model
Hamiltonian fmodel-Na w1th a six-electron ground state |}
that contracts to fy; and ,02

To make the numerical calculation of the full |W¥,) man-
ageable, we solve the problem in a restricted but relevant
Hilbert space spanned by the sectors with N; = 5, 6, and 7.
More precisely, we include the following three types of states:
(@) Ny = 6 states |W,) = |So) ® |Dgoo), (b) Ny =5 states
W) =a _, _1S0) ® [Dss) and (c) Ny =7 states |W,.) =
ay k., U|So) ® |D7k(,) where |Dy,k,s,,) denotes an Ny-electron
state with total quasimomentum and spin quantum numbers
Ky and S, |So) = ]_[ng vka|0) is the six-electron Fermi
sea of s electrons; a,x, and a ko Are the annihilation and
creation operators for valence (v) and conduction (#) band
s-electron Bloch states. In other words, we only allow a single
particle- or hole-type excitation with respect to the reference
states of type (a). This is a good approximation in all of our
calculations because U is large and ty4 is relatively small.

As another consequence of particle-hole symmetry, the
only two independent density variables are ny = %(ngs — Nygy)
and ng = %(l’lgd — naq). In particular, this means that if we
write ™! i the natural orbital basis as

Fymodel __ T
H = E €12C4 1,0, Cdolrrs
12

i .
+ § Ul 234Cd1k10'1 Cﬁ’lzszfz Cd4k4(74 Cd3k303 ) (32)
1234

then all of the Hamiltonian parameters are functions of n; and
ny. Here, Cjum is the creation operator for an electron in the
natural Bloch orbital state ¢4, and 1 = (dikjo1). A quite
general approximate form for the two-body model parameters
is

gioaa([nl, r, 1)

colr — 1 ¢3(r)¢a(r')drdr’,

(33)

U1234—/ r ()3 (r")

where “screening” is described by the density-dependent fac-
tor g1234([n], r, 1) and by the self-consistent optimization of
the orbitals ¢y, ().

Alternatively, we can also express Eq. (32) in the basis of
unique natural Wannier functions [153] as

fylattice __ § : 2 ab T
H - tlj Czaaclba

ijab o

abed, ot 1 T
+ § : § :Uz]kl Ciao € jbr Cldt Cheo +ee
ijkl,abcd ot

(34)

where cjm creates an electron in the natural Wannier state

w;,(r) of orbital a at site i.

A. Practical downfolding scheme

After finding the ground state |W,) of the two-orbital
Hubbard model and the density matrix 0 = |Wo)(Wy|, we
use the Lowdin partitioning technique [53] as an efficient
means of inferring the model Hamiltonian. Define P to be the
projector on 12-electron states that consist of a fully occupied
valence s band (six electrons) and all possible N; = 6 states.
The number of such states with total quasimomentum K = 0
and spin quantum number S, = 0 is 136. Define  to be the
projector onto the orthogonal complement, comprising the
sectors with N; = 5 and N; = 7. The space spanned by Q has
a total of 1200 states with K = 0 and S; = 0. The effective
Hamiltonian in the P sector is

A" = PAP + PAQ(E — QHO) 'QHP.  (35)
This Hamiltonian is still exact. Since it depends nonlinearly
on E, it is not limited to the ground state and has a self-
consistent solution for each eigenvalue E,. For the purpose
of obtaining the most important frequency-independent model
parameters of a Hamiltonian A™%!N whose ground state is

|®)), one can substitute E = Ey in A" and perform a fitting
as described in the next section.

B. Density dependence of the model parameters

The model Hamiltonian obtained from Eq. (35) is an
a priori unstructured 136 x 136 matrix on the Ny-electron
Hilbert space with K = 0 and S, = 0. For practical calcula-
tions, we need to identify a few relevant model parameters to
approximate by density functionals. To do so, we first write a
trial Hamiltonian in the original site basis

3
—1% Y "N (d];doio + Hec))
i=l o
3
t:anOdEI Z Z(dglgdZH-lo + H.c. )
i=1 o
3
+ AT (i 16 — i)
i=1 o

}"Imodel _

6
H U™ iy (36)
i=1

To determine the model parameters, we perform a least
squares minimization of ||A™%! — A°f|| in the Frobenius
norm. Then we verify that the ground state of ™% is close
to the ground state of A°T. In all the calculations, we report
1 — [(@edelNe ety | < 5 5 1074, Varying A, and A, in
the original Hamiltonian allows us to change n, and n; over a
range of values and study the resulting trends in the model pa-
rameters. Figure 4 shows the one-to-one relationship between
Ay and ng. Figure 5 shows how the model parameters vary as
functions of A,. By inverting the A; — n; mapping in Fig. 4,
we can infer the density dependence of the model parameters.
The n, dependence of 77°%! and 17°%! is negligible for t;y <
1 eV and relatively weak in all cases considered.

We emphasize that t;}"d"‘l and t;é‘)del change very little even
though A, spans a very large range in Figs. 4 and 5. AT°%! and
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0.08F
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0.04F
0.02

N4

0.75F
0.50¢
0.25f

Ns 0
-0.25¢
-0.50f
-0.75 1 1 1 1

As(eV)

FIG. 4. The densities n, (red) and n, (blue) are plotted vs A
for tyg =t;0 =3, g, = ga = 10, &, = 0.0020, A, = 0.5, U/tyy =
2.4 and for the series t,; = 0.0, 0.8, 1.6, 2.4 (dark to light); all
parameters in eV.

U™ have moderate but still quite regular n, dependence.
Figures 6 and 7 show the dependence of n, n,; and the model
parameters on A,. Here, the trends in ¢10%¢!, zm0odel apg gymedel
are similar to those obtained from varying A;. On the other
hand, A?Odel has an approximately linear relationship with
Ay, which is expected. These results provide encouraging
evidence that simple functional approximations can be found
for a model Hamiltonian that describes a few select strongly
correlated bands in real materials.

We have considered more general trial Hamiltonians with
next-nearest neighbor hopping amplitudes #; and ¢, and next-
next-nearest neighbor hopping s, as well as several different
types of two-body interactions. As all of these additional
terms are generically nonzero, we observe that the coupling
of the d bands to the s bands generates interactions beyond
the Hubbard interactions in the original Hamiltonian. How-
ever, throughout the range of parameters reported here, these
additional terms are small and the Hamiltonian in Eq. (36) is
sufficient.

2.96\_/ 30.8

{0.7

2.92\/ /0.6

2.88 0-5

' {0.4

2,84} tor Ag 10.3

3.4 ——F—— u 7.7

T~ —] 17.6

3. s

2.96} — | 7.4

{7.3

2.92f tg 7
-4 -2 0 2 4 -4 -2 0 2 4

Ag(eV) Ag(eV)

FIG. 5. Model parameters t7°%! (top left), £°%! (bottom left),
AT (top right), and U™! (bottom right) are plotted vs A, for the
series t,; = 0.0, 0.8, 1.6, 2.4 (dark to light) for the same parameters
as Fig. 4.

0.6
0.4
0.2
Ny 0

-0.4
-0.6

0.205

0204 __—~—
Ns 0-203'/\_\__
0.202F

0.201f
0.2 1 1

Aq(eV)

FIG. 6. The densities n, (red) and n; (blue) are plotted vs Ay
for tqg =t0 =3, g =gs = 10, £a = 0.0020, Ay, =0.5, U/tyo =
2.4 and for the series t,; = 0.0, 0.8, 1.6, 2.4 (dark to light); all
parameters in eV.

VI. MACROSCOPIC POLARIZATION

Having obtained a model Hamiltonian whose ground state
gives a good approximation to the state of the strongly
correlated subspace, we now test how well such a model
Hamiltonian and ground state can reproduce the strongly cor-
related part of the macroscopic polarization. The Ortiz-Martin
formula P = —(e/2m) limy_, » ¥ (N) relates the macroscopic
polarization (modulo the polarization quantum) to the many-
body geometric phase

2
y(N) = / (Wo|3, Wo)da, 37)
0

where in our case |Wy(a)) is the 12-electron ground state
of the twisted version of the Hamiltonian in Eq. (28) [45].
The twisted Hamiltonian is obtained from A by making the
Peierls’s substitutions #,; — 1, jei“/ 6 (with a = s,d and j =
1,2) and tg — t,4€/°.

2.96 4

2.92r

2.88 g ]
tar i)
2.84} ' Ag g

3.04 u 177
17.6
o 175
a2 ' 7.3
2.92F ——
4 -2 0 2 4 4 2 0 2 4
Ag(eV) Ag(eVv)

FIG. 7. Model parameters t1°®! (top left), t7°%! (bottom left),
AT (top right), and U™ (bottom right) are plotted vs A, for
the series t,; = 0.0, 0.8, 1.6, 2.4 (dark to light) and the same
parameters as Fig. 6.
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To evaluate Eq. (37), we express the wave function as
W) = Y cplS(D)D). (38)
D

where D = (d\ k01, dyk207, . ..) is a multi-index labeling the
strongly correlated d-orbital part of the many-body state.
The wave function in Eq. (38) has a restricted form because
we have solved the problem on the restricted Hilbert space
consisting of the N; =5, 6, and 7 sectors defined in Sec. V.
Hence, the s-electron factor, denoted as |S(D)), is uniquely
determined by |D). For example, for a state |D) with N; =7,
K; =k, and S,; = o, conservation of particle number, quasi-
momentum, and z projection of spin imply |S(D)) = ays|S0)-
Thus, for our system, the geometric phase in Eq. (37) is

2 2
y = Z[) ic}f)aach(x + Z /0 iPM/K/Sz(I
D

NaKySza
XY FNKIS (| da ko (39)

nko

where Py,k,s., (@) = S 0K [ep(@))? and f550 s the
occupation number (0 or 1) of the s-orbital ¢, in the Slater
determinant |S(Dy,x,s,,)). After unfolding the natural occu-
pation numbers and natural Bloch orbitals to the full Brillouin

zone [153], the geometric phase simplifies to
2w
y = / i(CDf)V"
0

2 /a
+ Z f ifnka (ﬁnk(r | 8k ﬁnka )dk (40)
0

o,nes

3 ) )dot

The first term has been expressed in terms of the ground state
|d>6\"’) of the twisted model Hamiltonian, while the second
term is given in terms of the periodic part i, of the s-electron
Bloch orbital ¢, . Given that the occupation numbers f;, =
D NiKyS.g PNuK S rf,’(‘;KdS‘” of the s-electron Bloch orbitals are
close to 0 or 1, we suppose that the second term can be
well-approximated by the geometric phase of noninteracting
electrons as in the King-Smith—Vanderbilt formula, i.e.,

2r /a
=3 / iguko (tnke | Oittni AR, (41)
0

no

where the occupation numbers g, (0 or 1) restrict the sum
to the occupied s-electron Kohn-Sham-like states x,i, (7)) =
U (7). Although we expect Eq. (41) to be an accurate
approximation for the weakly correlated bands in line with the
successful application of the King-Smith—Vanderbilt formula
to weakly correlated systems, the polarization calculated by
Eq. (40) with the approximation in Eq. (41) is not exact. It
might be possible to extend our theory to an exact theory
for the macroscopic polarization by including additional basic
variables in analogy to the inclusion of the polarization in
standard DFT [166-168].

We begin by presenting results for the exact geometric
phase calculated with Eq. (40). The first term of Eq. (40),
which we denote as y,, is the contribution of the strongly
correlated d-electron wave function. Since y,; has equal con-
tributions from spin up and spin down electrons, we define

27
3
Yoo 55 [
Y= I I I I
-4 -2 0 2 4
3.4+
3.35F-
Yso \/
_.—-—\_/
33— |
1 1 1 1

—4 -2 0 2 4
Ay (eV)

FIG. 8. Many-body geometric phases y,, (red) and y,, (blue) for
the two-orbital Hubbard model are plotted vs A, for the series t,; =
0, 0.8, 1.6eV (dark to light) and the same parameters as Fig. 6.

Yio = Ya/2. The second term, y;, is the contribution of the
weakly correlated s-electron bands, and we further define
Vso = Vs/2. Vis and y,, are shown versus A, in Fig. 8. As
the s electrons only feel the bias indirectly through their
hybridization with the d bands, y,, has a weak dependence
on A,. On the other hand, y,;, has a nontrivial dependence
on Ay. The plateau between Ay = —2 and 2 eV is due to
Hubbard interactions; A, can only polarize the d-electron
states if it can overcome the on-site repulsion U. The effects
of correlations on y,, are evident upon comparison with the
geometric phase of the noninteracting version (U = 0) of the
two-orbital Hubbard model, which is shown in Fig. 9.

So far we have presented results for the exact |Wy(w)).
Now we ask how well the ground state |®J°%"") of the
fitted model Hamiltonian reproduces y,,. In principle, the
model Hamiltonian parameters will be «-dependent. How-
ever, we can make the following approximation. We assume
that the moduli of the hopping parameters ¢7°®! and 77!
are approximately constant but that their phases vary as
functions of o exactly as the bare hopping parameters do

2 T
3n
2 _ L
| | | [
Al— 22 0 3 4
Aq(eV)

FIG. 9. Geometric phase y,, + (¥5» — 7) for the noninteracting
two-orbital Hubbard model is plotted vs A, for the series t,; =
0, 0.8, 1.6 (dark to light gray) and the same parameters as Fig. 8.
The curves for different values of #,; nearly coincide.
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b1
Yq *\

|

Ag(eV)

FIG. 10. Comparison of y, from the full solution of the two-
orbital Hubbard model (black), the model Hamiltonian solution
(dashed green) and mean-field approximations (orange and gray) for
to = 3,150 = 3,& = 0.0020, Ay = 0.5,U /1490 = 2.4,and t,;, = 0.8 as
functions of A,; all parameters in eV. The dashed red line connects
the paramagnetic (gray) and antiferromagnetic (orange) mean-field
results.

under the Peierls’s substitution. Under this approximation,
the only information we need to evaluate y,, are the param-
eters of the untwisted model Hamiltonian (o = 0). To test
the validity of this approximation, we use the @ = 0 model
parameters from Fig. 7 to calculate Yy approx (dashed green)
and compare it with the exact result (black) in Fig. 10. The
results are shown together with the mean-field (Hartree-Fock)
approximation. First, they demonstrate that the ground state of
HA™%l(q), obtained by performing the Peierls’s substitution
to A™°41(0), yields an accurate approximation to the strongly
correlated part of the full geometric phase. Second, they reveal
that the paramagnetic mean-field approximation (gray) fails
qualitatively. The broken-symmetry antiferromagnetic mean-
field approximation (orange) improves the behavior for small
A, but fails for 1.75 < A, < 3.5eV. Semilocal (spin-)DFT
approximations will give comparably incorrect results.

Bethe ansatz local density approximation (BALDA)
[169,170] uses the one-dimensional Hubbard model as a ref-
erence system from which to derive the exchange-correlation
energy density as a function of the average site occupa-
tion. The BALDA exchange-correlation energy density can
be used to calculate the density of inhomogeneous lattice
models such as Hubbard models with staggered potentials.
Since, by construction, the BALDA yields the exact energy
and density for a uniform one-dimensional lattice model for
any U, one might expect it to be capable of reproducing
the strongly correlated part of the geometric phase. To test
this, we have evaluated the geometric phase y; garpa of the
Rice-Mele-Hubbard model by substituting the BALDA Kohn-
Sham eigenstates into the King-Smith—Vanderbilt formula. As
shown in Fig. 11, y; aLpa agrees with the exact geometric
phase for U = 0 but is qualitatively incorrect for moderate
and large U. We conclude that functional approximations
that yield good densities do not necessarily yield accurate
values for the geometric phase, which depends on how the
k-dependent phases of the Bloch functions vary across the
Brillouin zone.

FIG. 11. Comparison of BALDA (red) and exact (black) results
for the geometric phase in the Rice-Mele-Hubbard as a function of
U fortyy =3, g4 = 10, Ay = 0.5, and £ = 0.0020; all parameters in
eV. Dashed lines show 7 and 37 /2.

VII. CONCLUSIONS

Self-consistently coupling density functional theory to a
model Hamiltonian (“DFT+model”) was shown to yield ac-
curate results for the macroscopic polarization in a strongly
correlated system where all known DFT approximations fail
qualitatively. DFT+model is an efficient ab initio frame-
work for calculating geometric and topological invariants in
strongly correlated materials. The application of the theory to
the calculation of topological invariants is a problem for future
work. The fact that the theory reliably reproduces the macro-
scopic polarization—a geometric quantity closely related to
topological invariants—over a wide range of parameters, as
we have observed here, is strong evidence that it will also give
accurate results for topological invariants.

The theory establishes a systematic and self-consistent ab
initio procedure for constructing the unique model Hamilto-
nian for the subset of strongly correlated degrees of freedom.
This is the only model Hamiltonian that yields the correct
equilibrium occupation numbers f;x and two-body reduced
density matrix p¢ in the strongly correlated subspace. The
two-body reduced density matrix ,og contains the information
about all two-body correlation functions. The model Hamil-
tonian does not depend on a separation of energy scales or
the existence of a set of narrow mean-field energy bands.
Identifying the strongly correlated orbitals from the natural
occupation number band structure is a novel way of singling
out strongly correlated degrees of freedom in solids.

As opposed to GW+4DMFT [71,171-176] and other
DMFT-based methods, our theory does not involve any fre-
quency dependence. This does not imply any approximation
but entails certain advantages and disadvantages. One advan-
tage is the greater efficiency of the many-body part of our
self-consistency cycle, which involves solving for the equi-
librium state of a many-body Hamiltonian rather than solving
a self-consistent impurity problem with frequency-dependent
interactions, e.g., U (w), as in some DMFT implementations
[177]. On the other hand, the lack of frequency dependence
might make it more difficult to obtain spectral functions in
our theory. It would be interesting to explore how well the ex-
citations of the model Hamiltonian represent the true strongly
correlated excitations of the system, although we emphasize
that our model Hamiltonian is only guaranteed to reproduce
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the equilibrium occupations and two-body correlations and
not any other observables. Another important distinction with
DMFT-based approaches is the fact that our theory pre-
serves the full crystal symmetry of the original Hamiltonian
including k-dependent correlations, which are neglected in
conventional DMFT. The k dependence is crucial for properly
evaluating geometric and topological quantities in strongly
correlated materials. Symmetry constraints on the structure of
the k-dependent correlations may enable improved accuracy.
Recent extensions of DMFT aim to incorporate nonlocal
correlations [178].

Adapting the present theory to finite systems in which
the strongly correlated subspace is taken to be spanned by
just a few natural orbitals [179], such as localized orbitals
in Kondo systems or hybridized transition metal orbitals in
molecules, would constitute a novel embedding theory that
might allow one to obtain more accurate ab initio results for
systems with strong static correlation and partially circumvent
the problem of memory dependence in TDDFT. This would
be especially helpful in the modeling of coupled electron-ion
dynamics within exact factorization density functional theory
[180,181].

APPENDIX A: GENERALIZED KOHN-SHAM SCHEME

The role of the on-site d-orbital density matrix and orbital-
dependent potentials in the DFT+4-U method [16,68,182—186],
as well as the uncertainties arising from the strongly cor-
related narrow Fe bands in semilocal DFT calculations of
the pressure-induced spin state crossover in Fe,Mg,_ SiO;
perovskite [31], motivated the investigation of an effective
single-particle Hamiltonian for a strongly correlated Hubbard
model in a reduced density matrix approach [187]. As in the
DFT+U method, it was assumed that the nonlocal, orbital-
dependent part of the effective potential would only be applied
to a subset of strongly correlated degrees of freedom. In this
Appendix, we show that the part of the nonlocal effective
potential acting in the strongly correlated subspace can be rig-
orously combined with a multiplicative Kohn-Sham potential
to define a generalized Kohn-Sham Hamiltonian.

For fixed (fux, pg ), the density, paramagnetic current den-
sity, and strongly correlated natural Bloch orbitals can be
obtained by self-consistently solving a generalized Kohn-
Sham equation. We start by defining the following grand
potential functional for a system of noninteracting elec-
trons in the presence of local scalar and vector potentials
vs(r) and A (r) and a nonlocal potential w(ro,r'c’) =

Y ik Wak,d'k Pako ()P0 (0):

Qqln, jp, ax, faxl

= Ki[n, jp, dax, fax] +

4 f ¢
2mc?

+ Z/w(ra, r'o)pi(F'o’, ro)drdr’. (Al)

‘ / Ay(r) - j(r)dr

A0+ vy(r) — ,u]n(r)dr

The ensemble kinetic-energy-entropy functional is
Kln, jp, dax, faxl

= min

) Tr[(T — ©8,)5,]
s> (M,jp,Pax, fax)

S D
D ko ko 1T 1oko) + Y fitko (Bako 1T 1o )

nko dko

+kpT Y _[focIn ik + (1= fu) In(1 = f)l,  (A2)
bk
where T = —i*V?/2m and the sum over bk runs over both

S and D with fyx = fux for bk € D and fyx = g for bk €
S. The weakly correlated orbitals in S are denoted .,
the strongly correlated orbitals in D are denoted ¢y, and
a generic eigenstate from either S or D is denoted .
In Eq. (A2), we have allowed for the possibility that the
equilibrium state, even at T = 0, is an ensemble state [187]
formed from degenerate Slater determinants |®;) according

to
Zwmb, IC R sz =1

The unknown ensemble weights are related to the occupation
numbers according to

Z ®nk,1w1 = 8nk if nk € S,
1

> Oucsws = fa if dk € D,
1

(A3)

(A4)

where O ; = 1 if the orbital v is an element of the Slater
determinant |®;) and O otherwise [188]. Then, we define the
functional

Gsln, jp, Pax, far] = Qln, jp, ax, fax]

Z Ak i / 1o (O)Ppi (r)drr.
bkAbK
(AS)

Taking variations with respect to ¢ (r) and ¢, (r) leads to
the stationary conditions

fdk <¢d’k/ |Hs,local + W¥|¢dk> = Az/k’,dk’
fd’k’<¢d’k’ |Hv,local + Wv|¢dk) = )"il/k’,dk’

where B joea =—1V2/2m+(e/c) [ Ay(r) - jp(x)dr+ [[(¢*/
2m62)|As(r)|2+Us(r) —,LL]ﬁ(l‘)dr and Wrsz I[;T(r)w(r’ r/)
U(r). By subtraction, we find

(A6)

(fax — fae ) ba| T + Vi + Wilgax) = 0. (A7)
Setting 6G,/dn(r) = 0 and 8G,/3j,(r) = 0 gives
&2 0K
(1) — p+ —— A + —= =0,
2mc on(r) G S
_A S(r) + =0. (A8)
5_],,(1‘) dax, fax

Next, we recall the grand potential functional in Eq. (3) for
a system of interacting electrons in the presence of scalar and
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vector potentials v(r) and A(r)

Qn. jp. ax, fux, Pg]

= K[n, jp, dax, faxl +

+ f ¢
2mc?

+ Quxe[1, Jps Paxcs fux ,051]

and introduce

: f A() - j,(0)dr

M]n(r)dr

(A9)

Q[n. jp, bax. fux. P3|

= Y i [ G aterdr,

dk,d'k’

G[n. jp, bax. fax. 03] =

The stationary conditions for variations of G with respect to
¢ax(r) and ¢, (r) are

PN thc
Sax{Paw [Hiocal| Pax) + <¢d’ > = Ad'k,dk>
S
A thc
Jaw (bane | Higeal | Pax) + Pax = Aaw,dk, (A10)
S¢a nip

where Higea = —1V2/2m + (e/c) [TA(r) + Are(r)] -
Jp@dr + [[(e2/2mc?)|AM)|? + v(r) + Upge(r) — pla(r)dr
and, as in current-DFT [155], we define

Sthc
Uhxe(T) = 8_
n(r) bax. fax
8 Qhxe
A= (A1)
5Jp(r) uk, fdk
Subtraction leads to
(fax — faw)bar| T + Vida)
6 62
+ <¢d/k’ - °> - < hxe ¢dk> =0. (A12)
oy M baw n.jp

The variations of G with respect to n(r) and j,(r) for fixed
(@ax» fax) give

e 5 8K,
V(T) + Unxe(T) + |A( r)|- — n+ 5 =0,
n(r) ax, fax
8K,
—A(I') + Axc(r) + =
8']p(r) Pk fax
(A13)

The stationary conditions in Eqgs. (A12) and (A13) are the
same as those of the noninteracting system, Eqs. (A7) and
(AB), if we define

2

e
05(F) = V(1) + e (1) + 5= (AMF =AM,
As(r) = A(r) + A (r), (A14)
and if we define W, by
(Gare| 5o, 5, — (50 [ac ],
(@are IWslax) = - fd’:”_ f(m:k o (A15)

for dk # d’k’. A similar expression for a nonlocal effective
potential has been derived [189] in the context of reduced den-
sity matrix functional theory at T = 0 [190], where the energy
is a functional of all natural orbitals and the orbital derivatives
are not constrained to fixed (n, j,). We can obtain the equi-
librium n(r), j,(r), and ¢4k (r) by self-consistently solving a
single-particle Schrédinger equation with the Hamiltonian

2
bt = 21 (p+ A(r)) V, + W, (A16)

where V, = f vs(r)Ai(r)dr, together with the expressions for
n(r) and j,(r) in Eq. (11). The eigenvalues will obey

6nk<:“* if fnkzlv
ek =pn if 0< fx <1 (A17)
€k =z 1 if fue = 0.

APPENDIX B: OPERATOR ORTHONORMALIZATION

In Eq. (12), the density matrix was expanded in terms of a
complete basis of operators {{;, V;, é, 0;}. Here, {1;} is a com-
plete basis of Hermitian one-body operators in the D subspace
that span all operators of the form cjlkcdk, cjlkcd/k/ + c;,k,cdk,
and —ic;kcdrk/ + icz,k,cdk. {D;} is a basis that together with
{{1;} provides a complete basis for all Hermitian two-body
operators in the D subspace. {/1;} and {¥;} are constructed to
be orthogonal.

(€} is a complementary basis of Hermitian operators that
together with {{1;} and {D;} spans all remaining one- and two-
body operators of the form Cz,klcb’lk’, and czlklczzkzcb/z K,Ch K, »
where b; € SUD and at least one of the indices does not
belong to D. {€:} is constructed to be orthogonal to {{1;} and
{V;}. {0;} is the basis of all remaining operators needed to
expand p and is orthogonal to {f;}, {¥;} and {éi}.

To construct {1;}, we first define the set A of all Hermitian
one-body operators A; built from operators in D. The matrix
representation of A; in a complete basis of N-body determi-
nant states |Dy) = lelkl ... CZNkN|O> is

My; = (Ap,.p, = (DnIAi|D}), (B1)

where Dy = (diKky,...,dyky) and N =1, ..., Npux with
Nmax determined by the truncation of the single-particle
Hilbert space. Let M, denote the set of matrices My, for
all A; € A. We perform a Gram-Schmidt orthogonalization
of M with respect to the Hilbert-Schmidt inner product
Tr(M MA]) to obtain an orthogonalized set M3, The
linearly independent set {{i;} is then defined by prOJecting
the orthogonalized M3™ back onto A;. If there are linear
dependencies among the A;, then there will be fewer f1; than
A

To proceed, we define the set B of all Hermitian two-
body operators B; built from operators in D that are not
in A; we also define the set Mp of matrix representations
Mg = (Bi)py.p,- We form the union Mz = MG U My
and again perform a Gram-Schmidt orthogonalization to ob-
tain the orthogonalized set Mo Mapping back onto the
operators {fi;, B;} defines a set of operators {i;, V;} with ¥;
linearly independent of all fi;. A similar recursive procedure
is used to define the bases {éi} and {0;}. The above procedure
has been used to construct operator bases for two-electron
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states with S, =0 built from a six-dimensional single-
particle Hilbert space [162] and four-electron states with

S, = 0 built from an eight-dimensional single-particle Hilbert
space.
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