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Quantum particles can penetrate potential barriers by tun-
nelling1. If that barrier is rotating, the tunnelling process 
is modified2,3. This is typical for electrons in atoms, mol-
ecules or solids exposed to strong circularly polarized laser 
pulses4–6. Here we measure how the transmission probability 
through a rotating tunnel depends on the sign of the mag-
netic quantum number m of the electron and thus on the ini-
tial direction of rotation of its quantum phase. We further 
show that our findings agree with a semiclassical picture, 
in which the electron keeps part of that rotary motion on its 
way through the tunnel by measuring m-dependent modi-
fication of the electron emission pattern. These findings 
are relevant for attosecond metrology as well as for inter-
pretation of strong-field electron emission from atoms and 
molecules7–14 and directly demonstrate the creation of ring 
currents in bound states of ions with attosecond precision. 
In solids, this could open a way to inducing and controlling 
ring-current-related topological phenomena15.

Within the Bohr model, the electron travels around the nucleus 
on circular orbits possessing quantized orbital angular momentum 
associated with a ring current. In quantum mechanics, this motion is 
reflected by the magnetic quantum number m. In an external mag-
netic field, the m quantum number becomes observable due to the 
Zeeman effect, which separates the (initially degenerate) m states in 
energy. However, this observation of m in the energy domain leaves 
the underlying circular electron motion invisible. Here we present 
an ultrafast ionization experiment in which we induce a directional 
ring current in a ground-state ion by optical tunnelling—a mech-
anism that impacts atoms and solids in the same way1. We probe 
this ring current in a time-delayed second ionization step, show-
ing how the escaping electron maps its bound-state circular motion 
onto a detector. In rare gas atoms, such as argon, orbitals of positive 
and negative m with their clockwise and anticlockwise direction 
of rotation are equally populated and no net ring current remains. 
However, if one finds a process that selectively ejects an electron 
from only one of these energetically degenerate orbitals, then the 
remaining ion will possess a stationary ring current with defined 
sign, even in its ground state16. For non-vanishing spin–orbit split-
ting and m-selective tunnel ionization, spin–orbit wavepackets are 
created that evolve with a period of T ≈  23.3 fs for argon that are 
not resolved in this experiment17–19. Similar ground-state currents 
emerging due to optical tunnelling in condensed-matter systems 

(for example, in solid argon) could result in topological edge cur-
rents in a manner similar to their appearance in twisted wave-
guides15, opening an exciting opportunity for ultrafast imaging and 
control of their formation in condensed-matter systems.

Recent theoretical works predicted that optical tunnelling 
through a rotating barrier depends on the sign of the magnetic 
quantum number m4,7,20,21. Such a barrier can be created by a strong 
circularly polarized laser pulse impinging on the atom (Fig. 1). 
Counter-intuitively, theory predicts that electrons that are coun-
ter-rotating with respect to the tunnelling barrier, are strongly 
preferred for tunnel ionization4,7,20. Using this insight, the genera-
tion of spin-polarized electrons has been predicted20 and measured 
recently22. Another experiment demonstrated that sequential dou-
ble ionization rates by two subsequent circular laser pulses increase 
if their polarizations are counter-rotating, compared to the case 
when both rotate in the same direction23. In the present work, we 
directly prove and quantify this quantum-state selectivity of opti-
cal tunnelling in a pump–probe experiment. To distinguish emitted 
electrons with different m, we have employed the following simple 
idea. Suppose an electron escaping from the tunnel into the con-
tinuum keeps its original angular momentum. Then, at the posi-
tion of the tunnel exit rt, an angular momentum of mħ corresponds 
classically to a linear momentum of p⊥ =  mħ/rt perpendicular to the 
tunnel direction. Thus, the electron starts its motion in the field 
with an additional initial momentum. Depending on the sign of m 
with respect to the direction of rotation of the laser field, this initial 
momentum either adds to or subtracts from the laser-induced drift 
momentum. Measuring the momentum distribution should then 
give direct access to stationary ring currents present in a single 
atom as well as to the ‘transport’ of angular momentum through 
the tunnelling barrier.

In spite of the seeming simplicity of the idea, visualizing these 
ring currents in an experiment is demanding. Two circularly polar-
ized laser pulses have to be employed. The pump laser pulse should 
generate the ring current in the ion. To detect this current, we apply 
a probe laser pulse to remove a second electron that should carry 
the fingerprint of the current in its energy spectrum. A major chal-
lenge in the experiment is to identify the atoms that have been ion-
ized subsequently by the pump and the probe pulse and have not 
been doubly ionized by either of the two. Accordingly, the proper-
ties of the pump and the probe pulses need to differ such that the 
measured electrons carry information on their ionization sequence. 
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Fig. 1 | Experimental preparation of ring currents by m-dependent tunnel-ionization. a, The circularly polarized laser pulse with an anticlockwise-rotating 
electric field liberates an electron by tunnel-ionization at t =  0 fs. Clockwise-rotating electrons (m =  + 1) are strongly preferred for ionization. b, Step a 
results in a persistent ring current in the remaining ion. d,e, The corresponding process for a circular clockwise-rotating electric field. The sign of m and 
direction of the ring current are inverted. c,f, Only the pump pulse is used and the electron momentum distributions PL

1st elec and PR
1st elec, showing electrons 

that are detected in coincidence with Ar1+ for equal acquisition times, are identical. The black lines show the negative vector potential of the pump pulse. 
Most of the first electrons fulfil |pz| <  0.5 a.u. (indicated by the unshaded area), which will be utilized for distinguishing electrons from the pump and the 
probe pulse. Note that the light propagation direction points out of the paper in c,f.
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Fig. 2 | Detection of ring currents by momentum-resolved m-dependent tunnel-ionization. a,d, At t =  200 fs, the elliptically polarized probe pulse with 
a clockwise-rotating electric field hits the ion that has been created by the pump pulse (see Fig. 1). c,f, The second electron’s momentum distributions 
PLR

2nd elec and PRR
2nd elec for equal acquisition times (the electron that is not measured is calculated from momentum conservation and the measured electron 

is shown in c, f only if the calculated electron fulfils |pz_calc| <  0.5 a.u.). The momenta agree with the negative vector potential of the field (black line).  
There are more events in PLR

2nd elec than in PRR
2nd elec, proving that the sign of the magnetic quantum number influences tunnel ionization. The angular and 

radial differences are discussed in Fig. 3 and Supplementary Fig. 3. The electron’s ‘initial’ momentum distributions after tunnelling (dashed line in b, e) with 
m =  + 1 have a higher momentum (peak at p =  0.12 a.u.) than m =  − 1 (peak at p =  0.00 a.u.). These add to the drift momentum imparted by the laser pulse, 
leading to different final radial momenta (solid lines in b,e). The transverse offsets for distributions in b,e are estimated using ARM theory  
(see text). Note that the light propagation direction points out of the paper in c,f.
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In our pump–probe experiment, a circularly polarized pump pulse 
with a wavelength of λ =  390 nm ejects a first electron and a delayed 
more intense elliptically polarized probe pulse with a wavelength of 
λ =  780 nm ejects the second electron from an argon atom. We mea-
sure the changes in ionization rate and the momentum distribution 
of the second electron on switching the helicity of the pump pulse, 
while the probe pulse remains the same in all cases. Throughout all 
measurements, the helicity of the pump was inverted every 3 min. 
Figures 1 (total acquisition time is 3 h and only the pump pulse is 
used) and 2 (total acquisition time is 35 h and the pump–probe 
sequence is used) show the pump and probe step in more detail. 
For t =  0 fs, the circularly polarized ultrashort pump pulse with an 
intensity of I0 =  2.1 ×  1014 W cm–2 creates a singly charged argon ion. 
About 200 fs later, long after the pump pulse is gone, the second 
electron is emitted from the ion by the probe pulse (ellipticity of 
0.61 with a peak electric field of FL =  0.11 a.u., corresponding to 
an intensity of IL =  8.5 ×  1014 W cm−2 for circularly polarized light). 
Since the liberated electrons are accelerated by the laser field, their 
final momenta are proportional to |FL ×  λ|, which is very different 
for both pulses. Thus, one can tell from the final momentum of each 
electron whether it was ejected in the pump or in the probe step. 
Moreover, the coincident detection of electrons and ions allows us 
to identify and reject events where both electrons are set free by the 
same pulse, as described in more detail in the Methods.

Figure 1 displays the momentum distributions of the electron 
emitted by the pump pulse with anticlockwise-rotating polariza-
tion (Fig. 1c, indicated by ‘L’) and clockwise-rotating polarization  
(Fig. 1f, indicated by ‘R’). As both m states are equally populated in 
the neutral Ar atom, the momentum distributions and ionization 
rate are independent of the sign of the helicity of the ionizing laser 
field. However, the memory about the direction of rotation of the 
ejected electron is recorded in the ion (Figs. 1 and 2a,d). Due to sym-
metry, the singly ionized states shown in Fig. 1b,e must be mirror 
symmetric. Will the second ionization step read out this memory? 
This ability depends on the frequency of the laser field. In the adia-
batic tunnelling limit, the barrier does not rotate during tunnelling. 
Hence, tunnelling from the states with positive and negative m will 
be identical and the information about the initial direction of the 
electron’s rotation will be lost. The multiphoton ionization regime 
offers a more optimistic picture: one would expect that the electron 
escapes with the angular momentum Ip/ω +  mħ, where Ip/ω is the 
angular momentum associated with the absorption of the minimal 
number of photons required to overcome the ionization potential Ip.  
Hence, in the intermediate, so-called non-adiabatic tunnelling 
regime2,3, the difference in the angular momenta Δ lz for the ± |m| 
electrons just after tunnelling should be between zero and 2|m|ħ 
(see Supplementary Figs. 1 and 2 for semiclassical calculations). Our 
theory, which uses the analytical R-matrix (ARM) method5,11,24–26 
(see Methods), estimates that Δ lz ≈  ħ in the conditions of our 
experiment (Fig. 2b,e). At the tunnel exit rt, this difference corre-
sponds to different transverse velocities, Δ Δ= ∕⊥v l rz t, which trans-
late into the different final momenta at the detector. Figure 2b,e  
shows how the initial m is transported through the tunnel and 
mapped onto the final electron spectrum.

We can now investigate the momentum distribution of the sec-
ond electron P2nd elec for two scenarios. The electric field of the probe 
pulse rotates clockwise in all cases shown here (indicated by ‘R’).  
Figure 2c (respectively, Fig. 2f) shows PLR

2nd elec (respectively, PRR
2nd elec)  

for the case where the first electron has been removed by an anti-
clockwise (respectively, clockwise)-rotating field. While, at first 
glance, both distributions appear to be similar, detailed examina-
tion unveils slight differences, which become prominent in the cor-
responding angle-integrated kinetic energy spectra Y2nd elec of the 
second electron shown in Fig. 3a (see Supplementary Fig. 3 for two-
dimensional differential momentum spectra and Supplementary 
Fig. 4 and Methods for details about how to distinguish the first 

Y
ie

ld
 (

co
un

ts
)

0

2,000

4,000

6,000

8,000

10,000

12,000

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 Exp

Energy (eV)

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Exp: Ym = –1m
2nd elec

Exp: Ym = +1m
2nd elec

TDSE:Ym = –1m
2nd elec

TDSE:Ym = +1m
2nd elec

ARM: Ym = –1m
2nd elec

ARM: Ym = +1m
2nd elec

Exp: Y RR
2nd elec

Exp: Y LR
2nd elec

Y
ie

ld
 (

no
rm

. t
o 
m

 =
 –

1)
m

a

b

c

R
el

at
iv

e 
yi

el
d 

(Y
2n

d 
el

ec
/c
Y

2n
d 

el
ec

)
LRYY

R
R

Fig. 3 | Energy-resolved electron spectra showing ring current transport 
during tunnelling. a, Measured electron energy spectra for YLR

2nd elec and 
YRR

2nd elec. To reduce noise, the momentum window shown in the inset 
is applied to the experimental data; the same window is used to gate 
theoretical and numerical results. b, The ratio of ionization rates Y

Y
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 is 

found to be between 0.6 and 1.67. This asymptotic behaviour for low and 
high energies can be used to experimentally obtain =−Ym 1

2nd elec and =+Ym 1
2nd elec 

(see Methods for details). c, Energy-dependent yields =−Ym 1
2nd elec and =+Ym 1

2nd elec 
according to equations (1) and (2) from the Methods are calculated 
directly from the measured data (squares) and are compared with our 
theoretical results (ARM theory, dashed lines) and numerical simulations 
of the time-dependent Schrödinger equation (solid lines) (see Methods). 
The error bars show the standard deviation of the statistical errors. The 
maxima are indicated by the vertical coloured lines.
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and second electrons). The measured peak energies are 22.3 eV for 
YRR

2nd elec and 21.2 eV for YLR
2nd elec. This disparity not only signifies 

the presence of the ring current in the Ar ion, but also allows us to 
detect its direction, directly observing the propensity rules of the 
optical tunnelling: the electron counter-rotating to the laser field is 
preferred, dominating at low energies in the spectra (Fig. 3a,b).

The relative yield = ∕R E Y E Y E( ) ( ) ( )LR
2nd elec

RR
2nd elec  (Fig. 3b) is 

close to 2 for low-energy electrons, equals 1 at 31.2 eV and drops 
below unity at high energies. Since there are two electrons for each 
m state in a p orbital, R(E) must fulfil 0.5 ≤  R(E) ≤  2. The observa-
tion that the relative yield is close to 2 for the low-energy electrons 
allows us to conclude that the pump pulse—depending on its helic-
ity—almost perfectly selects either m =  + 1 or m =  − 1 (see Methods 
for a refined analysis including correlation effects and a quantum 
mechanical description of the electron hole). Using this insight, we 
are able to obtain the energy-dependent yields =−Ym 1

2nd elec and =+Ym 1
2nd elec 

for m =  − 1 and m =  + 1 electrons (see Fig. 3c). Not only are the 
absolute yields for =−Y E( )m 1

2nd elec  and =+Y E( )m 1
2nd elec  different, but also 

the peaks are shifted in energy by 4.6 eV, in excellent agreement 
with analytical theory and in good agreement with numerical time-
dependent Schrödinger equation simulations.

Our findings demonstrate that the radial shift of the final 
momentum is a fingerprint of the ring current induced in the 
ion by optical tunnelling. We have traced this effect back to the 
m-dependent ‘initial’ transverse momentum at the tunnel exit. 
The substantial change of yield and energy of the second electron 
released by the unmodified probe pulse on inverting the helicity 
of the pump pulse experimentally proves that the singly charged 
ion stores information about the helicity of the pump pulse. It also 
quantifies the transport of angular momentum through the rotat-
ing tunnelling barrier. Thus, the often neglected role of the sign of 
the magnetic quantum number plays a major role in strong-field 
ionization. We expect that this is not restricted to atoms but will 
also influence molecular ionization.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0080-5.
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Methods
Laser set-up. To generate the two laser pulses, we use a 200 µ m β -barium borate 
crystal to double the frequency of a laser pulse with an initial wavelength of 
780 nm (KMLabs Dragon, 40-fs full-width at half-maximum, 8 kHz). A dielectric 
beamsplitter separates the two pulses of different wavelengths. Subsequently, 
intensity, polarization state and relative time delay are tuned by neutral-density 
filters, λ/2 and λ/4 retardation plates and a delay stage, respectively. Both laser 
pulses are focused by a spherical mirror (f =  80 mm) into a gas target of argon 
atoms, which is produced by a supersonic expansion of argon gas into the vacuum 
through a tiny 30 µ m nozzle. The gas target was collimated to less than 10 μ m  
along the axial direction in the laser focus to reduce focal averaging. The peak 
intensities in the focus were calibrated by comparing the measured drift momenta 
of Ar photoelectrons ionized by the circularly polarized pump pulse with a 
wavelength of 390 nm to our TDSE calculations. For the intensity calibration of the 
elliptically polarized probe pulse (λ =  780 nm), a helium target was used to avoid 
saturation of single ionization. The uncertainty of this calibration method  
is estimated to be 10%.

Particle detection. On ionization, the fragments are guided by a homogeneous 
electric field (18.0 V cm−1) and a homogeneous magnetic field (10.4 G) towards 
time- and position-sensitive detectors. The lengths of the electron and ion 
arms were 378 mm and 67.8 mm, respectively. The detectors consist of two 
multi-channel plates in a chevron configuration with a radius of 60 mm and 
40 mm for the electron and the ion side, respectively. For both detectors, the 
multi-channel-plate stack is followed by a three-layer delay-line anode (HEX) 
with an angle of 60° between layers as manufactured by RoentDek27. In this 
configuration, the three-dimensional momentum of the first electron that hits 
the detector and one momentum component in the plane of polarization (pz-
direction along time-of-flight) of the ion are measured in coincidence (cold 
target recoil ion momentum spectroscopy)28. The energy resolution of the 
detected electrons depends on the energy E and is better than 1.3 eV (2.5 eV) 
for E <  20 eV (E <  40 eV). Employing momentum conservation, the undetected 
electron’s momentum component in the time-of-flight direction was calculated 
(see the following paragraph). Laser, optics set-up and particle detection are 
the same as used in ref. 29.

Distinguishing electrons emitted by the pump and the probe step in 
momentum space and background subtraction. The undetected electron’s 
momentum component in the z-direction pz_calc is inferred using momentum 
conservation. (Note that the electron’s momentum component in the x-direction 
and y-direction cannot be inferred because the momentum resolution on the 
ion is not sufficient in those directions.) Electrons emitted by the pump pulse 
have lower momenta (Fig. 1c,f) in the pz-direction than those generated by the 
probe pulse (Fig. 2c,f). Imposing the condition |pz_calc| <  0.5 a.u. for the calculated 
electron, we make sure that the electron that has been detected originates from 
the ion that was successfully ionized by the pump pulse before. The measured 
electrons for this condition are seen in Fig. 2. Since the electron momentum 
distribution is close to the negative vector potential of the probe pulse, we 
know that those electrons stem from ionization by the probe pulse. See also 
Supplementary Fig. 4, which shows the electron momentum distributions 
measured in coincidence with Ar2+ without any condition on the detected 
electron for the cases of pump pulse alone, probe pulse alone and pump and 
probe pulse. For the spectra shown in Figs. 2 and 3 and Supplementary Figs. 
1–3, we have subtracted 35% of the random coincidences.

Obtain experimental spectra for ionization from m = +1 or m = −1 electrons. 
Let w+ (w−) be the probability of liberating the electron co-rotating (counter-
rotating) with the pump pulse. Consider first the case in which the pump and 
the probe pulses rotate in the same direction. Since there are two electrons for 
each m state in a p orbital, the amount of counter-rotating electrons available 
for the second step is = + = +−

+

+
+ −N a1 1w

w w
. Here, a is the relative chance 

of removing a co-rotating electron at the pump step (with ϵa [0, 1]). Thus, the 
parameter a determines the purity of the state prepared by the pump pulse with 
a =  0 being equivalent to perfect selection of a given m state by the pump pulse. 
The amount of co-rotating electrons available for the second ionization step is 

= + = −+
+

−
+ −N a1 2w

w w
.

In the following, we include two correction factors (Q and C) in our model 
that can be combined into one correction factor K =  Q ×  C. The factor Q (with 
Q >  1) accounts for `hole refilling' (see the section entitled Quantum mechanical 
description of the created electron hole) and C accounts for correlation effects. 
The ionization of two electrons with equal magnetic quantum number results 
in an exited state of Ar2+ (1D state), whereas the ionization of two electrons with 
non-equal magnetic quantum number can lead to the ground state (3P state) or 
an excited state (1D state) of Ar2+. Since the final states 3P and 1D differ in energy 
by about 1.74 eV, we cannot assume equal ionization probabilities and include the 
factor C (with C >  0) that accounts for correlation effects. C =  1 would indicate 
that correlation effects due to the different final states can be neglected and C =  0 
would indicate that it is impossible to sequentially ionize two electrons with equal 
magnetic quantum number. Finally, the photoelectron signal generated by the 

probe pulse in the co-rotating set-up follows by summing up all contributing 
channels:

= − +

+ − +
=−

=+

Y E a K a Y E

a a K Y E

( ) [(1 ) 2 ] ( )

[2(1 ) ] ( )
(1)m

m

RR
2nd elec

TH TH 1
2nd elec

TH TH 1
2nd elec

where =±Y E( )m 1
2nd elec  describe photoelectron yields for the probe step. Similarly, for 

the counter-rotating set-up:

= − +

+ − +
=+

=−

Y E a K a Y E

a a K Y E

( ) [(1 ) 2 ] ( )

[2(1 ) ] ( )
(2)m

m

LR
2nd elec

TH TH 1
2nd elec

TH TH 1
2nd elec

We assume that for high energies only =+Y E( )m 1
2nd elec  contributes because 

Y E( )LR
2nd elec  and Y E( )RR

2nd elec  have different peak energies, which explains 
the pronounced energy difference in Fig. 3b. Then, the relative yield 

= ∕R E Y E Y E( ) ( ) ( )LR
2nd elec

RR
2nd elec  for high energies fulfils:

=
+ −

− +
R

a a K
a a K

2 (1 )
2(1 )

(3)highE
TH TH

TH TH

It can be shown that the ratio must be inverse for low energies. The 
experimental relative yield from YLR

2nd elec and YRR
2nd elec (Fig. 3b) reaches values close 

to RhighE =  0.6 ±  0.1 for high-energy electrons (the limits are marked in Fig. 3b). 
From the numerical TDSE simulations regarding the pump step, we know that 
aTH ≈  0.12. This allows us to determine K:

=
+ −

+ −
= . ± .K

a a R R
R a a

2
1

1 01 0 17 (4)
TH TH highE highE

highE TH TH

The value of K is close to one (correlation effects and hole refilling cancel each 
other, with C =  0.83 ±  0.14 and Q =  11

9 ). Setting aTH =  0.12 and K =  1.01 in equations 
(1) and (2), we obtain the experimental energy-dependent yields =−Ym 1

2nd elecand 
=+Ym 1

2nd elec for m =  − 1 and m =  + 1 electrons (see Fig. 3c). Different values for aTH lead 
to different values of K but it can be shown that the experimentally obtained yields 

=−Ym 1
2nd elecand =+Ym 1

2nd elec are independent of the choice of aTH and depend only on the 
experimental value RhighE.

Quantum mechanical description of the created electron hole. On ionization, 
the electron hole density in the remaining ion oscillates with the frequency ωSO 
due to spin–orbit splitting19,30. For the case of ejection of a spin-up electron with 
m =  − 1, the resulting hole is time-independent since its total angular momentum 
can only be J =  3/2:

= ×=−W 1 1
2

(5)m 1(spin down)

The multiplication by 12  reflects that the chance of making a spin-down hole is 
50%, which is equal to that of making a spin-up hole. On ionization of a spin-down 
electron, the created electron hole is a superposition of an electron hole with a 
total angular momentum of =J 3

2
 and =J 1

2
. Therefore, the electron hole oscillates 

between m =  − 1 (spin-up) and m =  0 (spin-down). The population of the m =  − 1 
(spin-up) electron hole state as a function of time t is19:

= ∕ + ∕ ω ×=−W t t( ) [5 9 4 9 cos( )] 1
2

(6)m O1(spin up) S

The multiplication by 12  here also reflects the fact that there is a 50% chance 
of making a spin-up hole. In the experiment, the pump and the probe pulse 
are substantially longer than the period of spin–orbit splitting (T ≈  23.3 fs). (A 
dependence on the pump–probe delay would only be observable for short pulses 
and perfect coherence of the electron hole that is created by the pump pulse.) As a 
result, the oscillation vanishes, leading to the following effective population of the 
m =  − 1 electron hole, (unresolved on the spin):

< > = × + × ==−W 1 1
2

5
9

1
2

7
9

(7)m 1

This value deviates from unity, indicating that due to the conversion of electron 
holes with m =  − 1 (spin-up) to electron holes with m =  0 (spin-down), the electron 
hole with m =  − 1 is expected to be refilled by 2

9
 of an electron hole. The exact 

same derivation holds true for a hole created with m =  + 1, leading to an oscillating 
electron hole between m =  + 1 (spin-down) and m =  0 (spin-up). (Ionization of the 
m =  0 state by the circularly polarized probe field is negligible due to symmetry.) 
For the experiment, this means that any hole that is created in the pump step is 
refilled with 2

9
 electrons, leading to an available number of +1 2

9
 electrons instead 

of exactly 1 electron with the given magnetic quantum number. The scalar value 
=Q 11

9
 is used to describe this effect (‘hole refilling’) in our experiment. Since  
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‘hole refilling’ affects only the scenarios in which the pump and probe subsequently 
ionize an electron with the same magnetic quantum number, the scalar value of 
Q appears as a factor together with the scalar value C (accounting for correlation 
effects) since the correlation effect is relevant for the same channels.

Numerical time-dependent Schrödinger equation simulations. Our numerical 
simulations are based on solving the time-dependent Schrödinger equation (TDSE) 
first for the pump step and then for the probe step, assuming sequential ionization. 
In both cases, a single active electron moves in an effective potential. For the pump 
step, two different effective potentials have been used, one developed and verified 
in refs 31,32 = − . + . − + . − . ∕V r r r r( ) (1 5 4 exp( ) 11 6 exp( 3 682 ))1,Ar , and another 
defined as = − + − ∕ . ∕ + . −V r r r r( ) [1 17 exp( 1 1364)] 0 997 exp( 2 )2,Ar

2 2 2 , both 
adjusted to fit the ionization potential of argon from the p shell. The numerical 
method used was described in refs 31,32 and is identical to that employed by us in 
refs 11,22,26. For the pump step, only energy-integrated relative ionization yield from 
the co-rotating and counter-rotating orbitals is needed. For the estimated pump 
intensity (carrier frequency of ω =  0.114 a.u., field strength F =  0.055 a.u.), the ratio 
a =  w+ / (w+ +  w−) was found to be a =  0.18 and a =  0.12 for the first and the second 
potential respectively, demonstrating predominant ionization from the orbital 
counter-rotating to the pump field. For the probe step, the results shown in Fig. 3 
and Supplementary Fig. 3 used = − ∕ ++V r r r( ) 2 U( )3,Ar , with the short-range part 

= − . − . × ∕U r r r( ) 6 24 exp( 1 235 )  adjusted so that the binding energy of the first 
p state is equal to the ionization potential of Ar+ (Ip =  1.0153 a.u.), and the next 
excited s state (E =  − 0.3845 a.u.) approximates the first excitation in the Ar+ ion. 
The calculations were performed for the orbitals co- and counter-rotating with 
respect to the probe field.

The pulses used to produce the TDSE results in Fig. 3 and Supplementary 
Fig. 3 had carrier frequency ω =  0.057 a.u., a cos4(π t/NT) intensity envelope, with 
a full duration of N =  6 optical cycles T =  2π /ω (base to base). The pulses have an 
ellipticity ϵ = .0 61, with = ϵF Fz y. We have performed calculations for six intensities 
with 0.09 ≤  Fy ≤  0.115 a.u. in steps of Δ Fy =  0.005 a.u. The results of the simulations 
were averaged over the carrier envelope phase (CEP) of the pulse, incremented 
in steps of Δ π= .EPC 0 05 . The results were also averaged over the focal volume 
intensity distribution, assuming Gaussian focus and that the gas jet was much 
thinner than the length of the focal spot. The same procedure was used for the 
analytical R-matrix (ARM) calculations described below. The ARM and the TDSE 
results presented in Figs. 2 and 3 and Supplementary Fig. 3 use Fy =  0.11 a.u. as the 
peak field strength.

The discretization box used for the simulations had a radial box size of 
1,000 a.u., with Δ r =  0.1 a.u. The maximum angular momentum included is 
lmax =  160, and the time step was Δ t =  0.036 a.u. A complex boundary absorber 
was placed starting at 30 a.u. before the end of the simulation volume to avoid 
unwanted reflections from the boundaries. The convergence of the numerical 
calculations has been checked with respect to all discretization parameters. The 
photoelectron spectra were calculated by propagating the wavefunction one extra 
cycle after the end of the pulse, and applying a spatial mask with a radius of 75 a.u. 
to remove the bound part of the wavefunction. The remaining (continuum) part 
was then projected on the well-known exact continuum eigenstates of the doubly 
charged Coulomb centre. The accuracy of this procedure has been monitored by 
varying the extra propagation time up to five cycles, and by varying the radius and 
the width of the spatial mask.

To compare with the experimental measurements, in Fig. 3c, we have used 
an angular filter, in the same way as in the experiment, imposing two 90-degree 
integration windows, centred at 100 degrees and 180 +  100 degrees respectively.

Analytical R-matrix theory. The analytical R-matrix (ARM) approach has been 
described in detail in refs 5,7,11,24–26, with ref. 7 focusing on its application to strong-
field ionization from orbitals with non-zero l,m. The ARM method yields the 
following expressions for the photoelectron signal at the momentum p

∣ ∣ = ∣ ∣a Rp p( ) ( ) e (8)l m
S tp2

,
2 2Im ( , )s

The second term encodes the bulk of the ‘weight’ of the quantum trajectory 
defined by the initial coordinate (at the origin) and the final momentum p at 
the detector. The trajectory leaves the bound orbital at a complex-valued time 
ts =  ts(p) and moves according to the Newton equations, both in the classically 
forbidden and classically allowed regions. Extension into the classically forbidden 
region makes the starting time ts =  ts(p) complex-valued. The time ts =  ts(p) is 
found as the solution of ∂ S(p,t)/∂ t =  0, where the action S(p,ts) is calculated 
along the complex-valued trajectory and is complex-valued. The strength of the 
photoelectron signal depends on its (negative) imaginary part ImS(p,ts). The 
action includes the electron interaction with the laser field and the core potential. 
Further details are briefly summarized in equations (2)–(6) of the Supplementary 
Information of ref. 11, with complete mathematical treatment presented in 
refs 5,7,24–26, including the verification against ab initio simulations of the time-
dependent Schrödinger equation (5).

The first term in equation (8) encodes the angular structure of the ionizing 
orbital, Rlm(p)∝ eImφ(p), where φ(p) is the complex-valued ‘tunnelling’ angle—the 
angle at which the trajectory leaves the origin, tan φ = ∕v t v tp p p( ) ( ( )) ( ( ))y xs s .  

The angle is complex-valued due to the complexity of the velocity in the classically 
forbidden region, and its imaginary part determines the relative ionization yields 
from orbitals with m =  ± |m|: |Rl,+|m|(p)|2/|Rl,−|m|(p)|2∝ e−4|m|Imφ(p). The effects of 
the core potential on the outgoing electron are included in the action and in the 
shift of the ionization time ts =  ts(p). The corrections to the tunnelling angle φ(p) 
associated with the effect of the core potential were not included.

Semiclassical calculation. The semiclassical simulation of ionization for the argon 
ion by the 780 nm probe pulse is based on the semiclassical two-step model of 
ref. 33. The initial conditions (ionization time and transverse momentum) for each 
trajectory are prepared using importance sampling33 according to the Ammosov–
Delone–Krainov ionization theory34. The tunnel exit is obtained in the same way 
as in ref. 35. A linear offset momentum p⊥ =  mħ/rt in the plane of polarization and 
perpendicular to the tunnelling direction is added to the momentum distribution. 
The momentum p⊥ corresponds to an angular momentum of mħ at the position 
of the tunnel exit rt. The results from our ARM calculation on the transverse 
momentum distribution at the tunnel exit shown in Fig. 2b,e show a momentum 
difference of only 0.12 a.u. between the ionization of m =  + 1 and m =  − 1, which is 
about a factor of two smaller than the value we assume here based on the classical 
estimate p⊥ =  mħ/rt. After tunnelling, an electron is propagated classically in the 
presence of the doubly charged ionic core and the strong laser field. The analogue 
of the quantum mechanical phase was calculated from classical action for each 
final momentum. A peak electric field of Fy_classical =  0.114 a.u. and an ellipticity 
of ϵ = .0 61 = ϵF F( )z yclassical classical

 have been used. The yields from the semiclassical 
simulations in Supplementary Figs. 1 and 2 have been normalized to fit the 
maximum of the experimental data for m =  − 1 and m =  + 1 respectively.

Differences in angle-resolved photoelectron spectra. The photoelectron 
spectra in Fig. 2c,f also show—besides the discussed radial differences—angular 
deviations. Those are due to the Coulomb attraction of the outgoing electron to 
the ionic core. The different `initial conditions' map onto different angular offsets 
in the final angle-resolved photoelectron spectra originating from m =  + 1 and 
m =  − 1 states7, similar to the so-called attoclock set-up8,13,36,37. In our experiment, 
this directly translates (see equations (1) and (2)) into different angular structures 
in PLR

2nd elec and PRR
2nd elec (see Supplementary Fig. 3 for the differential histograms). 

Note that, from equations (1) and (2), it can be shown that for each momentum p 
in the plane of polarization

− × − − +

= −
=− =+P P a K a K

P P

p p

p p

( ( ) ( )) (2 4 2)

( ) ( )
(9)m m1

2nd elec
1

2nd elec
TH TH

LR
2nd elec

RR
2nd elec

which indicates that after normalization the differential electron momentum 
distributions −P PLR

2nd elec
RR
2nd elec and −=− =+P Pm m1

2nd elec
1

2nd elec are identical.
The additional angular offset associated with the angular momentum of the 

ionizing state directly affects the interpretation of attosecond measurements of 
tunnelling dynamics via the attoclock set-up37 and also extends attoclock-type 
measurements8,13,36,37 to multi-cycle laser pulses.

Accordingly, our findings give a purely experimental answer to the lively 
debated question regarding the role of non-adiabatic electron dynamics during 
optical tunnelling8,11. So far, these effects have been addressed only by comparing 
experimental observations with calculated ones, using theoretical models to 
reconstruct the underlying dynamics8–10,13,36–39.

Data availability. The data that support the findings of this study are available 
from the corresponding author upon reasonable request.
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