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1.  Introduction

Spin waves (or magnons) are low-lying collective excitations 
(quasiparticles) of the electronic spin structure in a crystal lat-
tice [1–3] and each of these excitations corresponds to a reduc-
tion in the total magnetization of the system by 2µB, which is 

manifested as a deviation of the atomic moments from their 
equilibrium directions [4]. Magnons are bosons, carry a fixed 
amount of energy ω and a lattice momentum, and cover a very 
wide frequency window from gigahertz to a few hundred tera-
hertz. Hence, they contribute to many observed phenomena, 
e.g. magnetic ordering [5], ultrafast magnetization processes 
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Abstract
We present an efficient methodology to study spin waves in disordered materials. The 
approach is based on a Heisenberg model and enables calculations of magnon properties in 
spin systems with disorder of an arbitrary kind and concentration of impurities. Disorder 
effects are taken into account within two complementary approaches. Magnons in systems 
with substitutional (uncorrelated) disorder can be efficiently calculated within a single-
site coherent potential approximation for the Heisenberg model. From the computation 
point of view the method is inexpensive and directly applicable to systems like alloys and 
doped materials. It is shown that it performs exceedingly well across all concentrations and 
wave vectors. Another way is the direct numerical simulation of large supercells using a 
configurational average over possible samples. This approach is applicable to systems with an 
arbitrary kind of disorder. The effective interaction between magnetic moments entering the 
Heisenberg model can be obtained from first-principles using a self-consistent Green function 
method within the density functional theory. Thus, our method can be viewed as an ab initio 
approach and can be used for calculations of magnons in real materials.
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[6], electronic specific heat [7], electrical and thermal con-
ductivity [8], current induced magnetization reversal, and 
electron spin dynamics [9]. Besides these phenomena, various 
coupling mechanisms with electrons and phonons in magneto-
caloric materials [10] and in high-temperature superconduc-
tors [11–14] can be caused by spin waves.

Magnons can be probed with various experimental meth-
ods like inelastic neutron scattering [15, 16], inelastic photon 
scattering [17, 18], scanning tunneling spectroscopy (STS) 
[19–22], spin-wave resonances [23], and spin-polarized elec-
tron energy loss spectroscopy (SPEELS) [4, 24–33]. The 
most recent development in this research field was achieved 
for low-dimensional systems. In particular, SPEELS and 
STS allow the investigation of magnetic excitations in nano-
structures such as thin films, clusters, chains, and adatoms. 
These experiments enable direct measurements of the mag-
non dispersion relation, lifetime, group and phase velocities. 
Several low-dimensional systems have efficiently been stud-
ied by these methods in the last decade, for example, thin Fe, 
Co, Ni, Mn films on Cu(0 0 1), W(110), Pd(0 0 1), Rh(0 0 1), 
Ir(0 0 1), and Cu3Au(0 0 1) surfaces. A particular high energy 
resolution became possible with a new electron spectrometer 
for unpolarized electrons [34–36], which enables the study of 
spin waves with less than 3 meV resolution in the wave vector 
range between 1 nm−1 and 3 nm−1 [37, 38]. In this range, thin 
film standing modes are observed in addition to the acoustic 
mode [39]. Furthermore, the lifetime of spin waves increases 
with the inverse fourth power of the wave vector, which make 
these spin waves candidates for magnon-based devices [37].

The rapid progress and success of these experiments 
inspired the development of new theoretical approaches, 
which are specially designed to study magnetic excitations 
in complex and extended materials. One class of these meth-
ods is based on mapping the spin system onto an effective 
Heisenberg Hamiltonian. This approach is utilized in many 
different forms like the magnetic force theorem [40], static 
transverse susceptibility [41, 42], frozen magnon techniques 
[43], and atomistic spin dynamics [44–48]. In combina-
tion with the density functional theory, such methods do not 
involve adjustable parameters and are applicable to a wide 
range of material classes.

Another way to access magnetic excitations is the direct 
calculation of the transverse magnetic susceptibility, whose 
poles are associated with magnons and yield the magnon 
energies and life times. The magnetic susceptibility can be 
obtained within the linear response density functional theory 
[49, 50], which offers a transparent parameter free approach in 
order to obtain both—spin waves and Stoner excitations. This 
method is implemented within several numerical schemes and 
successfully applied to study magnons in complex bulk and 
low dimensional materials [51–59].

However, we have also to take into account that the real 
systems are imperfect. Structural defects, impurities, or alloy-
ing can substantially modify the structural, electronic and 
magnetic properties of the host materials. One way to model 
such systems is the use of a large number of large periodic 
supercells where disorder is approximated by randomly 

generated atomic configurations in the supercells. This 
method allows direct studies of arbitrary disorder, although 
it is very demanding with respect to computing time. An 
alternative approach is the coherent potential approximation 
(CPA), which is a mean-field theory and designed for stud-
ies of substitutionally disordered alloys [60]. Subsequently, 
it was suggested to use the Green function method also to 
study the electronic structure of impurities and defects in 
various host materials [61]. Therein, the Green function of an 
impurity or an ensemble of atoms embedded in a particular 
system can be determined in an elegant way by solving a 
Dyson equation, which is associated with the host material 
via a reference Green function. Both the supercell approach 
and the CPA are widely used for first-principles studies of 
various properties of solids. In this work, we concentrate on 
spin waves or magnons in disordered materials. Thereby, two 
main aspects will be taken into account: the impact of dis
order on (i) the electronic structure and magnetic interactions 
and (ii) the spin waves of the disordered systems. The first 
aspect can be efficiently treated within a standard single-site 
CPA approach using a self-consistent Green function method, 
which provides magnetic moments and exchange interaction 
of the disordered system from first-principles. This informa-
tion can then be further used for the calculation of the second 
aspect—magnons—considering disorder effects either within 
the supercell approach or the CPA method formulated for the 
magnonic Green function or the transversal susceptibility. 
The later can be utilized either within the Heisenberg model 
[62–67] or computed directly using time dependent density 
functional theory combined with the CPA [54].

In the current work, we focus on the second aspect and 
present our technique to calculate spin waves in disordered 
materials, which is realized with both the supercell and the 
CPA approaches [68]. The starting point is the adiabatic spin 
dynamics based on the mapping of the magnetic states onto the 
states of the Heisenberg Hamiltonian. From the Heisenberg 
model, the magnetic susceptibility can be calculated either in 
the real space and then subsequently averaged over different 
disorder configurations, or it can be obtained within the CPA 
implemented for complex unit cells, which might contain also 
various types of chemical or magnetic disorder.

The paper is organized as follows: The transverse magn
etic susceptibility within the adiabatic approximation is intro-
duced in section 2. Subsequently, we present our model for 
describing magnons in disordered systems within the real 
space supercell approach and the CPA method in sections 3 
and 4, respectively. In section 5, we discuss briefly our method 
for the calculation of the exchange parameters entering the 
Heisenberg Hamiltonian. The efficiency of our technique is 
illustrated for several examples in sections 3 and 4.

2. Transverse magnetic susceptibility

The interaction of the spins will be described in terms of the 
classical Heisenberg Hamiltonian. This effective Hamiltonian 
relates the existing spins at sites i and j with the magnetic 
exchange constants Jij

J. Phys.: Condens. Matter 30 (2018) 423001
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H = −1
2

∑
ij

Jijei · ej,� (1)

where ei and ej are the directions of the spin moments at the 
sites i and j, respectively. Spin waves (or magnons) are then 
low energy excitations associated with small-amplitude preces-
sions of the spin moments around the equilibrium direction and, 
in the case of ferromagnets, can be described by the retarded 
transverse magnetic susceptibility χij(ω + i 0+) (0+ stands 
for an infinitesimal positive quantity) [58]. The susceptibility 
relates the amplitude of the precession of the spin moment at 
the site i around its ground state direction to the time dependent 
transverse (i.e. orthogonal to the ground state magnetization 
direction) magnetic field applied at site j, while ω stands for the 
frequency of the field and the linear magnetic response.

We evaluate the susceptibility starting from the following 
expression

χ = gGS,� (2)

where g is the electron g-factor (assumed to be equal to 2 in 
this work) and G and S are matrices in the space of atomic 
sites. Moreover, S is diagonal and given by the magnetic 
moments Si of the constituting atoms

Sij = Siδij.� (3)

G is called the magnon spin propagator

G(z) = G0(z) + G0(z)gSTG,� (4)

G0(z) = 1z−1,� (5)

where z stands for the complex frequency, 1 is the unit matrix, 
G0 denotes the free spin propagator and the torque matrix T is 
evaluated as follows

(ST)ij = S−1
j δij

∑
l

Jil − S−1
j Jij.� (6)

The formal solution of (4) can be obtained by matrix inversion

G−1 = G−1
0 − gST ,� (7)

which in turn yields the susceptibility upon applying (2).
The loss matrix [58]

Lχ(ω + i 0+) =
1
2i

[
χ(ω + i 0+)− χ(ω + i 0+)†

]
,� (8)

gives the spectral density of the magnon excitations at the given 
energy ω and the corresponding eigenvectors give the spatial 
form of these excitations. The calculations of the average sus-
ceptibility and the corresponding loss matrix in disordered mag-
nets as well as the subsequent analysis of the resulting magnonic 
excitation spectra are the main theoretical tools of this paper. 
This is achieved by averaging the susceptibility χ(ω + i 0+) 
over a number of differently occupied supercells (called con-
figurations) or by solving corresponding CPA equations.

3.  Numerical averaging of magnons in real space

The transverse magnetic susceptibility can be directly calcu-
lated in real space for a supercell Rsc, which is a fragment of 

an infinite crystal (figure 1). Each position i of the crystal is 
occupied by atoms of types α, β, … with some given prob-
abilities ciα, ciβ, etc. We introduce the occupation function 
pα(ri), which is 1, if the site is occupied by the atom of the 
type α, and 0 otherwise. The disorder is called uncorrelated, 
if the occupation of one site does not influence the occupation 
of the other sites. The atomic occupation in the supercell Rsc 
is chosen with respect to the probabilities ciα. The susceptibil-
ity of the disordered system 〈χ〉 is then obtained by averag-
ing over many such configurations (typically between 100 and 
1000 created using pseudorandom numbers).

A general extension to this algorithm is the introduction of 
an additional subdivision of the supercell Rsc into basis sites 
α in a cell p̃ (figure 1) by splitting the vectors as

ri = Rsc + rp̃ + r̃i.� (9)

Afterwards, it is possible to fold the supercell back to the 
original unit cell by application of a Fourier transformation

〈χij(q)〉 =
∑

p̃

∑
t̃

ei q·r̃p e−i q·r̃t
〈
χ(p̃,i),(̃t,j)(q)

〉
,

� (10)

where q is the wave vector from the first Brillouin zone and 
the sums run over all unit cells p̃ and t̃ .

3.1.  Generation of realistic structures

The generation of random structures, i.e. different occupa-
tions of the simulated supercells, is a critical part in the calcul
ation of the susceptibility of disordered systems and plays an 
important role in the success of the method. The main goal of 
the following algorithms is to resemble real physical struc-
tures as closely as possible [69].

Especially for surface structures, it is important to find rea-
sonable methods, because the growth process will impact the 
resulting structures: For example, seven monolayers (ML) of 
Co deposited on Cu(0 0 1) yield a rugged surface structure with 

Figure 1.  Definition of coordinates. The simulation domain is a 
supercell (blue) with its origin being located at Rsc. It consists of 
unit cells (green) at rp̃ with respect to the origin of the supercell and 
the unit cells may contain several basis atoms (circles) at r̃i.
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several different thicknesses and plateaus with diameters of a 
few nm (figure 2(a)). To reduce the impact of this disorder, the 
sample was annealed at 370 K to obtain a much smoother sur-
face (see figure 2(b)) [70]. However, since films with less than 
six monolayers of Co on Cu(1 0 0) suffer from diffusion of 
Cu to the surface, while annealing [70], the rugged structures 
are a necessary target for the structure generation algorithm. 
For the simulation of smooth annealed surfaces, an algorithm 
capable of avoiding a surplus amount of point defects would 
be favorable.

In the following, three major algorithms are presented, 
which were used for the creation of random structures. They 
are focused on performance and tunability of the resulting out-
puts. Because of their versatility and good comparison with 
the shown experimental surfaces, they were chosen over more 
complex algorithms, like kinetic Monte Carlo approaches.

Although the supercell approach allows in principle to con-
sider also local lattice relaxations in the structure, we restrict 
ourself for the examples below to experimental lattice struc-
tures and parameters. We study only the effect of substitu-
tional disorder, which was the main focus of this work and a 
large size of the used supercells would raise the computational 
costs beyond feasibility. An additional effect of local relaxa-
tions on the magnonic spectrum will depend on the system 
and has to be verified separately.

3.1.1.  Direct random structure generation and Fisher–Yates–
Shuffle.  The most straightforward approach to create ran-
dom structures is the use of standard pseudorandom numbers 
(PRN). A given setup and equally distributed PRNs in the 
right-open interval [0..1)—the output of most standard PRN 
generators—offer two basic ways to create the desired ran-
dom distribution of atoms.

The first method is the direct use of the random numbers 
by dividing the interval according to the probabilities of each 

species at a given site. For example, a probability of 40% for 
species A and 60% for species B would result in species A 
for all random numbers p  <  0.4 and species B, otherwise. An 
important caveat of this method is the possibility of an unbal-
anced system, where the actual final composition does not 
meet the desired probabilities (if at all possible due to the lim-
ited amount of lattice positions in the supercell). In this case, 
an additional rebalancing step might be necessary.

The second method is the use of the Fisher–Yates–Shuffle 
[71]:

Algorithm 1.  Fisher–Yates–Shuffle.

Require: a(1 : n) contains desired composition
   for i  =  n downto 2 do
     j ← random integer 1 � j � i
     swap a(i) ↔ a( j)
   end for

For a given site in the original unit cell, a list of all corre
sponding positions in the supercell is created and filled with 
the desired composition of species in an arbitrary order. 
Applying the above example to a system with 25 sites would 
result in a list filled with 10 entries of A and 15 entries of B. 
Then, the Fisher–Yates–Shuffle will create a completely ran-
dom permutation of this composition, which can then be used 
for further calculations.

Nevertheless, both methods can produce non-physical or 
undesired results. A calculation of a 3 ML system, where 50% 
of sites from the third layer are moved to the fourth layer (fig-
ure 3), will for example most likely produce floating atoms 
or holes.

3.1.2.  Random structures from Voronoi tessellation.  This 
method is based on a Voronoi tessellation of the supercell 
in order to create the desired distribution of atoms. At first, 
some points Pk  (which get marked with a species label) are 
put into the supercell and the Voronoi tessellation (with cycli-
cal boundary conditions) is computed (figure 4(a)). The initial 
sites Pk  were distributed within a uniform distribution and 

Figure 2.  Scanning tunneling microscopy (STM) images of  
(a) as-deposited 7 ML Co/Cu(1 0 0), (b) Co/Cu(1 0 0) after 
annealing at 370 K. Different colors denote different surface heights. 
Reproduced with permission from [70].

Figure 3.  Side view of a possible random configuration of a 3 ML 
thick film, where 50% of the atoms from the third layer are moved 
to the fourth layer. Possibly undesired floating atoms (red) and 
holes (blue cross) were created.

Figure 4.  Example of two dimensional Voronoi tessellation with 
two different species (red and blue). (a) The dots represent the 
initial points Pk . The corresponding Voronoi regions Rk (separated 
by black lines) get the same lighter color (same species) as the 
Pk  inside that region. (b) Resulting distribution of atom species 
from Voronoi tessellation in (a). All other points (basis sites of the 
supercell) are now assigned with the respective color of their region 
(reddish or bluish).

J. Phys.: Condens. Matter 30 (2018) 423001
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the corresponding atomic type is assigned randomly accord-
ing to the desired concentration. The Voronoi regions Rk get 
then the same species label as the corresponding initial points 
Pk . In the next step, the atoms in the supercell get assigned 
the appropriate species, determined by the species label of the 
Voronoi region at the corresponding position (figure 4(b)).

Similar to the other methods, additional steps are needed 
to get the desired stoichiometry. This can be achieved using a 
weighted Voronoi tessellation and optimizing the weights wk 
towards the desired composition:

Rk =
{

x ∈ Rn | d(x, k) � d(x, j), ∀ j �= k
}

,� (11)

d(x, k) = wk ·
∥∥x − Pk

∥∥
2.� (12)

Due to the fact that the Voronoi regions are defined by the 
points in the supercell, there are no limitations to the shape of 
the supercell. Additionally, the size of the generated structures 
(i.e. clusters of similar atoms) can be tuned by the composi-
tion and amount of the initial points Pk .

3.1.3.  Perlin method.  The third possible method is based on 
the popular Perlin noise [72, 73], which is commonly used for 
procedural creation of textures in computer graphics. The idea 
of this approach is to model the surface in terms of a smooth 
noise function. Some form of downsampling is applied to cre-
ate a closed hilly surface which can be used in susceptibility 
calculations.

In order to create Perlin noise on a grid (in this case, the 
supercell), a second grid with a lower resolution is generated 
and its vertices are populated with random gradient vectors. 
Then, for every point in the supercell, i.e. the high-resolution 
grid, the contributions from the nearest gradient vectors are 
weighted to get a smooth noise function. In the one dimen-
sional case, the gradients from the vertices to the left and to 
the right are used and the resulting linear functions are interpo-
lated (figure 5). In the two dimensional case, the interpolation 
would be calculated from the four vertices of the circumscrib-
ing rectangle.

In figure 5, it becomes apparent that this definition of Perlin 
noise results in the value ‘zero’ at each of the low-resolution 
grid’s vertices. For that reason, an additional contribution of 
cubically interpolated regular noise, which is also defined at 

the vertices of the low-resolution grid, was added to the Perlin 
noise. The generation of the final structure from the Perlin 
noise is then achieved with the help of a level-set method (fig-
ure 6). In this method, one or more thresholds are defined and 
compared to the noise function at every position in the grid.

The example in the figure  can be interpreted as a one 
dimensional surface. Positions, where the noise function is 
less than the first level, would get assigned no atoms, posi-
tions with a value between the two levels get assigned one 
atom and positions with a value above the second level get 
assigned two atoms.

This method has the same problems concerning stoichiom-
etry as the purely random distribution of atoms. To get closer to 
the desired composition, the thresholds of the level set method 
can be adapted to fit the needs of the calculation. Another 
problem is the fact that this method can only be defined on a 
rectangular grid. As a result, the application of Perlin noise to 
a non-rectangular supercell, which is needed for calculations 
of, e.g. a hexagonal surface represented by rhombic unit cells, 
would result in a distorted grid with a strong anisotropy. In 
particular, one diagonal of the unit cell is longer than the other 
resulting in a structure, which is stretched along the longer 
diagonal. A possible solution is provided by simplex noise 
[74], a later invention of [73], which is defined on a triangular 
grid.

3.2.  Application of the Perlin method to thin films

From the properties of the three methods, it is straight-
forward to determine which method should be used for a 
given system [69]: The two dimensional systems, i.e. such 
as 7 ML Co/Cu(0 0 1) (figure 2) or similar, could be cre-
ated with the Perlin method. Depending on the size of the 
surface’s features, a varying resolution of the coarse grid 
can be used. While the annealed system can be obtained 
from the algorithm as described, the unannealed system 
could be generated with a high-resolution ‘coarse’ grid to 
effectively switch of its smoothing capability. On the other 
hand, a purely random composition might produce accept-
able results for the unannealed structure, but this was not 
used in actual calculations.

Figure 5.  Example for one dimensional Perlin noise (blue line). 
The low-resolution grid is defined at the red points and the gradient 
vectors are represented by arrows.

Figure 6.  Level-set method with two levels at 0.5 and  −0.5 applied 
to one dimensional Perlin noise. The blue area is below the first 
level, the gray areas between both levels and the red area is above 
the second level.

J. Phys.: Condens. Matter 30 (2018) 423001
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For demonstration, we calculated at first the spin waves in 
an ordered 3 ML Co film on a Cu(0 0 1) surface (assuming 
ideal growth conditions) and compared with SPEELS meas-
urements, whose experimental details are described in [4, 33] 
(figure 7). Indeed, the theory cannot reproduce correctly the 
acoustic mode in higher wave vectors, although the agreement 
for lower energies and small wave vectors is rather well. The 
first optical branches are substantially overestimated by the 
theory for all wave vectors, especially for the lowest optical 
mode. Hence, we applied the Perlin method to create more 
realistic supercells and calculated again the spin waves in 
3 ML Co/Cu(0 0 1) for rugged surface configurations like 
those shown in figure 3. This structure was elucidated from 
the recent STM measurements by Balashov [70]. The super-
cell consisted of 32  ×  32 unit cells of the surface structure 
with the experimental lattice constant of Cu continued also 
for the 3 ML of Co. The calculated magnetic susceptibility 
within this structural model is in very good agreement with 
experimental results, including STS measurements (figure 8).  
However, the spin wave energies can be also significantly 
modified by the presence of islands, which could arise during 
growth processes.

As another example, we studied magnons in the disordered 
system of 1 ML of Fe on a Pd(0 0 1) surface. The growth of 
this system depends strongly on the deposition temperature 
[75]. Varying the deposition temperature one obtains various 

alloy configurations in the surface and the first subsurface 
layers. At certain conditions, Fe and Pd atoms are not mixed 
randomly but forming small islands within the surface double 
layer. Such clustering increases magnon energies for larger 
wave vectors (figure 9). For comparison, we calculated also 
spin waves using a so called virtual crystal approximation 
(VCA), which reproduces rather good results for the purely 
random structure (red lines in figure 9).

We conclude this section with two statements.

	 (a)	�We observed that the character of disorder/order is a very 
fundamental aspect for both two dimensional examples. 
Random distribution or a certain amount of short-range 
order can alter the spin-wave spectra dramatically. The 
same holds true for three dimensional systems. If the 
atoms of the different species are randomly distributed, a 
purely random generation is preferred, and if a clustering 
of similar atoms is observed, the Voronoi tessellation is 
the method of choice. In the latter case, a three dimen-
sional variant of the Perlin method would also be possible, 
but this was not implemented because of the limitations 
apparent from the two dimensional version.

	(b)	�On the other hand, we note that metallic thin film sys-
tems show often a clear separation of surface/interface 
and bulk magnonic modes. The acoustic modes in the 
Co/Cu(0 0 1) result clearly from the surface because the 
reduced coordination number of Co atoms at the interface 
or surface drastically changes the magnetic exchange 
constants as shown for Fe/Ir(0 0 1) layers by Zakeri et al 
[76]. They show that the lowest magnon modes result 
from the varied magnetic exchange interactions at the 
surface or interface.

4.  CPA for the Heisenberg model

In this section, we report on the semi-analytic CPA of the 
Heisenberg model. The approach is applicable when the 
substitutional disorder is not spatially correlated. We fol-
lowed the formalism suggested by Matsubara [62] and 
Yonezawa [77] taking into account the off-diagonal disorder 

Figure 7.  Magnons in the ordered 3 ML Co/Cu(0 0 1) calculated 
using the Heisenberg model (lines) and compared with the results 
of the SPEELS measurements (dots) [87]. Frequency range is 
estimated by E = h f  with Planck’s constant h.

Figure 8.  Calculated magnons in 3 ML Co/Cu(0 0 1) shown as 
contour plot together with the results of the SPEELS measurements 
(dots) [87] and the STS measurements (inset at Γ-point on the 
left). Direct numerical averaging, supercells created with the Perlin 
method and the structural model similar to the structure shown in 
figure 3 were used.

Figure 9.  Spin-wave spectra of 1 ML Fe on Pd with an actual 
composition of (Fe0.7Pd0.3 | Fe0.3Pd0.7) for the surface and first 
subsurface layer, respectively: (a) for a purely random structure and 
(b) for a structure with islands. Continuous red lines represent the 
VCA calculations for this alloy.
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as suggested by Blackman, Esterling, and Berk (BEB) [78]. 
Several realizations of the Heisenberg model within the BEB 
approach were proposed over the last 50 years [63, 64, 67]. 
Although the implementations of the method by different 
authors differ in details, the foundation of all works on the 
Heisenberg-CPA are similar. Our implementation based on 
the derivation by Matsubara and Yonezawa is unique in the 
sense that it has been generalized for the case of complex 
unit cells, arbitrary number of atomic species forming the 
disordered system, and arbitrary dimensionality.

The coherent potential approximation for the transverse 
magnetic susceptibility of the Heisenberg Hamiltonian 
involves the following steps. The species resolved Fourier 
transformation of the susceptibility is defined as

χαβ
ij (q, q′) =

∑
RR′

pαi(R)e−i q·R

× χ(R + r̃i, R′ + r̃j) pβj(R′)ei q′·R′
,

�
(13)

where the notation of vectors is similar as in figure 1 but in 
contrast to (10) we consider only unit cells R. The occupation 
function defined in section 3 is written as pαi(R) := pα(R + r̃i) 
to simplify the notation. Equation  (13) yields the Fourier 
transform of the full susceptibility

χij(q, q′) =
∑
αβ

χαβ
ij (q, q′).

� (14)

The susceptibility above describes a single random realization 
of the random supercell.

Following (4), the susceptibility in the real space becomes 
an infinite sum of scattering terms

χ(z) =G0gS + G0gSTG0gS

+ G0gSTG0gSTG0gS + . . . ,
�

(15)

where the ST product is defined by (6).

The Fourier transformation χαβ
ij (z, q, q′) can be com-

puted term-by-term and diagrammatically represented as in 
figure 10. Each diagram is constructed from three elements 
described below. Each of the elements is a matrix in a compos-
ite space of basis sites and atomic species. For simplicity, we 
resort to the following notation (i) ≡ iα, ( j) ≡ jβ, (l) ≡ lγ , 
(m) ≡ mµ, etc. Furthermore, the Einstein summation conven-
tion is used. The three constituting elements are:

	 (i)	�T -matrix denoted with filled circle (•)

T αβ
ij (q, q′) = ρ(l)(q − q′)τ (l)

(i)( j)(q, q′),� (16)

		 where

τ
(l)
(i)( j)(q, q′) ≡ gS−1

β

[
Jβγjl (q − q′)δ(i)( j) − Jγβlj (q′)δ(i)(l)

]
,

�

(17)

ρiα(q) ≡
∑

R

pαi(R)e−i q·R,� (18)

Jαβij (q) ≡
∑

R

Jαβij (R)e−i q·R.� (19)

		 The two latter quantities are the lattice Fourier trans-
formed occupation function and exchange parameters, 
respectively.

	(ii)	�S-matrix denoted with open circle (◦)

S(i)( j)(q, q′) = ρ(l)(q − q′)σ(l)
(i)( j),� (20)

σ
(l)
(i)( j) ≡ gδ(i)( j)δ(i)(l)S(l).� (21)

	(iii)	�Propagator of uncoupled magnetic moments ( )

Γ(i)( j)(z) = z−1δ(i)( j).� (22)

		 This matrix does not depend on the momentum. It 
depends on the frequency and, as a matter of fact, it is 
responsible for the frequency dependence of the CPA self 
energy.

The diagrams’ evaluation rules are:

	 (i)	�The matrices in the (i)( j) space in a diagram are matrix-
multiplicated in this space.

	(ii)	�Every internal free propagator line involves an integration 
over the Brillouin zone, with a simplified notation

1
ΩBZ

∫

q∈ΩBZ

f (q) dq ≡
∫

q
f(q).� (23)

As an example, let us consider the second term in the sum 
including the product of two random variables ρ(i)(q). Its 
expansion is graphically represented in figure 10 and explic-
itly written as

χαβ
ij (z, q, q′) = z−2

∫

q1

T(i)(m)(q, q1)S(m)( j)(q1, q′),

= z−2ρ(l1)(q − q1)τ
(l1)
(i)(m)(q, q1)

× ρ(l2)(q1 − q′)σ(l2)
(m)( j).

�

(24)

(Einstein convention is used for the indices (l1), (l2), and (m).)
In the next step, the averaged susceptibility is computed. 

The averaging restores the translational symmetry of the sys-
tem and the susceptibility depends only on one wave vector 
variable

〈
χαβ

ij (z, q, q′)
〉
≡

〈
χαβ

ij (z, q)
〉
ΩBZδ(q − q′).� (25)

In what follows, we will arrive at the coherent potential 

approximation for 
〈
χαβ

ij (z, q)
〉

. We average every term of 

the expansion from figure 10 separately. Following Yonezawa 

Figure 10.  Expansion of the χαβ
ij (z, q, q′) susceptibility.
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[77], we take advantage of the so-called cumulant expansion. 
For illustration, we consider again the second order term given 
by (24)
〈
χαβ

ij (z, q, q′)
〉
= z−2τ

(l1)
(i)(m)(q, q1)σ

(l2)
(m)( j)

×
〈
ρ(l1)(q − q1)ρ

(l2)(q1 − q′)
〉

.
�

(26)

Only the ρ functions contain random variables p, which must 
be averaged. The cumulant expansion of their product reads
〈
ρ(l1)(k1)ρ

(l2)(k2)
〉
= C2

(l1)(l2)(k1, k2)

+ C1
(l1)(k1)C1

(l2)(k2),
�

(27)

where Cn denotes the multivariate cumulant of order n. For the 
case of uncorrelated disorder, we obtain

Cn
(l1)(l2)...(ln)(k1, k2, . . . , kn) = Pn

(l1)(l2)...(ln)(c)

× ΩBZδ(k1 + k2 + . . .+ kn),
�

(28)

where c stands for the concentration matrix ciα and P  are weight 
functions, which vanish only, if not all indices correspond to the 
same basis site. The latter does not seem to have any straightfor-
ward analytic representation but the first two read

P1
iα(c) = ciα,� (29)

P2
iαjβ(c) = δij(δαβciα − ciαciβ).� (30)

From the momentum dependence of the cumulants follows, 
as implied by (25), that the averaged susceptibility is diago-
nal in the momentum variables and, as such, proportional to 
ΩBZδ(q − q′).

Two examples of the cumulant expansion are presented in 
figure 11. The coherent potential approximation omits terms 
involving ‘crossed’ cumulants. Terms of this type appear 

starting from the fourth order average and are marked with 
(†) in figure 11.

The final CPA expression for the averaged diagonal part 〈
χαβ

ij (z, q)
〉

 of the susceptibility, see (25), involves the sum-

mation of the terms in all orders by means of a Dyson-like 
self-consistent equation. Because our diagrams feature two 
different types of vertices (T  and S), two quantities appear, 
namely the CPA effective medium propagator G(z, q) and the 
magnetic weight correction W(z, q).

The propagator

G(z, q) = Γ(z) + Γ(z)E(z, q)G(z, q),� (31)

can be expressed in terms of the self-energy E

E(z, q) =
∑
s∈S1

P1
s τ

(l1)(q, q) +
∞∑

n=2

∑
s∈Sn

Pn
s

×
∫

q1

∫

q2

· · ·
∫

qn−1

[
τ (l1)(q, q1)G(z, q1)τ

(l2)(q1, q2)G(z, q2) . . .

. . . τ (ln−1)(qn−2, qn−1)G(z, qn−1)τ
(ln)(qn−1, q)

]
,

�
(32)

where Sn � s = {(l1), (l2), . . . , (ln)} is a particular sequence 
of composite indices of length n. Similarly, the weight correc-
tion W  can be calculated as

W(z, q) =
∑
s∈S1

P1
s σ

(l1) +

∞∑
n=2

∑
s∈Sn

Pn
s

×
∫

q1

∫

q2

· · ·
∫

qn−1

[
τ (l1)(q, q1)G(z, q1)τ

(l2)(q1, q2)G(z, q2) . . .

. . .G(z, qn−1)σ
(ln)

]
.

� (33)
The final expression for the averaged susceptibility is the matrix 
product of the effective propagator and the weight correction

Figure 11.  The second (a) and fourth (b) order term averages expanded using the diagrams. The bundles of dashed lines evaluate to 
cumulants Cn. Crossed-cumulant terms (denoted with (†)), are omitted in the coherent potential approximation. Other symbols are identical 
to those used in figure 10.
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〈χ(z, q)〉 = G(z, q)W(z, q).� (34)

The expansion presented above is developed in terms of 
diagrams in figure 12. The calculations are necessarily self-
consistent, as the effective medium propagator G  is obtained 
from the self-energy E which in turn involves the propagator.

The series given by (32) and (33) do not converge when 
computed term-by-term. Furthermore, it is unfavourable from 
the computational point of view to work directly in the recip-
rocal space.

Below, we transform the necessary equations  to the real 
space where the series can be summed over. For simplicity, we 
suppress the frequency arguments

E(q) = E(q, q) ≡
∑
RR′

e−q·(R−R′)E(R, R′),� (35)

W(q) ≡
∑

R

e−q·RW(R),� (36)

E(R, R′) =
∑

iα

ciα

∑
R1

Ê iα(R, R1)τ
iα(R1, R′),� (37)

W(R) =
∑

iα

ciαÊ iα(R, 0)σiα.� (38)

The partial self-energies Ē are calculated as follows

Ē i(R, R′) =
∑
α∈Ii

∑
R1

ciαÊ iα(R, R1)Miα(R1, R′),� (39)

where Ii is the set of impurity types present on site i. The 
terms off-diagonal in the sites’ space vanish in the case of 
uncorrelated disorder. From now on, we will take advantage 
of matrices in a space of extended composite indices includ-
ing both the composite index (i) as well as the lattice vector 
R, i.e. (αiR). Only finite clusters of lattice vectors corre
sponding to the range of the exchange parameters J(R) must 
be considered. Using the concept of the effective interaction 

of Yonezawa, the summation of the cumulant series can be 
performed

ciαÊ iα = P1
iα1+ P2

iβ,iαMiβ + P3
iγ,iβ,iαMiγMiβ + . . .� (40)

Ê iα =
[
1− (Miα − Ē i)

]−1
,� (41)

where the M matrices are defined in the reciprocal space and 
read

M(l)
(i)( j)(q, q′) = τ

(l)
(i)(m)(q, q′)G(m)( j)(q′).� (42)

In the real space, they consist of two parts

M(l)
(i)( j)(R, R′) = gS−1

α Jαγil (R)G(i)( j)(R − R′)

−
∑
R1

[
gS−1

µ Jγµlm (R1)G(m)( j)(R1 − R′)δ(i)(l)δR0

]
.

�
(43)

The equations  above can be directly implemented in 
computer software to calculate 〈χ〉. Several remarks con-
cerning our numerical scheme are now in order. The conv
ergence of the CPA self-consistency loop requires a careful 
mixing of quantities from previous iterations and we found 
that the Broyden method is suitable for that. Furthermore, 
the self-consistent loop does not converge when complex 
frequencies are located too close to the real axis. The lat-
ter difficulty can be circumvented using the nearly real axis 
method [58]. The self-consistent quantities are calculated in 
a suitable distance away from the real axis and subsequently 
the self-energy Ê(z) is analytically continued towards the 
real energies in order to determine the quantities just above 
the real frequency axis.

5.  Evaluation of exchange parameters in disordered 
systems

The exchange parameters entering the Heisenberg model (1) 
can be estimated from first-principles using the magnetic force 
theorem as it is implemented within the multiple-scattering 
theory. For an ordered system the exchange constants Jij can 
be determined as shown in [40]

Jij =
1

4π

∫ εF

dε Im TrL

[
∆i(ε)G

ij
↓(ε)∆j(ε)G

ji
↑(ε)

]
,� (44)

where TrL denotes the trace over the angular momentum, and 
it is integrated up to the Fermi energy εF. Gij

σ(ε) is the back 
scattering operator of a spin σ between the sites i and j, and 
∆i(ε) = ti

↑(ε)− ti
↓(ε) is defined via the single scattering t 

matrices ti
σ(ε) and closely related to the exchange splitting 

corresponding to the magnetic atom i. The Green function 
entering (44) can be calculated self-consistently using any 
implementation of the multiple scattering Green function 
method within the density functional theory [79–82].

The magnetic force theorem (44) can be generalized for 
disordered systems using the CPA [83, 84]

Figure 12.  The Dyson equation for the CPA susceptibility in 
the diagrammatic representation. (a) CPA self-energy (32), (b) 
magnetic weight (33), (c) the Dyson equation (31), and (d) the 
final expression for the CPA susceptibility (34). The virtual crystal 
approximation is obtained by retaining the first terms in the series 
(a) and (b).
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Jαβij =
1

4π

∫ εF

dε Im TrL

[
∆α

i (ε)
(
Dα

i (ε)
)†

Gij
↓(ε)D

β
j (ε)

×∆β
j (ε)

(
Dβ

j (ε)
)†

G ji
↑ (ε)D

α
i (ε)

]
,

�
(45)

where Greek letters denote again atomic types and Dα
i (ε) is 

the so-called impurity matrix corresponding to an impurity 
atom α on the site j [81]. The Green function in (45) is calcu-
lated self-consistently in a coherent medium tc(ε) and Fourier 
transformed into the real space.

6.  Comparison of both schemes

It is reasonable to inquire how an essentially mean-field-
like CPA (section 4) performs compared to the supercell 
simulations (section 3), i.e. a numerically exact scheme. The 
question has been already answered for dilute magnets, i.e. 
uncorrelated mixtures of magnetic and non-magnetic atoms 
[68]. In short, the CPA provides an excellent account of the 
spin wave spectra in the high-dimensional structures above 
the percolation threshold.

Here, we ask the same question for mixtures of only magn
etic atoms and answer it based on the example of Co doped 
bulk Fe (FexCo1−x alloys). We assume the uncorrelated dis
order, i.e. an Fe atom is directly replaced with a probability 
1  −  x on a parent bcc lattice by a Co atom, irrespective of the 
occupation of other sites around or local lattice relaxations. 
The latter restriction follows from the usage of the CPA but is 

well justified because we are substituting only atoms of com-
parable atomic radii on the bcc lattice. For the sake of simplic-
ity, we do not consider other potential phases like an ordered 
B2 phase or short-ranged phases as discussed in [85]. The 
experimental lattice parameters given in Landolt–Börnstein 
[86] were interpolated in order to use them in our calculations 
at the desired Co concentrations–ranging from 0% to 50% in 
steps of 10%.

The electronic ground state of the system calculated with 
the CPA method, including the magnetic moments and the 
exchange constants Jij, are determined from the density func-
tional theory. The details concerning the calculations of the 
exchange constants are given in section 5. For the supercell 
scheme, we extended the primitive unit cell 16 × 16 × 16 
times and applied the Voronoi tessellation described in 
section 3.1.2.

The spin-wave spectrum of pure bcc-Fe has been thor-
oughly studied, see [58] and references therein. The dispers-
ing spin waves form a single band. The energy of the least 
energetic magnon is zero—it is a Goldstone mode.

An introduction of Co to the parent lattice of Fe changes 
the magnetic system profoundly. The nearest neighbor Fe–Fe 
exchange interaction generally increase, while long ranged 
Fe–Fe Jij values decrease. Hence, the systems become more 
short-ranged, and loose their tendency to anti-ferromagnetic 
coupling between further shells (figure 13). For larger Co 
concentrations (⩾40%), the Fe–Fe Jij remain almost similar. 
The other magnetic coupling constants—Fe–Co and Co–
Co—vary only slightly for different Co doping levels. These 

Figure 13.  Distance dependent magnetic exchange parameters Jij for Fe doped with Co calculated within the CPA as described in section 5: 
(a) pure Fe system, (b)–(f) Co concentration is raised by 10% up to 50%. The exchange parameters for Fe–Co and Co–Fe are the same.
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variations result in general in a broader magnonic bandwidth 
and less non-monotonic dispersion relation compared to the 
pure bcc-Fe as shown for weakly Co-doped alloys (x  =  0.9) 
and Fe0.5Co0.5 (figures 14 and 15, respectively). In addition, 
we observe a perfect match between the CPA and the super-
cell scheme.

Another important feature is the appearance of a new class 
of weakly dispersive magnonic states. These states appear for 
x  =  0.9 above the continuum of acoustic magnons at around 
700 meV (figure 14). They are clearly discernible for large 
wave vectors and the analysis of the corresponding magnonic 
modes (magnonic eigenvectors) in the real space clearly shows 

that these new states are strongly localized on the Co impuri-
ties, while the modes in the acoustic continuum are generally 
delocalized and supported on the host Fe atoms (figure 16). 
The low energy mode considered in figure 16(a) belongs to the 
continuum of acoustic magnons, while the high energy mode 
in figure 16(b) is a member of the disorder induced weakly 
dispersive band forming above the acoustic continuum. In the 
high energy mode the amplitudes vary much more strongly 
between sites than in the low energy mode. As a consequence, 
the high energy mode is much more strongly localized—pri-
marily on the Co impurities. On the other hand, the low energy 
mode is delocalized and supported primarily on the host Fe 

Figure 14.  Magnonic spectrum of the Fe0.9Co0.1 alloy for different wave vectors along (1 0 0) direction. The spectra obtained with both 
methods—the CPA (red lines) or supercell (SC) scheme (black spheres)—are presented. Frequency range is estimated by E = h f  with 
Planck’s constant h.

Figure 15.  Magnonic spectrum of the Fe0.5Co0.5 alloy for different wave vectors along (1 0 0) direction. The spectra obtained with both 
methods—the CPA (red lines) or supercell (SC) scheme (black spheres)—are presented. Frequency range is estimated by E = h f  with 
Planck’s constant h.
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atoms. It should be remarked that such analysis is straightfor-
ward in the case of supercell calculations.

The energy of these weakly dispersive magnon states 
gradually decreases with the increasing Co concentration. 
Around x  =  0.8 the states appear within the dispersing acous-
tic band, close to its top (not shown). Around x  =  0.5 they are 
located in the middle of the band at around 450 meV (fig-
ure 15). We can clearly observe how for q = ( 1

2 , 0, 0)2π/a 
the more intense dispersing magnon state hybridizes with 
the weakly dispersing mode (figure 15(b)). Because of this 
hybridization the magnonic state associated with the weakly 
dispersing mode is far less localized for large Co concentra-
tions than its counterpart above the acoustic band for small 
Co concentrations.

Another interesting observation is the non-monotonous 
dependence of the acoustic spin wave peak’s width on the 
state’s energy. Low energy magnons with small momenta and 
the states close to the top of the dispersing band are associ-
ated with relatively narrow spectral peaks, i.e. they are long 
living. On the contrary, the magnons with the intermediate 
momenta, appearing in the middle of the band, correspond to 
wider peaks signifying stronger damping.

It is gratifying to observe that the CPA performs surpris-
ingly well despite its mean field character. It is able to capture 
not only the emergence of the dispersing acoustic spin wave 
modes but also the weakly dispersive magnonic features both 
above (for low impurity concentration) and within (for high 
impurity concentration) the acoustic band. Furthermore, the 
CPA predicts correctly the energies and widths of all these 

magnon modes across the whole concentration range of Co 
impurities.

7.  Summary

In this work, we presented our approach to determine the 
magnon properties in complex disordered magnetic systems. 
It is based on the adiabatic mapping of a spin system on the 
Heisenberg Hamiltonian, whereas the exchange integrals are 
computed from the ab initio density functional ground state. 
The disorder is treated with two complementary strategies. In 
the case of uncorrelated disorder one can resort to the CPA, 
which we systematically derived here for the Heisenberg 
model. It is shown that the approximation performs surpris-
ingly well despite its mean field character. The other strategy 
is the direct numerical simulation of large supercells using 
configurational average over possible samples. This approach 
is computationally much more demanding (contrary to the 
semi-analytic CPA calculations) but allows to study systems 
featuring correlated disorder effects, including clustering and 
formation of islands in two-dimensional systems—two very 
common effects in real systems. It is shown that the inclu-
sion of these effects is indispensable to the reliable theoretical 
interpretation of experimental results.

Acknowledgments

This publication was funded by the German Research 
Foundation (DFG) within the Collaborative Research Centre 
762 (projects A4 and B1) and the priority program SPP 1538. 
KhZ acknowledges the support by the DFG through the 
Heisenberg Program ZA 902/3-1 and the DFG Grant No. ZA 
902/4-1. We are grateful to L M Sandratskii and H Ibach for 
fruitful discussions.

ORCID iDs

Martin Hoffmann  https://orcid.org/0000-0002-8426-725X
Timofey Balashov  https://orcid.org/0000-0003-0966-7920
Khalil Zakeri  https://orcid.org/0000-0002-4674-3446

References

	 [1]	 Bloch F 1930 Z. Phys. 61 206
	 [2]	 Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
	 [3]	 Majlis N 2000 The Quantum Theory of Magnetism (Singapore: 

World Scientific)
	 [4]	 Zakeri K 2014 Phys. Rep. 545 47
	 [5]	 Tyablikov S V 1967 Methods in the Quantum Theory of 

Magnetism (New York: Springer)
	 [6]	 Kirilyuk A, Kimel A V and Rasing T 2010 Rev. Mod. Phys. 

82 2731
	 [7]	 Cole H S D and Turner R E 1967 Phys. Rev. Lett. 19 501
	 [8]	 Costache M V, Bridoux G, Neumann I and Valenzuela S O 

2012 Nat. Mater. 11 199
	 [9]	 Liu J P, Fullerton E, Gutfleisch O and Sellmyer D J (ed) 

2009 Nanoscale Magnetic Materials and Applications 
(New York: Springer)

Figure 16.  The precession amplitude of magnon states at (a) 
200 meV and (b) 700 meV in the Fe0.9Co0.1 alloy. The analysis 
is performed in real space and the amplitude is shown as the 
function of the atom’s position index in the cluster. One particular 
random realization of the supercell is considered, which allows 
to distinguish between the sites occupied by the Fe (black  +) and 
Co (red  ×) atoms. Frequency range is estimated by E = h f  with 
Planck’s constant h.

J. Phys.: Condens. Matter 30 (2018) 423001

https://orcid.org/0000-0002-8426-725X
https://orcid.org/0000-0002-8426-725X
https://orcid.org/0000-0003-0966-7920
https://orcid.org/0000-0003-0966-7920
https://orcid.org/0000-0002-4674-3446
https://orcid.org/0000-0002-4674-3446
https://doi.org/10.1007/BF01339661
https://doi.org/10.1007/BF01339661
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1016/j.physrep.2014.08.001
https://doi.org/10.1016/j.physrep.2014.08.001
https://doi.org/10.1103/RevModPhys.82.2731
https://doi.org/10.1103/RevModPhys.82.2731
https://doi.org/10.1103/PhysRevLett.19.501
https://doi.org/10.1103/PhysRevLett.19.501
https://doi.org/10.1038/nmat3201
https://doi.org/10.1038/nmat3201


Topical Review

13

	[10]	 Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N and 
Tokura Y 2010 Science 329 297

	[11]	 Woolsey R B and White R M 1970 Phys. Rev. B 1 4474
	[12]	 Lévy L P 2000 Magnetism and Superconductivity (Heidelberg: 

Springer)
	[13]	 Essenberger F, Buczek P, Ernst A, Sandratskii L and 

Gross E K U 2012 Phys. Rev. B 86 060412
	[14]	 Essenberger F, Sanna A, Buczek P, Ernst A, Sandratskii L and 

Gross E K U 2016 Phys. Rev. B 94 014503
	[15]	 Shirane G, Shapiro S M and Tranquada J M 2002 Neutron 

Scattering with a Triple-Axis Spectrometer: Basic 
Techniques (Cambridge: Cambridge University Press)

	[16]	 Chatterji T 2005 Neutron Scattering from Magnetic Materials 
(Amsterdam: Elsevier)

	[17]	 Grünberg P 1985 Prog. Surf. Sci. 18 1
	[18]	 Hillebrands B, Baumgart P and Güntherodt G 1989 Appl. 

Phys. A 49 589
	[19]	 Balashov T, Takács A F, Wulfhekel W and Kirschner J 2006 

Phys. Rev. Lett. 97 187201
	[20]	 Balashov T, Takács A F, Däne M, Ernst A, Bruno P and 

Wulfhekel W 2008 Phys. Rev. B 78 174404
	[21]	 Gao C L, Ernst A, Fischer G, Hergert W, Bruno P, 

Wulfhekel W and Kirschner J 2008 Phys. Rev. Lett. 
101 167201

	[22]	 Balashov T, Buczek P, Sandratskii L, Ernst A and 
Wulfhekel W 2014 J. Phys.: Condens. Matter 26 394007

	[23]	 Rado G T and Weertman J R 1959 J. Phys. Chem. Solids 
11 315

	[24]	 Plihal M, Mills D L and Kirschner J 1999 Phys. Rev. Lett. 
82 2579

	[25]	 Vollmer R, Etzkorn M, Kumar P S A, Ibach H and Kirschner J 
2003 Phys. Rev. Lett. 91 147201

	[26]	 Etzkorn M, Anil Kumar P, Vollmer R, Ibach H and Kirschner J 
2004 Surf. Sci. 566 241

	[27]	 Prokop J, Tang W X, Zhang Y, Tudosa I, Peixoto T R F, 
Zakeri K and Kirschner J 2009 Phys. Rev. Lett. 102 177206

	[28]	 Zakeri K, Zhang Y, Prokop J, Chuang T H, Sakr N, Tang W X 
and Kirschner J 2010 Phys. Rev. Lett. 104 137203

	[29]	 Zakeri K, Zhang Y, Chuang T H and Kirschner J 2012 Phys. 
Rev. Lett. 108 197205

	[30]	 Qin H J, Zakeri K, Ernst A, Chuang T H, Chen Y J, Meng Y 
and Kirschner J 2013 Phys. Rev. B 88 020404

	[31]	 Meng Y, Zakeri K, Ernst A, Chuang T H, Qin H J, Chen Y J 
and Kirschner J 2014 Phys. Rev. B 90 174437

	[32]	 Qin H J, Zakeri K, Ernst A, Sandratskii L M, Buczek P, 
Marmodoro A, Chuang T H, Zhang Y and Kirschner J 2015 
Nat. Commun. 6 6126

	[33]	 Zakeri K 2017 J. Phys.: Condens. Matter 29 13001
	[34]	 Ibach H, Rajeswari J and Schneider C M 2011 Rev. Sci. 

Instrum. 82 123904
	[35]	 Ibach H and Rajeswari J 2012 J. Electron. Spectrosc. Relat. 

Phenom. 185 61
	[36]	 Rajeswari J, Ibach H and Schneider C M 2013 Europhys. Lett. 

101 17003
	[37]	 Michel E, Ibach H, Schneider C M, Santos D L R and 

Costa A T 2016 Phys. Rev. B 94 014420
	[38]	 Michel E, Ibach H and Schneider C M 2016 Surf. Interface 

Anal. 48 11047
	[39]	 Rajeswari J, Ibach H and Schneider C M 2014 Phys. Rev. Lett. 

112 127202
	[40]	 Liechtenstein A I, Katsnelson M I, Antropov V P, 

Gubanova V A, Gubanov V A and Gubanova V A 1987 
J. Magn. Magn. Mater. 67 65

	[41]	 Gyorffy B L, Pindor A J, Staunton J, Stocks G M and 
Winter H 1985 J. Phys. F: Met. Phys. 15 1337

	[42]	 Staunton J B, Gyorffy B L, Pindor A J, Stocks G M and 
Winter H 1985 J. Phys. F: Met. Phys. 15 1387

	[43]	 Sandratskii L M 1998 Adv. Phys. 47 91

	[44]	 Bergman A, Taroni A, Bergqvist L, Hellsvik J, Hjörvarsson B 
and Eriksson O 2010 Phys. Rev. B 81 144416

	[45]	 Taroni A, Bergman A, Bergqvist L, Hellsvik J and Eriksson O 
2011 Phys. Rev. Lett. 107 037202

	[46]	 Bergqvist L, Taroni A, Bergman A, Etz C and Eriksson O 
2013 Phys. Rev. B 87 144401

	[47]	 Eriksson O, Bergman A, Bergqvist L and Hellsvik J 2016 
Atomistic Spin Dynamics: Foundations and Applications 
(Oxford: Oxford University Press)

	[48]	 Etz C, Bergqvist L, Bergman A, Taroni A and Eriksson O 
2015 J. Phys.: Condens. Matter 27 243202

	[49]	 Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
	[50]	 Gross E K U and Kohn W 1985 Phys. Rev. Lett. 55 2850
	[51]	 Stenzel E and Winter H 1985 J. Phys. F: Met. Phys. 15 1571
	[52]	 Savrasov S Y 1990 Solid State Commun. 74 69
	[53]	 Savrasov S Y 1998 Phys. Rev. Lett. 81 2570
	[54]	 Staunton J B, Poulter J, Ginatempo B, Bruno E and 

Johnson D D 2000 Phys. Rev. B 62 1075
	[55]	 Grotheer O, Ederer C and Fähnle M 2001 Phys. Rev. B 

63 100401
	[56]	 Buczek P, Ernst A, Bruno P and Sandratskii L M 2009 Phys. 

Rev. Lett. 102 247206
	[57]	 Buczek P A 2009 Spin dynamics of complex itinerant magnets 

PhD Thesis Martin Luther Universität Halle-Wittenberg
	[58]	 Buczek P, Ernst A and Sandratskii L M 2011 Phys. Rev. B 

84 174418
	[59]	 Lounis S, Costa A T, Muniz R B and Mills D L 2011 Phys. 

Rev. B 83 035109
	[60]	 Soven P 1967 Phys. Rev. 156 809
	[61]	 Gyorffy B L 1972 Phys. Rev. B 5 2382
	[62]	 Matsubara T 1973 Progr. Theor. Phys. Suppl. 53 202
	[63]	 Theumann A 1974 J. Phys. C: Solid State Phys. 7 2328
	[64]	 Bouzerar G and Bruno P 2002 Phys. Rev. B 66 014410
	[65]	 Bouzerar G, Kudrnovský J, Bergqvist L and Bruno P 2003 

Phys. Rev. B 68 081203
	[66]	 Bouzerar G, Ziman T and Kudrnovský J 2005 Phys. Rev. B 

72 125207
	[67]	 Tang G X and Nolting W 2006 Phys. Rev. B 73 024415
	[68]	 Buczek P, Sandratskii L M, Buczek N, Thomas S, Vignale G 

and Ernst A 2016 Phys. Rev. B 94 054407
	[69]	 Thomas S 2017 Multiple scattering approach for excitations 

in complex systems PhD Thesis Martin-Luther-Universität 
Halle-Wittenberg

	[70]	 Balashov T 2009 Inelastic scanning tunneling spectroscopy: 
magnetic excitations on the nanoscale PhD Thesis 
Universität Karlsruhe (TH)

	[71]	 Durstenfeld R 1964 Commun. ACM 7 420
	[72]	 Perlin K 1985 ACM SIGGRAPH Comput. Graph. 19 287
	[73]	 Perlin K 2002 ACM Trans. Graph. 21 681
	[74]	 Perlin K 2005 Standard for perlin noise US Patent no. 

US6867776B2 www.google.com/patents/US6867776
	[75]	 Meyerheim H L, Popescu R and Kirschner J 2006 Phys. Rev. 

B 73 245432
	[76]	 Zakeri K, Chuang T H, Ernst A, Sandratskii L M, Buczek P, 

Qin H J, Zhang Y and Kirschner J 2013 Nat. Nanotechnol. 
8 853

	[77]	 Yonezawa F and Morigaki K 1973 Progr. Theor. Phys. Suppl. 
53 1

	[78]	 Blackman J A, Esterling D M and Berk N F 1971 Phys. Rev. B 
4 2412

	[79]	 Gyorffy B L and Stott M J 1973 Theory of Soft X-Ray 
Emission from Alloys (London: Academic) p 385

	[80]	 Lüders M, Ernst A, Temmerman W M, Szotek Z, 
Durham P J, Luders M, Ernst A, Temmerman W M, 
Szotek Z and Durham P J 2001 J. Phys.: Condens. Matter 
13 8587

	[81]	 Ebert H, Ködderitzsch D and Minár J 2011 Rep. Prog. Phys. 
74 096501

J. Phys.: Condens. Matter 30 (2018) 423001

https://doi.org/10.1126/science.1188260
https://doi.org/10.1126/science.1188260
https://doi.org/10.1103/PhysRevB.1.4474
https://doi.org/10.1103/PhysRevB.1.4474
https://doi.org/10.1103/PhysRevB.86.060412
https://doi.org/10.1103/PhysRevB.86.060412
https://doi.org/10.1103/PhysRevB.94.014503
https://doi.org/10.1103/PhysRevB.94.014503
https://doi.org/10.1016/0079-6816(85)90009-7
https://doi.org/10.1016/0079-6816(85)90009-7
https://doi.org/10.1007/BF00616984
https://doi.org/10.1007/BF00616984
https://doi.org/10.1103/PhysRevLett.97.187201
https://doi.org/10.1103/PhysRevLett.97.187201
https://doi.org/10.1103/PhysRevB.78.174404
https://doi.org/10.1103/PhysRevB.78.174404
https://doi.org/10.1103/PhysRevLett.101.167201
https://doi.org/10.1103/PhysRevLett.101.167201
https://doi.org/10.1088/0953-8984/26/39/394007
https://doi.org/10.1088/0953-8984/26/39/394007
https://doi.org/10.1016/0022-3697(59)90233-1
https://doi.org/10.1016/0022-3697(59)90233-1
https://doi.org/10.1103/PhysRevLett.82.2579
https://doi.org/10.1103/PhysRevLett.82.2579
https://doi.org/10.1103/PhysRevLett.91.147201
https://doi.org/10.1103/PhysRevLett.91.147201
https://doi.org/10.1016/j.susc.2004.05.051
https://doi.org/10.1016/j.susc.2004.05.051
https://doi.org/10.1103/PhysRevLett.102.177206
https://doi.org/10.1103/PhysRevLett.102.177206
https://doi.org/10.1103/PhysRevLett.104.137203
https://doi.org/10.1103/PhysRevLett.104.137203
https://doi.org/10.1103/PhysRevLett.108.197205
https://doi.org/10.1103/PhysRevLett.108.197205
https://doi.org/10.1103/PhysRevB.88.020404
https://doi.org/10.1103/PhysRevB.88.020404
https://doi.org/10.1103/PhysRevB.90.174437
https://doi.org/10.1103/PhysRevB.90.174437
https://doi.org/10.1038/ncomms7126
https://doi.org/10.1038/ncomms7126
https://doi.org/10.1088/0953-8984/29/1/013001
https://doi.org/10.1088/0953-8984/29/1/013001
https://doi.org/10.1063/1.3670731
https://doi.org/10.1063/1.3670731
https://doi.org/10.1016/j.elspec.2012.01.001
https://doi.org/10.1016/j.elspec.2012.01.001
https://doi.org/10.1209/0295-5075/101/17003
https://doi.org/10.1209/0295-5075/101/17003
https://doi.org/10.1103/PhysRevB.94.014420
https://doi.org/10.1103/PhysRevB.94.014420
https://doi.org/10.1002/sia.6127
https://doi.org/10.1002/sia.6127
https://doi.org/10.1103/PhysRevLett.112.127202
https://doi.org/10.1103/PhysRevLett.112.127202
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1088/0305-4608/15/6/018
https://doi.org/10.1088/0305-4608/15/6/018
https://doi.org/10.1088/0305-4608/15/6/019
https://doi.org/10.1088/0305-4608/15/6/019
https://doi.org/10.1080/000187398243573
https://doi.org/10.1080/000187398243573
https://doi.org/10.1103/PhysRevB.81.144416
https://doi.org/10.1103/PhysRevB.81.144416
https://doi.org/10.1103/PhysRevLett.107.037202
https://doi.org/10.1103/PhysRevLett.107.037202
https://doi.org/10.1103/PhysRevB.87.144401
https://doi.org/10.1103/PhysRevB.87.144401
https://doi.org/10.1088/0953-8984/27/24/243202
https://doi.org/10.1088/0953-8984/27/24/243202
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.55.2850
https://doi.org/10.1103/PhysRevLett.55.2850
https://doi.org/10.1088/0305-4608/15/7/016
https://doi.org/10.1088/0305-4608/15/7/016
https://doi.org/10.1016/0038-1098(90)90607-D
https://doi.org/10.1016/0038-1098(90)90607-D
https://doi.org/10.1103/PhysRevLett.81.2570
https://doi.org/10.1103/PhysRevLett.81.2570
https://doi.org/10.1103/PhysRevB.62.1075
https://doi.org/10.1103/PhysRevB.62.1075
https://doi.org/10.1103/PhysRevB.63.100401
https://doi.org/10.1103/PhysRevB.63.100401
https://doi.org/10.1103/PhysRevLett.102.247206
https://doi.org/10.1103/PhysRevLett.102.247206
https://doi.org/10.1103/PhysRevB.84.174418
https://doi.org/10.1103/PhysRevB.84.174418
https://doi.org/10.1103/PhysRevB.83.035109
https://doi.org/10.1103/PhysRevB.83.035109
https://doi.org/10.1103/PhysRev.156.809
https://doi.org/10.1103/PhysRev.156.809
https://doi.org/10.1103/PhysRevB.5.2382
https://doi.org/10.1103/PhysRevB.5.2382
https://doi.org/10.1143/PTPS.53.202
https://doi.org/10.1143/PTPS.53.202
https://doi.org/10.1088/0022-3719/7/13/013
https://doi.org/10.1088/0022-3719/7/13/013
https://doi.org/10.1103/PhysRevB.66.014410
https://doi.org/10.1103/PhysRevB.66.014410
https://doi.org/10.1103/PhysRevB.68.081203
https://doi.org/10.1103/PhysRevB.68.081203
https://doi.org/10.1103/PhysRevB.72.125207
https://doi.org/10.1103/PhysRevB.72.125207
https://doi.org/10.1103/PhysRevB.73.024415
https://doi.org/10.1103/PhysRevB.73.024415
https://doi.org/10.1103/PhysRevB.94.054407
https://doi.org/10.1103/PhysRevB.94.054407
https://doi.org/10.1145/364520.364540
https://doi.org/10.1145/364520.364540
https://doi.org/10.1145/325165.325247
https://doi.org/10.1145/325165.325247
https://doi.org/10.1145/566654.566636
https://doi.org/10.1145/566654.566636
http://www.google.com/patents/US6867776
https://doi.org/10.1103/PhysRevB.73.245432
https://doi.org/10.1103/PhysRevB.73.245432
https://doi.org/10.1038/nnano.2013.188
https://doi.org/10.1038/nnano.2013.188
https://doi.org/10.1143/PTPS.53.1
https://doi.org/10.1143/PTPS.53.1
https://doi.org/10.1103/PhysRevB.4.2412
https://doi.org/10.1103/PhysRevB.4.2412
https://doi.org/10.1088/0953-8984/13/38/305
https://doi.org/10.1088/0953-8984/13/38/305
https://doi.org/10.1088/0034-4885/74/9/096501
https://doi.org/10.1088/0034-4885/74/9/096501


Topical Review

14

	[82]	 Geilhufe M, Achilles S, Köbis M A, Arnold M, Mertig I, 
Hergert W and Ernst A 2015 J. Phys.: Condens. Matter 
27 435202

	[83]	 Turek I, Kudrnovský J, Drchal V, Bruno P and Blügel S 2003 
Phys. Status Solidi 236 318

	[84]	 Turek I, Kudrnovský J, Drchal V and Bruno P 2006 Phil. Mag. 
86 1713

	[85]	 Abrikosov I A, James P, Eriksson O, Söderlind P, Ruban A V, 
Skriver H L and Johansson B 1996 Phys. Rev. B 54 3380

	[86]	 Hellwege K H and Hellwege A M (ed) 1971 Structure 
Data of Elements and Intermetallic Phases (Landolt-
Börnstein—Group III Condensed Matter vol 6) (Berlin: 
Springer)

	[87]	 Chen et al 2017 Phys. Rev. Lett. 119 267201

J. Phys.: Condens. Matter 30 (2018) 423001

https://doi.org/10.1088/0953-8984/27/43/435202
https://doi.org/10.1088/0953-8984/27/43/435202
https://doi.org/10.1002/pssb.200301671
https://doi.org/10.1002/pssb.200301671
https://doi.org/10.1080/14786430500504048
https://doi.org/10.1080/14786430500504048
https://doi.org/10.1103/PhysRevB.54.3380
https://doi.org/10.1103/PhysRevB.54.3380
https://doi.org/10.1103/PhysRevLett.119.267201
https://doi.org/10.1103/PhysRevLett.119.267201

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Spin waves in disordered materials
	﻿﻿Abstract
	﻿﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Transverse magnetic susceptibility
	﻿﻿3. ﻿﻿﻿Numerical averaging of magnons in real space
	﻿﻿3.1. ﻿﻿﻿Generation of realistic structures
	﻿﻿3.1.1. ﻿﻿﻿Direct random structure generation and Fisher﻿–﻿Yates﻿–﻿Shuffle. 
	﻿﻿3.1.2. ﻿﻿﻿Random structures from Voronoi tessellation. 
	﻿﻿3.1.3. ﻿﻿﻿Perlin method. 

	﻿﻿3.2. ﻿﻿﻿Application of the Perlin method to thin films

	﻿﻿4. ﻿﻿﻿CPA for the Heisenberg model
	﻿﻿5. ﻿﻿﻿Evaluation of exchange parameters in disordered systems
	﻿﻿6. ﻿﻿﻿Comparison of both schemes
	﻿﻿7. ﻿﻿﻿Summary
	﻿﻿﻿Acknowledgments
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿﻿﻿﻿﻿References﻿﻿﻿﻿




