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Abstract. We present an application of density functional theory for superconductors to superconductivity
in hydrogenated carbon nanotubes and fullerane (hydrogenated fullerene). We show that these systems
are chemically similar to graphane (hydrogenated graphene) and like graphane, upon hole doping, develop
a strong electron phonon coupling. This could lead to superconducting states with critical temperatures
approaching 100 K, however this possibility depends crucially on if and how metallization is achieved.

1 Introduction

The development of accurate ab-initio many body meth-
ods for superconductivity, such as Éliashberg theory [1,2]
and density functional theory for superconductors [3], as
well as efficient numerical methods to compute electronic
interactions [4–6] allows prediction of superconducting
properties and the critical temperature (Tc) of materi-
als without need of empirical parameters or experimental
input. This, combined with the fact that computational
approaches are nowadays also able to scan the configura-
tion space of stable materials [7–11] in a faster and efficient
fashion (as compared to cumbersome trial-and-error pro-
cess of synthesis and characterization), has revived hope
of finding a, long dreamed, room temperature supercon-
ductor.

In recent years many theoretical predictions ([12–24] to
cite a few) have been made. One of which was SH3 at high
pressure (200 GPa) [25], this was then confirmed through
diamond-anvil cell experiments [26] SH3 breaking the then
record for the highest-known critical temperature and the
prejudice that high-Tc superconductivity is impossible to
predict.

Another very interesting prediction was that of super-
conductivity in graphane [27]. Graphane [28–31] is a fully
hydrogenated graphite layer where hydrogen atoms are
bonded on the two sides of the layer attached to alternate
carbons [32]. Unlike SH3, graphane does not superconduct
in its stoichiometric structure, it has to be hole doped
and this could be in principle achieved by electrostatic
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gating or by a chemical substitution. So far the doped
configuration of graphane has not been synthesized and
the prediction is not yet confirmed. Still this material
is of great importance for several reasons: first graphane
is stable at ambient conditions of pressure, making it of
technological relevance; second it has the highest critical
temperature ('100 K) predicted and known at ambient
conditions of pressure in phononic superconductors; third
graphane, in spite of being an hydrogen compound, does
not owe its high-Tc to the high energy phonon modes of
hydrogen (i.e. Ashcroft mechanism [33]) but rather to the
carbon phonon modes and carbon electronic states. This
opens the possibility of other high temperature phononic
superconductors may exist in a broader set of materials,
since at room pressure hydrogen states are usually fully
compensated while carbon related states are more likely
to be pinned at the Fermi level where they can contribute
to superconductivity.

In this work we will show that the excellent super-
conducting properties of graphane also occur in related
structures of lower dimensionality such as fullerane, the
hydrogenated buckyball (C60H60), and hydrogenated car-
bon nanotubes (CH-NT). While in graphane hydrogena-
tion occurs on both sides of the layer, for these systems
we consider only exohedral hydrogenation as shown in
Figure 1.

The superconducting state is described by means of den-
sity functional theory for superconductors [3] (SCDFT)
and an extension used to compute the order parameter
in real space [34]. This provides a natural description
for large systems with low periodicity as nanotubes and
buckyballs and is a strength of SCDFT over the more con-
ventional Éliashberg approach in reciprocal space [35–38].

This work is dedicated to Hardy Gross who, not
only jointly invented SCDFT [3], but also devoted a
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Fig. 1. View of the crystal structure of CH-NT the hydro-
genated (6,0)-nanotube (a – front view; b – top view) and
C60H60 the hyrogenated fullerene (c). The CH–NT unit cell
(gray lines) contains 24 C atoms and 24 H atoms. In violet are
indicated the lattice parameters of the two crystals. Atomic
distances (in Å) are collected in the following table:

CH–NT C60H60

C–C C–H C–C C–C C–H
1.552 1.097 1.548 1.561 1.091

large effort to develop the theoretical framework into
a fully functioning method, investigating functionals
[39–42], extensions [43–46] and transforming it into a
useful and predictive tool in material science [23,47–54].

2 Basics of SCDFT

SCDFT is an extension of DFT to account for the very
peculiar symmetry breaking that occurs in a superconduc-
tor [55,56]. Proposed in 1988 [3] by Oliveira, Gross and
Kohn was later revisited and extended in Hardy Gross’
group [41,42,57] to merge with the multi-component DFT
of Kreibich and Gross [58] to include nuclear motion.

The starting point of SCDFT is the non relativistic
Hamiltonian for interacting electrons and nuclei:

H = He +Hen +Hn +Hext, (1)

where e stands for electrons, n for nuclei and ext for
external fields.

He =
∑
σ

∫
d3rψ†σ (r)

[
−1

2
∇2 − µ

]
ψσ (r)

+
1

2

∑
σσ′

∫
d3rd3r′ψ†σ (r)ψ†σ′ (r′)

× 1

|r− r′|
ψσ′ (r′)ψσ (r) , (2)

where ψ are electronic field operators and µ the chemical
potential.

Nuclei need to be considered explicitly (not just as
source of an external potential like in conventional
DFT [59]) because in most known superconductors the
ion dynamics provides an essential part of the supercon-
ducting coupling:

Hn = −
∫
d3RΦ† (R)

∇2

2M
Φ (R)

+
1

2

∫
d3Rd3R′Φ† (R)Φ† (R′)

× Z2

|R−R′|
Φ (R′)Φ (R) (3)

Hen = −
∑
σ

∫
d3Rd3rψ†σ (r)Φ† (R)

Z

|R− r|
Φ (R)ψσ (r),

(4)

where Φ are ionic creation operators, M the mass and Z
the atomic number.

The Hamiltonian needs to includes an external symme-
try breaking field [56] that for singlet superconductivity
can be chosen as:

H∆ext
=

∫
d3rd3r′∆∗ext (r, r′)ψ↑ (r)ψ↓ (r′) + h.c. (5)

In addition to this one should also add an external field
coupling with the electronic density:

Hvext =

∫
d3rvext (r)

∑
σ

ψ†σ (r)ψσ (r) (6)

and an external field that couples with the nuclei:

HWext
=

∫
Wext ({Ri})

∏
j

d3RjΦ
† (Rj)Φ (Rj) . (7)

In its modern form [41,42] SCDFT is based on the three
densities:

ρ (r) = Tr

[
%0
∑
σ

ψ†σ (r)ψσ (r)

]
(8)

χ (r, r′) = Tr [%0 ψ↑ (r)ψ↓ (r′)] (9)

Γ ({Ri}) = Tr

%0∏
j

Φ† (Rj)Φ (Rj)

 , (10)

where %0 is the grand canonical density matrix.
The SCDFT generalization of the Hohenberg–Kohn

theorem [59] (at finite temperature [60]) states:

1. There is a one-to-one mapping between the set of
densities ρ (r), χ (r, r′), Γ ({Ri}) onto the set of
external potentials vext (r), ∆ext (r, r′), Wext ({Ri})
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2. There is a variational principle so that it exists a
functional Ω that:

Ω [ρ0, χ0, Γ0] = Ω0

Ω [ρ, χ, Γ ] > Ω0 for ρ, χ, Γ 6= ρ0, χ0, Γ0, (11)

where ρ0, χ0, Γ0 are the ground state densities and Ω0 the
grand canonical potential.

The fact that all observables are functionals of the
densities and that H is the sum of internal interactions
(Eq. (1)) and couplings with external fields (Eq. (5) +
Eq. (6) + Eq. (7)) allows Ω [ρ, χ, Γ ] to be written as:

Ω [ρ, χ, Γ ] = F [ρ, χ, Γ ] +

∫
d3rvext (r) ρ (r)

+

∫
Γ ({Ri})Wext ({Ri})

∏
j

d3Rj

+

∫
d3rd3r′∆∗ext (r, r′)χ (r, r′) + c.c. (12)

that defines the universal functional F [ρ, χ, Γ ].

2.1 The Kohn–Sham system

As for conventional DFT it is useful to introduce the
Kohn–Sham system [61], a non-interacting system which
is minimized by the same densities of the physical (inter-
acting) one, under the three external potentials:

vs (r) = vext (r) + vH (r) + vxc (r)

∆s
(
r, r′

)
= ∆ext

(
r, r′

)
+∆xc

(
r, r′

)
Ws ({Ri}) = Wext ({Ri}) +WH ({Ri}) +Wxc ({Ri}) .

(13)

The subscript H stands for Hartree terms and xc are the
exchange-correlation potentials obtained by a functional
derivative of the xc functional of the theory Fxc [ρ, χ, Γ ],
that can be obtained from perturbation theory [41,42].

The electronic part of the Kohn–Sham equations
are then derived by diagonalizing the Kohn–Sham
Hamiltonian with a Bogoljubov-Valating transforma-
tion [56,62]:

ψσ (r) =
∑
i

[
ui (r) γiσ − sgn (σ) vi (r) γ†iσ

]
(14)

leading to the diagonalization conditions:[
−∇

2

2
+ vs (r)− µ

]
ui (r) +

∫
∆s (r, r′) vi (r′) d3r′

= Eiui (r)

−
[
−∇

2

2
+vs (r)−µ

]
vi (r) +

∫
∆∗s (r, r′)ui (r′) d3r′

= Eivi (r) (15)

that are the electronic Kohn–Sham equation for SCDFT.
Their mathematical form is well known in super-
conductivity literature as Bogoljubov-deGennes (BdG)
equations [56] which are mostly used, within the BCS
model, to describe superconducting structures in real
space. In SCDFT these equations become exact for the
calculation of the total energy and the densities:

ρ (r) = 2
∑
i

[
|ui (r)|2 f (Ei) + |vi (r)|2 f (−Ei)

]
(16)

χ (r, r′) =
∑
i

ui (r) v∗i (r′) f (−Ei)

−v∗i (r)ui (r′) f (Ei) . (17)

In absence of superconductivity both χ and ∆ are zero
and the Kohn–Sham equations (15) and (16) become the
usual Kohn–Sham equations of conventional DFT:[

−∇
2

2
+ vs (r)− µ

]
ϕnk (r) = ξnkϕnk (r) . (18)

This form is slightly more general because it would still
include the full effect of temperature and ionic motion
since it is still coupled with the ion dynamics via the
potentials in equation (13).

2.1.1 Transformation to momentum space

Equation (18) can be solved in the superconducting state
(i.e. keeping the non-zero χ in the functional vs[ρ, χ, Γ ])
and the corresponding eigenfunctions ϕnk (r) can be used
as a basis set to express the BdG equations in k space.
Introducing the expansion:

ui (r) =
∑
nk

ui,nk ϕnk (r) (19)

vi (r) =
∑
nk

vi,nk ϕnk (r) (20)

∆s (r, r′) =
∑
nn′kk′

∆s,nn′kk′ ϕnk (r)ϕn′k′ (r′) (21)

that when inserted into equation (15) and using the
orthogonality of the basis set gives:

ξnk ui,nk +
∑
n′k′

∆s,nn′kk′ vi,n′k′ = Ei ui,nk

−ξnk vi,nk +
∑
n′k′

∆∗s,nn′kk′ ui,n′k′ = Ei vi,nk, (22)

which is a form of the BdG equations particularly useful
for introducing approximations. At this stage the problem
to solve is still very complicated and can not be tackled
without introducing approximations. The key approxima-
tion is to decouple as much as possible the many degrees
of freedom (and densities) of the problem:

1. Decouple electrons from ions separating static and
dynamic part of the interaction, including the latter
in a perturbative fashion.
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2. Decouple the high energy chemical scale (responsi-
ble for bonding) from low energy pairing interactions
(responsible for superconductivity).

2.1.2 Phonons and electron–phonon interaction

The problem of correlated electron-nuclear dynamics is
enormously complex, however for systems close to equilib-
rium theoretical methods are able to describe accurately
and efficiently the nuclear dynamics and electron–phonon
coupling [4,63,64]).

A key approximation is to ignore the effect of super-
conductivity on the lattice dynamics and on the electron–
phonon interaction. As the superconducting transition is
usually of type II, this approximation is exact near the
critical temperature, where the superconducting density
becomes infinitesimally small. This allows us to use the
lattice dynamics of the normal state.

To compute phonons and the electron–phonon interac-
tion one usually relies on conventional Kohn–Sham den-
sity functional theory, defining electron–phonon scattering
matrix elements as:

gνmk+q,nk =

√
~

2ωqν

〈
ϕmk+q

∣∣∣∆V qν
scf

∣∣∣ϕnk〉 , (23)

where k and q are the electron and phonon momenta,
m and n Kohn–Sham band indices, ϕnk the Kohn–Sham
states, ν is the phonon branch, ωqν the phonon frequency
and ∆V qν

scf the variation in the Kohn–Sham potential due
to the ionic displacement corresponding to the phonon
mode. By means of density functional perturbation the-
ory [4] these matrix elements can be computed accu-
rately and at a reasonable computational cost for bulk
superconductors. The electron–phonon interaction of the
Kohn–Sham system reads:

H̃e−ph =
∑
mnσ

∑
νkq

gνmk+q,nk

∑
σ

ψ†σmk+qψσnk

(
bνq + b†ν−q

)

=
∑
νq

√
~

2ωqν

∫
d3r∆V qν

scf (r)ψ†σ (r)ψσ (r)

×
(
bνq + b†ν−q

)
, (24)

where ψ†σnk and ψσnk are creation and destruction oper-
ators for Kohn–Sham states and bνq is a phonon field
operator.

The step of approximating the dynamic part of Hen

with H̃en can be certainly justified empirically by its suc-
cess in applications [4,65,66] but is theoretically not very
rigorous. The most compelling justification is that if the
Kohn–Sham band structure is close to the interacting
one so will likely be its response to a lattice motion.
Clearly if Kohn–Sham bands are far off from the inter-
acting ones (like in strongly correlated systems) then the
use of Kohn–Sham electron–phonon coupling is expected
to be a poor approximation.

2.1.3 Band decoupling approximation

The electronic BdG Kohn–Sham equation (22) can be
further simplified by assuming that the superconduct-
ing condensation is a small perturbation on the non-
superconducting system. As already pointed out in the
previous section, since the superconducting transition is
usually of type II the assumption becomes exact close to
Tc therefore it would not affect the estimation of Tc itself.

This assumption implies that the superconducting
transition will not induce a structural one, therefore
∆s (r, r) should keep the original lattice periodicity and
the quantum number k in equation (18) must be main-
tained [57,67]. In other words the summations in equa-
tions (19) and (20) should only run over the band index
n and not over k.

The summation over n means that the superconducting
transition can still induce hybridization between different
bands corresponding to the same k-point. However unless
bands are degenerate (or close to degeneracy with respect
to the energy scale set by ∆s that is of the order 10 meV)
this hybridization must be extremely small. Therefore,
apart from anomalous cases, one can introduce a second
and stronger approximation by ignoring this superconduc-
tivity induced band hybridization effect. Equations (19)
and (20) reduce to:

ui (r) ≡ unk (r) = unkϕnk (r)

ui (r) ≡ vnk (r) = vnkϕnk (r) , (25)

that implies ∆s,nn′kk′ → δnk,n′k′∆s,nk.
Inserting equation (25) into equation (22) one can

formally solve these equations obtaining:

unk =
1√
2

sgn (Enk) eφnk

√
1 +

ξnk
|Enk|

(26)

vnk =
1√
2

√
1− ξnk
|Enk|

(27)

with eφnk = ∆s (nk) / |∆s (nk)| and Enk =

±
√
ξ2nk + |∆s (nk)|2. While the densities in equations (16)

and (17) take on the simple form:

ρ (r) =
∑
nk

[
1− ξ2nk
|Enk|

tanh

(
β |Enk|

2

)]
|ϕnk (r)|2 (28)

χ (r, r′) =
1

2

∑
nk

∆s (nk)

|Enk|
tanh

(
β |Enk|

2

)
ϕnk (r)ϕ∗nk (r′) .

(29)

The entire superconducting problem is now reduced to
the construction of the matrix elements of the Kohn–Sham
potential ∆s (nk) that are obtained by the solution of the
equation:

∆xc =
δFxc [ρ, χ[∆s, ρ, Γ ], Γ ]

δχ
. (30)
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Several approximations fro Fxc have been proposed and
tested [42,68], and all lead to a BCS-like form of the
equation above:

∆s (nk) = Z (nk)∆s (nk) +
1

2

∑
n′k′

K (nk, n′k′)

×
tanh

(
β
2En′k′

)
En′k′

∆s (n′k′) , (31)

where the two kernels K and Z depend on the chosen Fxc

functional [42,68–71] and contain all the key information
about electronic and electron-phonon coupling.

The main point of strength of the theory is its low com-
putational cost, as compared to Green’s function methods,
mainly because the gap equation (31), while being fully
dynamical and including strong coupling effects, does
not involve cumbersome Matsubara integration (all the
complexity is absorbed in the process of functional con-
struction). This means that the equation can be easily
solved in its full k resolution and in a full energy window.
Then all anisotropy effects [38,47,52,54,72] as well as high
energy Coulomb interactions [70,71,73,74] can be included
in a fully ab-initio manner, even when pairing is induced
by exchange of spin-fluctuations [75,76].

3 Superconductivity of a doped
carbon–hydrogen nanotube and doped
fullerane

The lattice properties of the two chosen hydrogenated car-
bon nano-structures are collected in Figure 1. These are
an hydrogenated (6,0) nanotube (CH–NT) and an hydro-
genated fullerene (C60H60). Both are considered with a
full outer hydrogenation of the carbons. We have estab-
lished that these structures are dynamically stable but we
will not consider their thermodynamic stability [77].

Both CH–NT and C60H60 (Fig. 1) are insulating
structures. The KS-GGA band gap is 2 eV and 3 eV
respectively.

In both systems the top of the valence band is character-
ized by C–C an C–H bonding states, while the conduction
band is delocalized and dispersive (Figs. 2 and 3).

The simplest way to simulate a doping is by rigidly shift-
ing the Fermi level. Superconductivity is expected to be
stronger upon hole doping as holes should form a metal-
lic state in the stiff C–C covalent bonds [27,78]. Owing to
the nature of the conduction band, electron doping would
lead to far weaker superconducting coupling.

The lattice dynamics is characterized by high energy
H stretching modes at about 380 meV and a continuous
region below 200 meV that contains at its high end the
H rocking modes and in its mid to low region carbon and
acoustic modes (Figs. 2c and 3e).

The electron phonon coupling important for supercon-
ductivity (discussed in Sect. 2.1.2) can be reduced to the

Éliahberg α2F (ω) function by averaging over the Fermi

surface:

α2F (ω) =
1

NF

∑
nk
n′k′

ν

∣∣gνnk,n′k′

∣∣2 δ (ξnk) δ (ξn′k′) δ (ω − ωqν)

(32)
with k′ ≡ k + q, and NF the DOS at the Fermi level.
This function is shown for the two systems and at a single
doping level in Figures 2d and 3e.

3.1 Superconductivity of a doped CH–NT

We will first focus on superconductivity in the CH–NT as
it results the most interesting and likely to occur. Figure 4
gives the full doping dependence of Tc, coupling strength
and α2F for this CH–NT.
Tc is computed within SCDFT as described in

Sections 2 and 4. In spite of the strong Coulomb inter-
action Tc appears to be quite high ranging from 50 to
100 K depending on the doping regime. There are clearly
two doping regimes that can be identified in Figure 4 a
low doping corresponding to about 1 e− per unit cell that
leads to a first peak in the Tc curve, with a maximum
Tc of about 50 K and a heavy doping regime with Tc
up to 100 K that corresponds to about 3e−/cell. In the
low doping regime the α2F (ω) function upper panel in
Figure 4 shows three main structures at about 65 meV,
150 meV and a high energy structure above 350 meV. In
the high doping regime there is also a prominent structure
around 150 meV and an high energy structure at 380 meV,
while the low energy structure is reduced in intensity and
energy. Overall this high doping region shows both a larger
coupling and a larger average effective phonon frequency.

While Tc is of the same order of magnitude in these two
cases there is a change in the properties of the condensate
in these two regimes. The local structure of the supercon-
ducting order parameter χ and xc-potential is plotted in
Figure 5. As discussed in reference [34], the xc-potential
mostly gives information on the Coulomb renormalization
in its full energy range (that weakly depends on the dop-
ing level), while χ (R, s = 0) shows where the attractive
part of the coupling is located. At low doping this is con-
centrated in the C–H bonding region (Figs. 5b and 5e)
while at high doping the attraction is more concentrate in
the C–C bonding region (Figs. 5c and 5f), similar to what
occurs in graphane [34]. In graphane the contribution from
the C–H bond on the attractive channel is negligible, here
it is still relevant even at this high doping regime. This
means that the CH–NT is, to some extent, a hydrogenic
superconductor [25,33,79–81].

In graphane this rigid shift approach to doping mimics
well the electronic effect of a B substitutional defect [27].
For the CH–NT we observe this approximation to be less
accurate than in graphane as, upon B substitution, the
top of the valence band (now at the Fermi level) acquires
a strong B character that affects both position and shape
of the 1D Van Hove singularity in the density of states. A
more accurate approach would be to correctly account for
electron–phonon coupling and Tc for the C → B substi-
tuted system. However, this leads to a phonon softening

https://epjb.epj.org/
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Fig. 2. Left: electronic bands (a) and density states (b – DOS) of the CH–NT. The color scale in the band plot gives the
atomic projection of the Kohn–Sham states on atomic orbitals, from black (100% C) to green (65% H). The Fermi level of
the undoped crystal is at zero. A dashed line shows the position of the Fermi level corresponding to a −2 hole doping. Right:
phonon density of states (c – also decomposed in H and C components) and α2F (ω) function (d). The latter is an average of
the electron–phonon matrix elements (23) on the Fermi surface of the system (Eq. (32)).

Fig. 3. Left: density of electronic states for the C60H60 system. (a) Undoped on a large energy window around the Fermi level
(at zero). (b) Close zoom of the Fermi level. (c) Density of states upon doping; Center: the superconducting order parameter
as a function of R on a cut of the C60H60. The colorscale ranges from −4 (black) to 80 (green); right: phonon density of states

and Éliashberg function (upon a rigid doping of 3 holes per formula unit).

at finite q along the tube and could be an evidence of a
charge-density wave instability. As the simulation of the
charge density wave is computationally too demanding
(a super cell along the instability would require over a
hundred of atoms) so we opt for the rigid shift of the
Fermi level.

A rigid shift approach also neglects the effect of
phonon renormalization induced by the metallic screening.
Phonon softening always leads to an increased electron

phonon coupling, however it also reduces the energy win-
dow around the Fermi level where phonons can pair
cooper pairs. The overall effect strongly depends on
the system, for example in MgB2 the Kohn anomaly is
crucial [78,82,83] to lead to a correct Tc.

In the present case the error has been estimated to be
small. This estimation is done by comparing Tc computed
from the coupling at q =Γ (where phonons are stable) for
the case of a doping by rigid shift and by B substitution.

https://epjb.epj.org/
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Fig. 4. Top: doping-dependent α2F (ω) function, the color
code is given on the left (0 to 5). Center: dimensionless electron

phonon coupling λ =
∫ α2F (ω)

ω
dω (right axis – green), and Tc

(left axis – violet). Bottom: density of electronic states, with
projection on the H site. The position of the Fermi level in the
undoped CH-NT is placed at zero. A violet integration curve
shows the doping level corresponding to a Fermi level shift.

The former approach gives.1 85 K the latter 95 K. An
extremely small difference indicating that the rigid shift
approach is sufficiently reliable

3.2 Superconductivity of a doped fullerane

We adopt the same approximations discussed for the
CH–NT. Like in the CH–NT, doping in C60H60 can be
simulated by a rigid shift of the Fermi level, leading to Tc
predictions of the same order of magnitude as in the CH–
NT. However the molecular C60H60 units in the crystal
are weakly interacting, as seen by the fact that the band
dispersion is quite low at the top of the valence band.
This raises doubts about the validity of several approx-
imations in our superconductivity approach such as the
decoupling approximation and Migdal’s theorem [84]. A
related problem is that rigid shift predictions are not con-
firmed by adopting a better description for the doping.
This can be clearly seen comparing Figures 3b and 3c.
Jellium doping causes a major transformation on the top
of the valence band while C→ B substitutions introduce
localized states in the band gap that pin the Fermi level.
Such states are not likely to lead to any superconductiv-
ity as their localization would correspond to an extremely
strong pair-breaking Coulomb repulsion.

In short this means that the C60H60-crystal could possi-
bly superconduct but this would depend crucially on how
the doping is achieved and especially if doping is able to
induce a stronger interaction between the molecules. This
is certainly not obvious for hole doping. On the other hand

1 For this simple estimation we do not use SCDFT but the simpler
McMillan [2] approach at mu∗ = 0.1.

our rigid shift calculation indicates that superconducting
coupling would be negligible for electron doping.

Eventhough this rigid shift Tc' 50 K may not be
very reliable, it is interesting to observe that also in
this system the doped CH bonds hide a significant pair-
ing strength. If not in the present geometry, that has a
high formation energy [85], this may lead to supercon-
ductivity in related nanostructures [77]: larger fulleranes,
hydrogenated buckyonions, systems with lower hydrogen
content, different hydrogenation geometry [85] or under
applied pressure [86].

4 Computational methods and details

All structural relaxation, normal state electronic struc-
ture, phonons and electron phonon calculations have
been done with density functional theory [59,61] using
the PBE [87] approximation for the exchange corre-
lation functional as implemented in the ESPRESSO
package [88]. Core states are described in the norm con-
serving [89,90] pseudopotential approximation. Lattice
dynamics are evaluated with density functional pertur-
bation theory [4,66,91]. A 100 Ry cutoff is used for the
planewave expansion of the charge density. The brillouin
zone integration for the electronic charge is done in a
2×2×20 (2×2×2) k-grid for CH–NT (C60H60), phonons
are computed in a 1×1×10 (1×1×1) q-grid. The k inte-

gration for the Éliashberg function and the solution of
the SCDFT gap-equation (31) requires a very accurate
sampling especially of those states close to the Fermi
level, because the kernels K and Z are sharply peaked
around ξ = 0. Therefore an accurate interpolation scheme
is necessary. As described in references [42,47,54] a conve-
nient approach is to use a large set of random k-points
accumulated around the Fermi level and opportunely
weighted. The properties of the corresponding states are
then obtained by interpolation from calculations on the
regular grids.

Superconducting Tc is computed within SCDFT by
adopting an isotropic approximation. Meaning that the
coupling is first averaged (in the form of Eq. (32)).
This neglects multiband effects that give a negligible
contribution to the estimation of Tc. A more relevant
approximation, that will not be validated in this work, is
to assume a conventional strength for the Coulomb inter-
action. In SCDFT Coulomb repulsion in the Cooper pair is
included in a completely parameter free way by computing
numerically the matrix elements of the screened interac-
tion (usually in RPA) that enter the xc functional [41,42]
both in a static [41,42] and a dynamical way [70,71]. How-
ever this is computationally quite expensive and we will
leave this analysis to a further investigation. Here we will
assume Coulomb matrix elements to be constant for all
states. Their value V chosen such that µ= V*NF is equal
to 0.6. This is similar to what is used in the Éliashberg-
McMillan [1] approach to superconductivity. The only
difference is that in the present case Coulomb interaction
will still depend on energy via the density of states (while
in the Morel–Anderson approach the density of states is

https://epjb.epj.org/
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Fig. 5. Real space anomalous potential ∆ (R, s) (left) and order parameter χ (R, s) (center and right) as a function of the
Cooper pair center of mass R. On the top (a–c) an xy cut of the tube and on the bottom (d–f) a vertical cut of the tube. The
doping level (rigid shift) is indicated on the top. The value of the functions is given according to the colorscale in the center
(left scale refers to the left plot and the two right scales to the two right plots. A white dashed line in the a–c plots indicates
the cut shown on the (d–f) plots.

also assumed to be constant). Therefore Coulomb renor-
malization occurs in the solution of the gap equation (31)
and not analytically [92,93]. The chosen value of µ is
relatively high, as expected for a system with a poor
screening as doped insulator. Still a more realistic approx-
imation may give a stronger Coulomb repulsion especially
in the molecular C60H60 structure and could reduce the
estimated Tc.

5 Summary and conclusion

We have constructed two hypothetical systems: an hydro-
genated carbon nanotube and fullerane, the hydrogenated
fullerene. These prove to be dynamically stable and are
electronically similar to graphane. To characterize the
superconducting state of such complex structures we have
used density functional theory for superconductors and
constructed the order parameter and the Kohn–Sham gap
function in real space. Upon doping the valence bands of
these systems show an exceptionally large electron phonon
coupling, indicating that the prediction of a high critical
temperature in graphane may be a general property of
a large class of doped hydrogen carbon systems at room
pressure. In particular this class certainly includes larger
(and more stable) hydrogenated nanotubes [94].
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