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We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge
transfer effects can be accurately and seamlessly described within a density functional framework.
In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due
to an electron transfer at a critical bond length R = Rc, where an avoided crossing of the lowest
adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into
doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we
find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical Rc by 0.5
bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an
M�1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear
mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional
electronic density, ∇R χ(R) and ∇Rn(r, R), it couples the Kohn-Sham equations at neighboring R
points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space,
we propose a local conditional density approximation—an approximation that reduces the search for
nonadiabatic density functionals to the search for a single function y(n). Published by AIP Publishing.
https://doi.org/10.1063/1.5011663

I. INTRODUCTION

The many-body electron-nuclear Schrödinger equation is
the fundamental equation of computational chemistry, but its
complexity makes it difficult to find approximate solutions
with “chemical accuracy” (1 kcal/mol≈ 40 meV). Invoking the
Born-Oppenheimer (BO) approximation1,2 and working with
adiabatic potential energy surfaces (PESs) provide a signifi-
cant simplification by effectively separating the electronic and
nuclear variables. The electronic Schrödinger equation with
clamped nuclei can be solved by ab initio quantum chem-
istry methods at each point in nuclear configuration space
to yield the ground state PES. The nuclear motion is char-
acterized by the quantized vibrations and rotations on that
surface.

This adiabatic treatment usually works well because the
nuclear masses are significantly larger than the electron mass,
rendering the nonadiabatic electron-nuclear coupling negli-
gibly small. However, it breaks down in several interesting
cases, e.g., when the adiabatic PESs approach each other
too closely, as occurs at conical intersections.3 Nonadiabatic
effects can significantly influence chemical reactions, partic-
ularly those involving photoexcited states, proton or electron
transfer, spin-orbit coupling, and small energy gaps at the tran-
sition state. Some well-known examples are alkali hydrogen
halide exchange reactions (e.g., Li + HF→ LiF + H),4–7 colli-
sional electron transfer reactions (e.g., Na + I→Na+ + I�),8–10
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and reactions involving hydrogen (e.g., F + H2→HF + H).11–14

The potential impact of nonadiabatic effects on proton transfer
in water15–24 remains largely unexplored. A realistic descrip-
tion of such problems requires methods that go beyond the BO
approximation.

By striking a balance between accuracy and compu-
tational complexity, density functional theory (DFT) has
become the most popular electronic structure method and
perhaps the only method capable of treating large sys-
tems with quantum effects. Therefore, it would be ideal
to incorporate nonadiabatic effects into DFT. One approach
to incorporating nonadiabatic and quantum nuclear effects
is to define a multicomponent DFT with both the elec-
tronic density n(r) and Nn-body nuclear density Γ(R) as

basic functional variables.25 As the electronic density n(r)
= Ne ∫ dRdr2 . . . drNe |Ψ(r, r2, . . . , rNe , R)|2 is expressed in
the body-fixed molecular frame and averaged over the nuclear
variables R ≡ (R1, R2, . . . , RNn ), it differs from the electronic
density in DFT, which is a conditional electronic density with
parametric R-dependence. Functional approximations have

been introduced and tested for the hydrogen molecule25,26

and electron-proton correlation,27,28 though they have not been
applied to charge transfer systems.

An alternative nonadiabatic density functional theory,
which works with a conditional electronic density, namely,
the density n(r, R) = 〈ΦR |ψ̂

†(r)ψ̂(r)|ΦR〉 calculated with
the conditional electronic wave function |ΦR 〉 defined in the

exact factorization scheme,29–31 has recently been proposed.32
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This theory is not a multicomponent DFT because it retains
the full nuclear wave function χ(R), including its gauge

freedom.30,31 The ground state density can be obtained by min-
imizing a variational energy functional. The exact functional
is not known explicitly; however, as in the Kohn-Sham (KS)
scheme,33 one can decompose it into several components, leav-
ing an unknown nonadiabatic Hartree-exchange-correlation
(nhxc) functional Enhxc = Enhxc[n, jp, T] to be approximated
in practice. The functional depends on two additional basic
variables—the paramagnetic current density jp and the quan-
tum geometric tensor T defined in Sec. II. The functional
dependence on T introduces a new complexity and properly
accounting for it becomes a critical issue.

To explore the T-dependence of Enhxc, we start with
a simple class of systems that often show nonadiabatic
effects, namely, those that experience rapid electronic den-
sity changes as the nuclear configuration is varied, implying
strong electron-nuclear coupling. This reminds us of charge
transfer reactions, one of the most important processes in
chemistry and chemical biology. Understanding how charge
transfer takes place is a critical step towards unraveling the
mechanisms of many types of reactions. Charge transfer pro-
cesses can be observed in simple diatomic molecules such
as stretched LiF and NaCl,34,35 as well as NaI, as studied
in Zewail’s pioneering time-resolved vibrational spectroscopy
experiments.36

In this paper, we use LiF as a representative charge trans-
fer system to explore density functional approximations within
the exact factorization scheme. Instead of treating the electrons
ab initio, we approximate the bond length-dependent elec-
tronic structure of LiF with an asymmetric Hubbard model,
which makes the resulting equations simple enough to solve
exactly. Comparing the exact and BO solutions, we find that
the major nonadiabatic effect is an elongation of the critical
bond length Rc at which charge transfer occurs in the con-
ditional electronic wave function ΦR of the molecular ground
state. We show that this effect can be accurately described by an
approximation of the form vnhxc(r, R) = vBO

hxc (r, R)+vgeo(r, R),

where vBO
hxc (r, R) is an hxc potential from standard DFT with

parametric dependence on R and vgeo(r, R) is a geometric cor-
rection that can be rigorously derived in this case from an exact
nonadiabatic density functional.

The original Shin-Metiu model,37 which has been stud-
ied in the context of the exact factorization scheme,38,39 also
contains charge transfer processes. However, since that model
contains only one electron, it would not allow us to study the
coexistence of electron-electron correlations and nonadiabatic
effects.

A different way of using DFT in conjunction with the
exact factorization scheme has recently been developed in the
context of a coupled-trajectory mixed quantum-classical study
of quantum decoherence effects in the photochemical ring
opening of oxirane.40 DFT and linear response time depen-
dent DFT were used on-the-fly to calculate the adiabatic PES
and nonadiabatic coupling vectors during the self-consistent
propagation of an ensemble of classical nuclear trajecto-
ries and dynamical equations for Born-Huang-like expansion
coefficients describing the electronic state. Because it employs

standard DFT, which is independent of the nonadiabatic
transitions that occur in the evolving state, this approach
differs from exact factorization-based DFT, where the
functionals themselves depend on the nonadiabaticity of
the state. Exact factorization-based DFT therefore circum-
vents the Born-Huang expansion and nonadiabatic coupling
vectors.

The rest of the paper is structured as follows. In Sec. II,
we briefly review the exact factorization scheme in the static
case and the density functional formulation based upon it. In
Sec. III, we apply the theory to charge transfer in the LiF
molecule. Section III A motivates the use of an asymmetric
two-site Hubbard model to describe the electronic structure
of LiF during stretching. The model is solved by numerical
exact diagonalization in Sec. III B to provide a benchmark
for subsequent density functional approximations. The exact
energy functionals within the Born-Oppenheimer approxima-
tion and within the exact factorization scheme are derived in
Secs. III C and III D, respectively. In Sec. III D, we further
find that we can quantitatively capture the dominant nonadi-
abatic effects through a variational functional of the nuclear
wave function and the conditional electronic density, with-
out explicitly invoking the quantum geometric tensor as was
proposed in our previous work.32 In Sec. IV, we extend the
formalism to general systems in continuous Euclidean space
with a more rigorous definition. Finally, in Sec. V, we close
with some concluding remarks.

II. EXACT FACTORIZATION SCHEME AND DENSITY
FUNCTIONAL FORMULATION

Before introducing our model, let us revisit the exact fac-
torization scheme and the density functional theory based on
it. For a nonrelativistic system of electrons and nuclei, the total
Hamiltonian can be written as

Ĥ = T̂n + Ĥe, (1)

where T̂n is the nuclear kinetic energy operator and Ĥe = T̂e

+ V̂ee + V̂en + V̂nn is the Born-Oppenheimer Hamiltonian
that includes electronic kinetic energy T̂e, electron-electron
interaction V̂ee, electron-nuclear interaction V̂en, and nuclear-
nuclear interaction V̂nn. The ground state of the system can
be obtained through the minimization of 〈Ψ|Ĥ |Ψ〉 over all
possible combined electron-nuclear wave functions Ψ(r, R).
Here we use r = (r1, r2, . . . , rNe ) and R ≡ (R1, R2, . . . , RNn )
to denote electronic and nuclear coordinates, respectively.
The wave function can be factorized into the form Ψ(r, R)

= χ(R)ΦR(r),29 where χ(R) is the marginal nuclear wave
function and ΦR(r) is a conditional electronic wave function
which depends parametrically on the nuclear coordinates and
satisfies the partial normalization condition,∫

|ΦR(r)|2dr = 1, ∀R. (2)

Variational determination of the ground state Ψ(r, R) trans-
lates into the following pair of coupled equations for χ(R)

and ΦR(r):30,31
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

Nn∑
µ=1

[−i~∇µ + Aµ(R)]2

2Mµ
+ E(R)


χ(R) = E χ(R), (3)

[
Ĥe(R) + Ûcoup

en [ΦR, χ]
]
ΦR(r) = E(R)ΦR(r). (4)

Here µ indexes the nuclei and Mµ are the nuclear masses.
The electron-nuclear coupling gives rise to an induced vector
potential

Aµ = 〈ΦR | − i~∇µ |ΦR〉. (5)

E(R) is a scalar potential, defined by taking the r-space inner

product of Eq. (4) with Φ∗R(r). Here Ûcoup
en is the electron-

nuclear coupling operator, given by

Ûcoup
en [ΦR, χ] =

Nn∑
µ=1

1
Mµ



[−i~∇µ − Aµ(R)]2

2

+
(−i~∇µ χ

χ
+ Aµ(R)

) (
− i~∇µ − Aµ(R)

)
.

(6)

Solving the coupled equations (3) and (4) is completely equiv-
alent to solving the Schrödinger equation for the full wave
functionΨ and does not reduce the computational complexity.
However, it allows for further reformulation of the problem,
e.g., solving the electronic part of the problem using density
functional theory.

A density functionalization of the exact factorization
scheme has been proposed in Ref. 32. In this theory, the total
energy is written as a functional of n(r, R), jp(r, R), χ(R),
Aµ(R), and Tµν(R) as

E[n, jp, T, χ, A] = Tn,marg[χ, A] +
∫

Egeo(R)| χ |2dR

+
∫ ∫

Ven(r, R)n(r, R)d3rdR

+
∫ (

Vnn(R) + F[n, jp, T]
)
| χ |2dR. (7)

Here the conditional electronic density, the paramagnetic cur-
rent density, and the quantum geometric tensor are defined
as

n(r, R) = 〈ΦR |ψ̂
†(r)ψ̂(r)|ΦR〉, (8)

jp(r, R) =
~

2ime
〈ΦR |ψ̂

†(r)∇ψ̂(r) − ∇ψ̂†(r)ψ̂(r)|ΦR〉, (9)

with me being the electron mass, and

Tµν = 〈∇µΦR |(1 − |ΦR〉〈ΦR |)|∇νΦR〉. (10)

In Eq. (7), Tn,marg is the marginal nuclear kinetic energy,

Tn,marg =

∫
χ∗(R)

Nn∑
µ=1

[−i~∇µ + Aµ(R)]2

2Mµ
χ(R)dR. (11)

Egeo(R) is a geometric contribution to the energy,41

Egeo(R) =
~2

2
IµνTµν , (12)

with Iµν = δµν/Mµ being an inverse inertia tensor. In Eq. (7),
F is an electronic functional implicitly defined through a
constrained search as

F[n, jp, T] = min
Ψ→(n,jp,T)

〈ΦR |T̂e + V̂ee |ΦR〉, (13)

which is universal in the sense that it does not depend
on χ or V̂en. The minimization of E[n, jp, T, χ, A] can be
reduced to solving (i) the Schrödinger equation for χ(R),
(ii) conditional Kohn-Sham equations for n(r, R) and jp(r, R),
and (iii) an Euler-Lagrange (EL) equation for Tµν(R). The
validity of this framework has been demonstrated for the
E ⊗ e Jahn-Teller model. However, due to the one-electron
nature of that model, the electronic functional F reduces to
the noninteracting electronic kinetic energy T e,s, and thus
Enhxc[n, jp, T] = F[n, jp, T] − Te,s[n, jp] vanishes identically.
Therefore, one cannot use the E ⊗ e Jahn-Teller model to
study the functional form of Enhxc. For many-electron systems,
the form of Enhxc particularly its dependence on T remains
unknown.

III. APPLICATION TO LiF

To explore how the quantum geometric tensor can be
accounted for in many-electron systems, we start by consid-
ering simple diatomic molecules that show nontrivial nonadi-
abatic effects. A candidate system with relatively light nuclei
is the LiF molecule, where the charge transfer takes place
when the bond is stretched beyond a critical value. To sim-
plify the full problem in three-dimensional space, we assume
that both nuclei are constrained to lie along a laboratory-fixed
axis. Hence, we neglect the rotational degrees of freedom and
rovibronic coupling, and after separating off the nuclear center
of mass motion, only a single nuclear variable remains—
the bond length R. Since the nuclear configuration space
is one-dimensional, a gauge can be chosen that eliminates
the induced vector potential Aµ(R). Moreover, the paramag-
netic current density jp(r) must also vanish for the ground
state. This enables us to focus on the functional dependencies
on χ, n, and T.

With these assumptions, the electron-nuclear Hamiltonian
reduces to

Ĥ(r, R) = −
~2

2M
d2

dR2
+ Ĥe(r, R), (14)

where M = M1M2
M1+M2

is the reduced nuclear mass and Ĥe depends
only on the bond length R = |R1 � R2|; we assume R1 ≤ R2,
and let R1 refer to the position of the Li atom and R2 refer to
that of the F atom. The full electron-nuclear wave function is
the solution of the Schrödinger equation

Ĥ(r, R)Ψ(r, R) = EΨ(r, R). (15)

We transform all units to atomic units so that ~ = 1.
In terms of the proton mass mp, the two nuclear masses are
M1 = 7mp and M2 = 19mp (here we treat the proton and neu-
tron masses as identical) so that M = 5.1154mp. One can fur-
ther transform the reduced mass into atomic units, giving
M = 9392me.



084110-4 Li, Requist, and Gross J. Chem. Phys. 148, 084110 (2018)

A. Two-site Hubbard model for the electrons

Although the nuclear part of the problem defined by
Eq. (15) is manageable, the electronic Hamiltonian Ĥe is
too complicated to solve exactly. It also poses a challenge
to state-of-the-art electronic density functionals.34 To sim-
plify the electronic Hamiltonian while keeping the essential
charge transfer physics, we consider only the two valence
electrons involved in the chemical bond, i.e., the 2s elec-
tron of Li and the unpaired 2p electron of F. This reduces
the problem to an asymmetric two-site Hubbard model with 2
electrons.

The Hamiltonian of the two-site Hubbard model is

Ĥe = −t
∑
σ

(ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ) +
∑

i

Uin̂i↑n̂i↓ +
∑

i

ε in̂i, (16)

where ĉ†iσ , ĉiσ , and n̂iσ are creation, annihilation, and electron
number operators for spin σ on site i; n̂i =

∑
σ n̂iσ . The three

terms on the right-hand side (rhs) represent electron hopping,
on-site Hubbard interactions, and on-site potential energy
(assumed to be spin-independent). The electron-nuclear attrac-
tion and internuclear repulsion energies have been effectively
absorbed into the first and last terms. We have assumed that
the Hubbard interactions U i and the on-site energies ε i are
site-dependent. For simplicity, we restrict to three singlet
states, namely, ϕ1 = |1↑1↓〉, ϕ2 =

1√
2
(|1↑2↓ 〉 − |1↓2↑ 〉), and

ϕ3 = |2↑2↓〉. In the representation of these basis states, the
model Hamiltonian becomes

He =



2ε1 + U1 −
√

2t 0

−
√

2t ε1 + ε2 −
√

2t

0 −
√

2t 2ε2 + U2



. (17)

Denoting E0 = (ε1 + ε2)I ≡ ε0I with I being the identity matrix
and subtracting E0 from He give the following Hamiltonian:

H̄e = He − E0 =



U1 + ∆ε −
√

2t 0

−
√

2t 0 −
√

2t

0 −
√

2t U2 − ∆ε



, (18)

where ∆ε = ε1 � ε2.
In applications of the two-site Hubbard model targeting a

particular molecular geometry, the parameters t, U i, and ε i can
be taken to be numbers. However, since our aim is to model the
coupling between the electronic state and the bond length, we
have to consider these parameters as R-dependent functions.
In the dissociation limit R→∞, the parameters approach the
following limiting values: t → 0; U i = I i � Ai, where I i is the
ionization potential (IP) and Ai is the electron affinity (EA) of
atom i; and ε i = �I i. By looking up the experimental IP and
EA of Li and F, we can calculate these parameters as listed in
Table I.

TABLE I. IP, EA, and Hubbard model parameters of Li and F atoms when R
→∞. All values are in eV.

IP EA U i(R→∞) ε i(R→∞)

Li 5.39 0.62 4.77 �5.39
F 17.42 3.40 14.02 �17.42

We choose the energy reference by setting the energy of
the total system to be zero in the dissociation limit R → ∞;
one can verify that this energy is given by ε∞0 = ε0(R = ∞).
Therefore, we introduce the Hamiltonian

H̃e = He − ε
∞
0 I = H̄e + (ε0 − ε

∞
0 )I. (19)

To choose the R-dependence of t, ∆ε , and ε̃0 ≡ ε0 − ε
∞
0 ,

we start by analyzing their large-R asymptotic behavior (here
we ignore the R-dependence of U i for simplicity). First of
all, t is a hopping integral between atomic orbitals φi on dif-
ferent sites. For large R, the two orbitals can be considered
as proportional to two exponentially decaying functions cen-
tered at the two nuclei and separated by R. Thus t is expected
to decay exponentially as a function of R. Hence we model this
term by

t = t0e−βR, (20)

where t0 and β are constant parameters to be fixed below.
When R→∞, ∆ε is given by the difference between the

IP of the two sites, i.e., ∆ε = ∆I = I2 � I1. For finite R, the
presence of the other atom leads to a correction to the IP of each
site, and hence a correction to ∆ε . By performing a multipole
expansion, one can derive that the leading order terms in 1/R
are given by (see the supplementary material)

∆ε = ∆I +
γ

R3
, (21)

where γ is a parameter related to the quadrupole moment inte-
gral. Equation (21) has an unphysical singularity at R = 0.
To remove this artifact, we introduce a parameter R0 in the
denominator,

∆ε = ∆I +
γ

R3 + R3
0

, (22)

so that ∆ε is finite at R = 0.
Finally, ε̃0 determines the overall shape of the PES. Since

dissociation energy curves of diatomic molecules can be mod-
eled by the Morse potential, here we also write ε̃0 as a Morse
potential,

ε̃0 = De

[
e−2α(R−Re) − 2e−α(R−Re)

]
, (23)

where Re is the equilibrium bond length, De is the well depth,
and α controls the width. It is worth remarking that the choice
of De and α is closely connected with the binding energy
and the well width predicted by the two-site Hubbard model,
although not exactly the same.

To realistically model the molecular dissociation curve,
we take the results of ab initio calculations34 using cou-
pled cluster with singles, doubles, and perturbative triples,
CCSD(T),42–44 as the benchmark and fit our undetermined
parameters so that the binding energy, charge transfer position,
and overall shape are reproduced. We have not considered the
excited state PES in our fitting so that the excited state PES
predicted by our model has an unphysical well near the mini-
mum R; this has, however, no relevance for our present ground
state calculations. It is possible to correct the deficiency and
accurately model multiple PES in our model by better char-
acterizing the model parameters in the small R region. For
example, refining the R-dependence of ∆ε and considering
R-dependent U i will improve the model. Nevertheless, since
we are focusing on the ground state in this paper, we content

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-006809
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FIG. 1. (a) Populations of the many-body configurations in the conditional
electronic wave functions |ΦR〉 and |ΦBO

R 〉; a third higher-energy state

|cLi− ···F+ |2 is negligible for all R and not shown. (b) Comparison between the
exact and BO ground state potential energy surfaces in our model. Also shown
are reference ab initio coupled cluster data for LiF in the BO approximation
and the first excited state BO potential energy surface in our model.

ourselves with a minimal model that is able to mimic the behav-
ior of the ground state PES as well as the excited state PES in
the avoided crossing region.

Our fit to the ground state PES is shown in Fig. 1(b). The
parameters are t0 = 1 eV, β = 0.163 bohr�1, γ = 255 hartree
× bohr3, R0 = 11.5 bohr, Re = 3.1 bohr, De = 0.12 hartree, and
α = 0.8152 bohr�1. As can be seen, the ground state BO-PES
in the two-site Hubbard model, obtained from the smallest
eigenvalue of H̃e as a function of R, is overall an accurate
fit to the ab initio result; the agreement is semi-quantitative.
Moreover, the charge transfer position (where the percentage
of the ionic species Li+· · · F� becomes identical with that of the
neutral species Li0· · · F0) is around R = 12.5 bohr. Although in
the region of R ∈ [8, 10] bohr our fitted ground state BO-PES
is slightly below the coupled cluster reference data, the two-
site Hubbard model with our present parametrization suffices
as a starting point for studying nonadiabatic effects in the LiF
molecule. Further improvement is possible by adding more
sophisticated functions in the fit.

B. Solution of the full Schrödinger equation

Having restricted the electrons to a three-dimensional
Hilbert space, the full Schrödinger equation we want to solve
is

[−
1

2M
d2

dR2
+ H̃e(R)]Ψ(R) = EΨ(R), (24)

where Ψ(R) = [a1(R), a2(R), a3(R)]T in the basis representa-
tion of the ϕk’s. To solve this equation numerically, we expand
Ψ(R) as

Ψ(R) =
∑
nk

CnkBn(R)êk . (25)

Here, we adopt the B-spline functions {Bn(R)} as real space
basis functions (see Ref. 45) and êk as three-component elec-
tronic basis vectors, corresponding to the electronic states
ϕk ; the kth component of êk is 1 and the rest are 0. This

transforms Eq. (24) into an algebraic eigenvalue equation,
by which we can solve for the ground state energy and
wave function. With the ground state electronic wave func-
tion available, we can evaluate the exact PES and perform
a population analysis of the electronic states. First, we write
Ψ(R) in its exact factorized form Ψ(R) = χ(R)Φ(R), where
χ(R) =

√
a1(R)2 + a2(R)2 + a3(R)2 is the nuclear wave func-

tion for the vibrational degree of freedom and Φ(R) =
[c1(R), c2(R), c3(R)]T is the conditional electronic wave func-
tion with ci(R) = ai(R)/χ(R).

In Fig. 1, the exact PES and the exact populations of
neutral and ionic configurations, |c2(R)|2 and |c3(R)|2, are com-
pared with the corresponding BO results. The exact ground
state surface almost coincides with the BO one, with the
energy difference on the magnitude of 10�4 hartree as shown
in the inset of Fig. 1(b). As a consequence, the nuclear den-
sities obtained from the exact calculation and the BO approx-
imation are almost identical; the differences are essentially
confined to the vicinity of the avoided crossing where the den-
sities themselves are already vanishingly small (not shown in
the figure). However, there is a qualitative difference in the
electronic populations in the range of 10–15 bohr. In partic-
ular, in the exact solution, the charge transfer bond length is
Rc ≈ 13.0 bohr, about 0.5 bohr longer than the BO prediction.
This is a nonadiabatic effect: as the bond is stretched, the cou-
pling between nuclear and electronic wave functions—beyond
what is already present in the BO approximation—causes the
electron transfer to occur at a longer internuclear distance. The
electronic populations are in good qualitative agreement with
populations inferred from ab initio calculations of electrical
dipole moments in LiF46,47 and LiCl.48,49

C. Born-Oppenheimer-based density functional

In this section, we numerically derive the density func-
tional for the asymmetric two-site Hubbard model in the BO
approximation. Varying the on-site potentials ε i in a Hubbard
model and solving the Schrödinger equation allows one to
define a mapping {ε i} → {ni}, which is analogous to the
v(r) → n(r) mapping in standard DFT. Here, {ni} are the
site occupation numbers, and one can construct site occupa-
tion functionals, e.g., Exc[{ni}].50 The simplest example is the
two-site Hubbard model, the many applications of which are
reviewed in Ref. 51.

To construct the ground state energy functional for our
two-site Hubbard model in the BO approximation, we first
observe that for any R, the BO electronic wave function
ΦBO can be parameterized by two variables θ1 and θ2 as
ΦBO = (cosθ1 sin θ2, sin θ1, cosθ1cosθ2)T . For the remain-
der of this section, the parametric R-dependence of the vari-
ables, which should not be confused with the r-dependence
of the density n(r) in DFT, is suppressed for brevity. It fol-
lows that the electronic energy can be written in terms of θ1

and θ2 as

Ee[θ1, θ2] = 〈Φ|H̃e |Φ〉

= −
√

2t sin 2θ1(sin θ2 + cosθ2)

+ cos2θ1(Ũ1 sin2 θ2 + Ũ2cos2θ2) + ε̃0. (26)
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Here Ũ1 = U1 + ∆ε and Ũ2 = U2 � ∆ε .
Now we introduce the “electron density” n as the popula-

tion difference between site 2 and site 1, i.e.,

n = cos2θ1cos2θ2 − cos2θ1 sin2 θ2 = cos2θ1cos2θ2, (27)

which ranges from �1 to 1. We will neglect the subtle distinc-
tions between site occupation functional theory and DFT and
adopt n in Eq. (27) as our density variable.

Following the constrained search formulation,52 we define
the density functional as

EBO
e [n] = lim

θ1,θ2→n
Ee[θ1, θ2]. (28)

The first term (hopping term) on the rhs of Eq. (26) is small
compared to the others. If we neglect this term, we eliminate
the θ2 dependence of Ee and minimizing the resulting function
of θ1 over the domain cos2θ1 > |n| leads to cos2 θ1 = |n| and
|cos 2θ2| = 1, i.e., the minimum is achieved at the boundary of
the (θ1, θ2) domain. Assuming that the minimizer is pinned
to the boundary in Eq. (26), one can deduce the approximate
functional

EBO,approx
e [n] = −2

√
2t

√
|n|(1 − |n|) +

1
2
|n|(Ũ1 + Ũ2)

+
1
2

n(Ũ2 − Ũ1) + ε̃0. (29)

To quantify the deviation of θ1 from its boundary, we introduce
a new variable

u =

√
1 −

|n|

cos2θ1
, (30)

which ranges from 0 to
√

1 − |n|. The pair of variables (n, u)
essentially contains the information of (θ1, θ2) through a
variable transformation. By this change of variables, we can
rewrite the exact BO functional in terms of a one-dimensional
minimization over u as (see the supplementary material)

EBO
e [n] = min

06u6
√

1−|n |

{
− 2
√

2t

√(
1 −

|n|

1 − u2

)
|n|

1 − u2

×

√
1 + u

√
2 − u2 +

|n|

2(1 − u2)
(Ũ1 + Ũ2)

}

+
1
2

n(Ũ2 − Ũ1) + ε̃0, (n , 0) (31)

and

EBO
e [0] = −

√
4t2 +

1
16

(Ũ1 + Ũ2)2 +
1
4

(Ũ1 + Ũ2) + ε̃0. (32)

EBO,approx
e [n] is an excellent approximation to EBO

e [n]; the
major deviation is near n = 0, where the maximum error for
most R is on the order of 10�3 hartree.

Figure 2 shows EBO
e on the domain [0, 1] for a series of

R. Near the equilibrium bond length (R ≈ 3 bohr), the mini-
mum occurs around n = 0.9. As R increases, the energy curve
rises up and deforms into a shallower shape. Moreover, the
minimum at first slides towards n = 1 but then changes the
direction and slides back for R & 7 bohr. This is an interesting

FIG. 2. Ground state density functional within BO approximation for differ-
ent R. Here we focus on the range of n ∈ [0, 1] and the global minimum of
each curve (whose coordinates represent the ground state density and energy
for each R) has been marked in the plot.

phenomenon and agrees with the true LiF system as bench-
marked in the coupled cluster calculation; see, for instance,
Ref. 34. In fact, we can give a physical interpretation of
this phenomenon using our model; details are provided in
the supplementary material. When R reaches a critical value
(R≈12 bohr), the minimum shifts abruptly to a value very close
to n = 0. This is consistent with our observation of a charge
transfer around that distance. Plots for the whole domain [�1,
1] and a comparison between EBO

e and EBO,approx
e can be found

in the supplementary material.
The charge transfer occurs due to the competition between

the on-site potential difference ∆ε and the Hubbard interac-
tions; when the molecule is stretched beyond R & 12 bohr,
interactions win and the system snaps into the neutral con-
figuration with a single electron occupying each site. In the
symmetric Hubbard model, the ratio of U/t determines the
strength of correlations in the system. This measure, however,
cannot be directly applied to our asymmetric model. Because
t is small, the 3 × 3 reduced Hamiltonian in Eq. (18) can be
approximately treated as a block diagonal matrix, with the
two blocks being U1 + ∆ε and [0,−

√
2t;−
√

2t, U2 − ∆ε]. The
second block effectively reduces to a Hubbard Hamiltonian
involving states |ϕ2〉 and |ϕ3〉. Therefore the effective ratio
q(R) = U2−∆ε (R)

√
2t(R)

, which can take negative values for R < Rc,

predicts the amount of correlation in our system: the system
is weakly correlated for R < Rc but becomes increasingly
strongly correlated when R > Rc. This is discussed in fur-
ther detail in the supplementary material, where we analyze
the natural occupation numbers as functions of R.

D. Exact factorization-based density functional

The functional EBO
e [n] defined in Sec. III C does not

contain nonadiabatic effects. Since the exact factorization
scheme30,31 lends itself to the definition of a conditional elec-
tronic density n(r, R) that includes all nonadiabatic effects,
it provides a rigorous foundation for a beyond-BO density
functional theory32 in which the variational energy mini-
mization yields the exact density n(r, R) instead of the BO

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-006809
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-006809
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-006809
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-006809
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density nBO(r, R)—the latter conventionally denoted n(r). The
beyond-BO electronic energy is generally also a functional
of the paramagnetic current jp(r, R) and quantum geometric
tensor Tµν(R).

In this section, we explore how to express the electronic
energy functional for our model in terms of the conditional
electronic density n(R) and the quantum geometric scalar g(R)
[the tensor Tµν reduces to a scalar g(R) since the nuclear
configuration space is one-dimensional]. Then, motivated by
the observation that g(R) is approximately redundant with
n(R), we express the electronic energy as a functional of n(R)
alone.

In our model, Φ(R) is parameterized by θ1 and θ2, which
through a coordinate transformation can be written as a func-
tion of n(R) and the auxiliary variable u(R). Therefore, the total
energy is a functional of n(R), u(R), and χ(R),

E[n(R), u(R), χ(R)] = −
1

2M

∫
χ∗(R)∇2 χ(R)dR

+ Ee[n(R), u(R), χ(R)], (33)

where

Ee[n(R), u(R), χ(R)] =
∫
| χ(R)|2

[
Ee[n, u] +

g(R)
2M

]
dR. (34)

Here Ee[n, u] is the quantity in braces on the rhs of Eq. (31),
which is Ee[θ1, θ2] in Eq. (26) expressed in terms of n(R) and
u(R), and

g(R) =

〈
dΦ
dR

����
dΦ
dR

〉
=

3∑
i=1

(dci

dR

)2
. (35)

The function g(R) can be recast into an expression of n(R),
u(R), and their derivatives as follows:

g(R) = Cnn

(
dn
dR

)2

+ Cuu

(
du
dR

)2

+ Cnu
dn
dR

du
dR

, (36)

where

Cnn =
1

4n(1 − u2 − n)
, (37)

Cuu =
n(1 + nu2 − n)

(1 − u2)2(1 − u2 − n)(2 − u2)
, (38)

and

Cnu =
u

(1 − u2)(1 − u2 − n)
. (39)

If we assume n(R) and g(R) are known functions and solve
the differential equation in Eq. (36) for the unknown function
u(R) with the appropriate boundary conditions, we define a
functional u[n(R), g(R)], which, when substituted back into
Eq. (34), formally defines an electronic functional Ee[n(R),
g(R)]. However, to obtain an explicit form, we would have to
be able to solve Eq. (36) for arbitrary n(R) and g(R), which
is mathematically challenging, and we here follow a different
strategy that additionally allows us to eliminate the functional
dependence on g(R).

First, we observe that the Cnn term in Eq. (36) is dominant
for all R (see the plots of the individual terms in the supplemen-
tary material). Moreover, since u(R) is small in most regions

of interest, we can drop the u-dependence in Cnn so that in
this approximation g(R) depends only on n(R) and dn(R)/dR,
i.e.,

g(R) ≈
1

4n(1 − n)

(
dn
dR

)2

. (40)

Substituting Eq. (40) into Eq. (34) and replacing Ee[n, u] by
EBO,approx

e [n] (i.e., setting u to be zero), we arrive at a functional
that depends only on n(R) and χ(R),

Ee[n(R), χ(R)] =
∫

dR| χ(R)|2
[
EBO,approx

e [n] +
f (n)
2M

( dn
dR

)2
]

,

(41)

with f (n) = 1
4n(1−n) .

We refer to Eq. (41) together with Eq. (40) as the local con-
ditional density approximation (LCDA) since (i) it reduces the
full electronic part of the functional that depends on the com-
plete information of Φ(R) to a much simpler one that depends
on the conditional electronic density and its R-space gradient
and (ii) the prefactor f (n) is a local function of n(R).

The variation of Eq. (41) with respect to n(R) and
χ(R) (subject to a normalization constraint) leads to coupled
Euler-Lagrange (EL) equations, which after simplification
read

−
1

2M
∇2 χ +


EBO,approx

e [n] +
f (n)
2M

(
dn
dR

)2
χ = E χ, (42)

dEBO,approx
e

dn
+ vgeo

[
n,

dn
dR

,
d
(

ln | χ |2
)

dR

]
= 0, (43)

where

vgeo(R) = −
1
M



1
2

f ′(n)

(
dn
dR

)2

+ f (n)

(
d2n

dR2

)

+
d
(

ln | χ(R)|2
)

dR
f (n)

(
dn
dR

)
. (44)

Equation (42) is the Schrödinger equation for the nuclear
wave function, while Eq. (43) is a differential equation for
the electronic density. The geometric scalar term is a minor
perturbative correction to the BO potential energy surface in
Eq. (42) because it has a 1/M prefactor. Moreover, in our model
it attains its largest value near the avoided crossing where the
nuclear wave function is exponentially small. Therefore, the
solution χ of the coupled equations (42) and (43) is similar to
both the one from the BO approximation χBO and the exact
one. In Eq. (43), however, the nonadiabatic correction due to
the electron-nuclear coupling is expected to play a nontriv-
ial role. This is mainly through the last term in vgeo, which
involves the R-space derivatives of ln |χ|2 and n, and couples
the information in the nuclear and electronic densities at dif-
ferent R points, hence capturing the major nonadiabatic effect.
This term isO(M−1/2) since the logarithmic derivative of χ(R)
is O(M1/2) (see, e.g., Ref. 53). In the supplementary material,
we show that a simplified vgeo, keeping only its last term, yields
almost the same result as faithfully adopting its full expression
in Eq. (44), and both versions essentially reproduce the exact
density.

To obtain the electronic density, one can also transform
Eq. (43) into KS equations. It is worth noticing that the LCDA

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-006809
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-006809
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-006809
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FIG. 3. Comparison of the exact and the BO ground state densities. Also
shown is the density obtained by solving the approximate Euler-Lagrange
(EL) equation in Eq. (43).

consists in simply adding vgeo to the Kohn-Sham potential from
standard DFT.

For simplicitly, we solve Eq. (43) using the exact χ(R)
taken from the calculations in Sec. II rather than solving it
self-consistently with Eq. (42); the result is shown in Fig. 3
as the dashed blue curve. As can be seen, the solution of
the EL equation almost coincides with the exact density, sug-
gesting that our LCDA is a highly accurate approximation.
Moreover, we note that both curves are close to the BO
curve in regions I and III, i.e., to the left and right of the
charge transfer region. This implies that nonadiabatic effects
are small in the R-space regions where the density gradi-
ent is small. In such regions one can confidently use the
BO as a good approximation. Only in region II, where the
density is a rapidly changing function of the nuclear con-
figuration, do nonadiabatic effects become nontrivial. How-
ever, such regions are probably localized in R-space and most
likely correspond to charge transfer processes. This reflects
that charge transfer is a critical process where nonadiabatic
effects are pronounced and the BO approximation might fail
qualitatively.

In solving the EL equation or KS equations, one can
make use of the localization of nonadiabatic effects and only
solve the equation in region II to bridge the BO solutions in
region I and III. This should greatly reduce the computational
effort.

IV. EXACT FACTORIZATION-BASED AB INITIO
DENSITY FUNCTIONALS FOR GENERAL SYSTEMS

With the inspiration gained from our two-site Hubbard
model, now we extend this strategy to real systems and formu-
late Ee as a functional of χ(R) and the continuous conditional
electronic density nR(r). The discussion is restricted to sys-
tems for which the paramagnetic current density jp(r, R) and
the vector potential Aµ(R) are zero. We define Ee through the
following constrained search over ΦR:

Ee[χ, nR] = min
ΦR→nR

∫ [
EBO[ΦR] + Egeo[ΦR]

]
| χ(R)|2dR,

(45)

where EBO[ΦR] = 〈ΦR |ĤBO |ΦR〉 and Egeo[ΦR] is given by
Eq. (12). For practical calculations, we decompose Ee into
two parts,

Ee[χ, nR] =
∫

EBO[nR]| χ(R)|2dR + Egeo[χ, nR], (46)

where EBO[nR] is the exact density functional in the BO
approximation and Egeo is the geometric correction, defined by
subtracting the first term on the rhs of Eq. (46) from Ee[χ, nR].
Now our local conditional density approximation amounts to
approximating Egeo as

Egeo[χ, nR] =
∫

Y [nR,∇µnR]| χ(R)|2dR, (47)

where Y is an explicit functional of nR and its gradients ∇µnR,
in particular,

Y [nR,∇µnR] =
∫

1
2

y
(
nR(r)

)
Iµν∇µnR(r)∇νnR(r)dr, (48)

where y is a local function of nR(r).
In the one electron case, ΦR =

√nR, and one can show
that y is given by

y(nR) =
1

4nR
. (49)

In the generic many-electron case and under the assumption
jp(r, R) = Aµ(R) = 0, our LCDA reduces to finding an
approximation to the single function y(nR).

Alternatively, replacing ΦR by the KS determinant ΦKS
R

in Eq. (12) yields an implicit density functional

YKS[nR,∇µnR] =
1
2

Iµν〈∇µΦ
KS
R |∇νΦ

KS
R 〉. (50)

For practical calculations, one can further apply the Kohn-
Sham scheme to the electronic part of the problem, i.e., for
each R, one assumes that nR(r) comes from a Slater determi-

nant det(ψ1
R(r),ψ2

R(r), . . . ,ψN
R (r)) and decomposes EBO into

the noninteracting electronic kinetic energy T e,s, the static
Coulomb interaction energies V en and V ee, and the exchange-
correlation energy Exc, EBO = T e,s + V en + V ee + Exc. Sim-
ilar to Eqs. (42) and (43), one can deduce the EL equation
for the nuclear wave function and the KS equations for the
ψi

R(r) as

−
1
2

Iµν∇µ∇ν χ +
(
EBO[nR] + Y [nR,∇µnR]

)
χ = E χ, (51)

[
−

1
2
∇2

r + vBO
s (r, R) + vgeo(r, R)

]
ψk

R = λ
k
Rψ

k
R. (52)

Here vBO
s (r, R) is the conventional KS potential in the

BO approximation, but with explicit R dependence, i.e.,

vBO
s (r, R)= δ(Ven + Vee + Exc)/δnR and vgeo(r, R) is the geo-

metric correction to the potential, given by

vgeo(r, R) =
δY
δnR
−

1

| χ(R)|2
∇µ

(
| χ(R)|2

δY
δ∇µnR

)
, (53)
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which after simplification reads

vgeo(r, R) = −
1
2

Iµνy[nR]
{
∇µ + ∇µ

(
ln | χ |2

)}
∇νnR(r). (54)

On the rhs of Eq. (52), λk
R is the Lagrange multiplier for the

normalization constraint on each ψk
R.

The equations in (52) are Kohn-Sham equations that take
nonadiabatic effects into account. Instead of having a set of
independent Kohn-Sham equations for each R, we now have
a coupled set of equations. One can solve them iteratively
together with the nuclear Schrödinger equation (51) until self-
consistency is reached. In Sec. III D, we have solved a similar
equation, Eq. (43), which couples different R points. Alter-
natively, we can solve the Kohn-Sham equations with the
nonadiabatic correction to the KS potential, Eq. (44), which is
completely equivalent to solving Eq. (43) directly (see the sup-
plementary material). Therefore, we have carried out the first
Kohn-Sham equation with seamless nonadiabatic coupling
corrections.

V. CONCLUDING REMARKS

In this work, we have used the asymmetric two-site Hub-
bard model with R-dependence to model a sudden, charge
transfer-induced change in the electronic distribution of the
ground state conditional electronic wave function of LiF. By
studying nonadiabatic effects, we find that the BO approxima-
tion underestimates the critical charge transfer bond length by
about 0.5 bohr. This number is a crude estimate of the size of
the nonadiabatic effect in LiF. Furthermore, we show that this
effect can be perfectly captured in an exact factorization based
density functional theory calculation with our newly proposed
local conditional density approximation, which leads to cou-
pled equations for the nuclear wave function and conditional
electronic density. This theory is formally exact and in practice
reduces the problem to finding a functional approximation for
the geometric contribution to the energy expressed in terms
of the conditional electronic density n(r, R) and nuclear wave
function χ(R).

Compared with our previously proposed density func-
tional formulation in Ref. 32, we have eliminated the explicit
functional dependence on Tµν(R) [which reduces to a scalar
function g(R) in the two-site Hubbard model] in favor of the
density and thus greatly simplified the minimization problem.
For the general case involving continuous electronic densi-
ties, this enables one to seamlessly incorporate beyond-BO
effects with only minor modifications to the well-established
Kohn-Sham equations without changing its overall frame-
work. Thus, the present formulation is an important step
towards exact factorization-based ab initio calculations for real
applications.

Besides the nonadiabatic correction in the static case, it
is reasonable to expect that the additional geometric correc-
tion term to the Kohn-Sham potential should play a nontriv-
ial role in dynamical charge transfer processes. Furthermore,
since the correction has a prefactor of 1/M, the nonadiabatic
effect should be more pronounced for lighter nuclei, such as in
molecules with hydrogen atoms or in proton coupled charge

transfer. This will involve the time dependent extension of the
present theory, which is left for future work.

SUPPLEMENTARY MATERIAL

See supplementary material for some detailed derivations
and results.
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