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ABSTRACT: Spin-dependent exchange-correlation energy func-
tionals in use today depend on the charge density and the
magnetization density: Exc[ρ, m]. However, it is also correct to
define the functional in terms of the curl of m for physical external
fields: Exc[ρ,∇ × m]. The exchange-correlation magnetic field, Bxc,
then becomes source-free. We study this variation of the theory by
uniquely removing the source term from local and generalized
gradient approximations to the functional. By doing so, the total
Kohn−Sham moments are improved for a wide range of materials
for both functionals. Significantly, the moments for the pnictides
are now in good agreement with experiment. This source-free
method is simple to implement in all existing density functional
theory codes.

1. INTRODUCTION

Density functional theory (DFT)1,2 has proven enormously
successful for calculating the electronic structure of both
molecules and solids. Lattice structures, phonon spectra, and
many other properties are now routinely calculated. Magnetism
presents more of a mixed picture. Simple magnets, such as
elemental solids (Fe, Co, and Ni), are well-described by the
local spin density approximation (LSDA)3 or the generalized
gradient approximations (GGA), at least as far as total
moments are concerned. However, both LSDA and GGA
perform poorly for the iron pnictide and related materials4−7

for which they greatly overestimate the moments by factors of
two or more (see Figure 1). This has been an impediment to
investigating the microscopic magnetic structure,8−12 related
response functions,13 and superconductivity14,15 of these
materials with density functional methods.
Most approximate spin-dependent exchange-correlation

energy functionals, Exc[ρ, m], use the density and magnet-
ization as their arguments.16−19 This form is dictated by the
many-body Hamiltonian used originally in the context of spin
DFT (SDFT) by von Barth and Hedin16
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where Vext and Bext are the external scalar potential and
magnetic fields, respectively; and the sum runs to the number
of particles. The external magnetic field was assumed to be an
unconstrained vector field in the original formulation of SDFT.
Physical magnetic fields are not unconstrained but rather the
curl of a vector potential, i.e. Bext = ∇ × Aext. With this
constraint it is possible to demonstrate (see refs 20 and 21 and
Section 2.2) that the exchange-correlation functional can be

chosen to depend on the spin current ∇ × m(r) instead of
m(r): Ẽxc[ρ, ∇ × m].
An immediate consequence of this is that the functional

derivative of Ẽxc[ρ, ∇ × m] with respect to m(r) is of the form
B̃xc(r) ≡ δẼxc/δm(r) = ∇ × Axc(r) which implies ∇·B̃xc(r) = 0.
In other words, the exchange-correlation magnetic field is
source-f ree.
Functionals in common use, such as LSDA and GGA, are

not, in general, source-free. One may therefore reasonably ask
how can LSDA or GGA be modified so that they do have this
property, i.e. how can any approximate Bxc be made source-free
and how does this affect the magnetic properties of materials. In
the present work we show a simple method of removing the
source-term from any exchange-correlation density functional.
We then apply this procedure to Perdew−Wang LSDA3 and
PBE-GGA:22 first we enhance the strength of the exchange
splitting and then modify the functional in a unique way to
become source-free. These new source-free functionals are then
used to study several classes of magnetic materials (elemental
solids, pnictides, heuslers, etc.), and the results show that (a)
the good moments of LSDA for elemental solids are retained,
(b) the large overestimation of pnictide moments is cured
demonstrating that this ”unphysical” source term in LSDA and
PBE-GGA may be responsible for a large deviation of calculated
magnetic moments from experiments, and (c) the PBE-GGA
now yields better results than LSDA for both classes of
materials. Our implementation is publicly available in the Elk
Code23 and so can be applied to many more such materials.
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2. SOURCE-FREE FUNCTIONAL
In this section we first show that the exchange-correlation
functional can be chosen to be source-free. Then we
demonstrate how we construct a new source-free functional
from existing density functionals.
2.1. Exchange-Correlation Functional Can Be Chosen

Source-Free. Let

= ⟨Ψ| ̂ |Ψ⟩
|Ψ⟩

E V B H[ , ] minext ext (2)

where Ĥ is given in eq 1, and the minimization over all N-
electron states |Ψ⟩ is the total energy as a functional of the
external potential and magnetic field. This can be written as a
constrained minimization
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ρ ≡ ⟨Ψ| ̂ + ̂ |Ψ⟩
ρ|Ψ⟩→
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m( , )
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is a universal functional of density and magnetization; T̂ and V̂ee
are the kinetic and electron−electron interaction parts of the

Hamiltonian, respectively. Likewise, the noninteracting kinetic
energy functional is defined as

ρ ≡ ⟨Ψ| ̂|Ψ⟩
ρ|Ψ⟩→

T Tm[ , ] mins
m( , ) (6)

from which is obtained the exchange-correlation energy
functional Exc[ρ, m] ≡ F[ρ, m] − Ts[ρ, m] − EH[ρ], where
EH is the usual Hartree energy.
However, if we assume that the external magnetic field is

physical, i.e. Bext(r) = ∇ × Aext(r), and the magnetization tends
to zero at a large distance, then the classical energy of the
external magnetic field can be written as

∫ ∫∇ × · = · ∇ ×d r d rA r m r A r m r( ( )) ( ) ( ) ( ( ))3
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Thus, we can define another universal functional F̃[ρ, ∇ × m]
as

ρ̃ ∇ × ≡ ⟨Ψ| ̂ + ̂ |Ψ⟩
ρ|Ψ⟩→ ∇×

F T Vm[ , ] min
m( , )

ee (8)

with analogous functionals T̃[ρ, ∇ × m] and Ẽxc[ρ, ∇ × m].
On the space of densities obtained from physical external
magnetic fields we have that Exc[ρ, m] = Ẽxc[ρ, ∇ × m]. This
implies that the total energy obtained from both functionals is
also the same for physical densities.
The equality of the functionals does not hold in general for

densities obtained from external magnetic fields which have a
source term. A consequence of this is that the unconstrained
functional derivative of Exc with respect to m(r) is different for
the two functionals, i.e. Bxc(r) ≠ B̃xc(r) in general. The
functional derivative of Ẽxc can be further evaluated as
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proving that B̃xc is indeed source-free. We note that this
derivation also holds for the case where Aext and m are lattice-
periodic. In this case, the surface term, which had to be zero in
order to derive eq 7, sums to zero over the faces of the periodic
box.
An essential aspect of this version of SDFT is that the

Kohn−Sham magnetization m(r) obtained from the exact B̃xc is
not itself exact, but rather only its curl is. The difference
between the two is a curl-free function which is therefore the
gradient of some scalar function: ∇f(r). Thus, one loses some
information about the magnetization by using the source-free
theory but not, as it turns out, the total moment. For finite
systems, the total moment obtained from the Kohn−Sham
magnetization using B̃xc is also exact because the integral of
∇f(r) over all space is zero. This is not true for periodic
boundary conditions. In this case, the functional domain has to
be augmented with the total moment vector M, thus Ẽxc ≡

Figure 1. Percentage deviation of the calculated magnetic moment
from experimental data for 11, 1111, and 122 pnictides as well as
elemental solids. (a) Results calculated using LSDA (pink), GGA
(PBE − cyan), and their source-free counterparts LSDASF (red) and
PBE-GGASF (blue). (b) Same as (a) but by adding an on-site
Coulomb repulsion U on the f-states. Root-mean-square-percentage
errors are LSDA: 90.2%, PBE-GGA: 143%, LSDASF: 34%, PBE-
GGASF: 31%, LSDASF + U: 16%, PBE-GGASF + U: 11%.
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Ẽxc[ρ, ∇ × m, M]. This is analogous to the macroscopic
polarization required as an extra variable in the presence of an
external electric field applied to a solid.24 The variable
conjugate to M now has to be included in the calculation;
this variable is clearly a constant magnetic field and corresponds
to an Aext which diverges at large distance. In addition to M the
source-free approach also allows computation of the integrated
moments over any region in space bounded by a zero-m
surface; this implies that atomic moments are also directly
accessible.
2.2. Constructing the Source-Free Functional. In order

to make the existing LDA or GGA functionals source-free, we
appeal to Helmholtz’s theorem which states that any vector
field on a domain in 3, which is twice differentiable, can be
decomposed into a curl-free component and a source-free
component. This decomposition is unique for given boundary
conditions. Thus, let ϕ be the solution to Poisson’s equation
(in atomic units)

ϕ π∇ = − ∇·r B r( ) 4 ( )2
xc (10)

and define

π
ϕ̃ ≡ + ∇B r B r r( ) ( )

1
4

( )xc xc (11)

then ∇·B̃xc(r) = 0, i.e. B̃xc is source-free. It is important to note
that that the scalar part of the potential, Vxc(r), is not directly
affected by this procedure. This modified functional has certain
intrinsic properties: (a) it is still correct for homogeneous
electron gas (HEG) because Bxc

HEG is a constant implying that
∇·Bxc(r) = 0, and therefore this modification has no effect, (b)
since B̃xc is obtained by solving Poisson’s equation, the
functional is intrinsically nonlocal, in other words, the field at
r depends on the magnetization everywhere, (c) B̃xc is
necessarily noncollinear, (d) in the case of unmodified
LSDA/GGA, m(r) × Bxc(r) = 0 by construction (see refs 17,
18, and 25). Removal of the source term from Bxc results in
m(r) × B̃xc(r) ≠ 0 and hence will contribute to spin-dynamics
even in the absence of the external field,25 (e) the procedure is
simple to implement in any DFT code since all such codes have

a Poisson equation solver, and (f) very little computational
effort is needed for the modification.
We perform an additional modification of the functional

which effectively enhances the spin splitting. It comprises of a
simple scaling of the input magnetization Exc[ρ, m] → Exc[ρ,
sm] and then a further scaling of the resultant magnetic field Bxc

→ sBxc in order to keep the functional variational with respect
to m. To find the value of this scaling parameter our strategy
was to choose a test set for which we find the optimal value of s,
which was found to be s = 1.12 and s = 1.14 for LSDA and
PBE-GGA, respectively. The same value of s is then used for
the remaining materials. Our test set is comprised of two
representative materials: BaFe2As2 and Ni. We note that this
factor, though empirical, is not a material-dependent parameter.
If we were to change our test set the value of the s changes;
however, this change is relatively small.
At this point it is important to mention the distinction

between this scaling and the one performed by Ortenzi et al.,26

namely (1) the present method of scaling is fully variational and
(2) the value of the scaling parameter is universal (i.e., material
independent). These two points make the present procedure
fully self-consistent and ab initio in nature.
Taking a further functional derivative of eq 11, we can also

compute the magnetic part of the exchange-correlation kernel,
fx̃c (which is a 3 × 3 tensor)
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where we have used the explicit form of ϕ in terms of Bxc from
the formal solution of the Poisson equations,27 and we have
defined

Table 1. Magnetic Moment (in μB) per Fe Atom for Pnictides and per Magnetic Atom for the Rest of the Materialsa

material expt LSDA LSDASF PBE-GGA PBE-GGASF

LaFeAsO29 0.6330 1.60 0.73 (+0.1) 1.92 0.59 (−0.04)
LaFeAsO31 1.39 0.7 (+0.07) 1.8 0.58 (−0.05)
LaFeAsO32 0.68 (+0.05) 0.56 (−0.07)
CeFeAsO33 0.834 1.64 0.81 (+0.01) 1.95 0.83 (+0.03)
PrFeAsO35 0.536 1.53 0.99 (+0.49) 1.89 0.85 (+0.35)
NdFeAsO37 0.5438 1.24 0.91 (+0.37) 1.82 0.93 (+0.39)
CaFe2As2

39 0.840 1.59 0.95 (+0.15) 1.86 0.90 (+0.1)
SrFe2As2

41 0.9442 1.57 0.98 (+0.04) 1.84 0.78 (−0.16)
BaFe2As2

43 0.8744 1.43 0.87 (0.00) 1.84 0.78 (−0.09)
BaFe2As2

31 1.38 0.73 (−0.14) 1.67 0.59 (−0.28)
FeTe45 2.2546 2.10 1.73 (−0.52) 2.25 1.85 (−0.40)
bcc-Fe 2.2 2.15 2.22 (+0.02) 2.27 2.16 (−0.04)
hcp-Co 1.7 1.63 1.60 (−0.1) 1.67 1.61 (−0.09)
Ni 0.65 0.64 0.63 (−0.02) 0.67 0.65 (0.00)
Fe2CoAl 1.637 1.77 1.72 (+0.08) 1.85 1.61 (−0.03)
Ni3Al 0.077 0.17 0.1225 (+0.04) 0.1825 0.1725 (+0.09)
ZrZn2 0.085 0.21 0.197 (+0.11) 0.283 0.257 (+0.17)

aAbsolute error from experimental data is written in brackets. For pnictides the moment is known to be highly sensitive to the structural details;
hence the references for experimental structural data are cited in the first column; and the references for magnetic moment are cited in the second
column. Results are presented for one representative Heusler (Fe2CoAl) material out of a total of 28 studied by us.
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3. COMPUTATIONAL DETAILS
The full potential linearized augmented plane wave (LAPW)
method implemented within the Elk code23 is used in the
present work. All calculations are performed in the presence of
the spin−orbit coupling. To obtain the Pauli spinor states, the
Hamiltonian containing only the scalar potential is diagonalized
in the LAPW basis: this is the first-variational step. The scalar
states thus obtained are then used as a basis to set up a second-
variational Hamiltonian with spinor degrees of freedom.28 This
is more efficient than simply using spinor LAPW functions, but
care must be taken to ensure that there is a sufficient number of
first-variational eigenstates for convergence of the second-
variational problem. For example, 394 states per k-point were
used for the pnictides to ensure convergence of the second
variational step. We use a k-point set of 20 × 20 × 10 for
pinictides and 20 × 20 × 20 for the rest of the materials. A
smearing width of 0.027 eV was used. The technical details of
the LAPW basis and the calculation of derivatives required for
the source-free procedure are covered exhaustively in ref 28.

4. RESULTS
The percentage deviation in the magnetic moment from
experiment is presented in Figure 1(a). We note that the
magnetic moments calculated using LSDA or PBE-GGA for
simple magnets (Fe, Co, and Ni) and Heuslers (in Table 1 we
show results for a representative Heusler out of a set of 28 we
studied) are already in very good agreement with experiment
with maximum deviation of 8%. This is in contrast to the
moments for pnictides which deviate strongly from experiment
with a maximum error of 278%. The moments calculated using
source-free LSDA and PBE-GGA are also presented in Figure
1(a) and for simple magnets they are of the same quality as that
of the unmodified functionals. The fact that the integrated
moments are the same does not necessarily imply that the
magnetization densities are similar at each point in space.
However, we find that for the simple magnets the two densities
are fairly close at each point in space. In the case of pnictides,
the moments show dramatic improvement. At a first glance it
appears that LSDASF/PBE-GGASF substantially reduces the Fe
moment for all pnictides compared to the corresponding
LSDA/PBE-GGA value. A closer inspection, however, reveals
that this reduction is, as it should be, highly selective in that the
moment in SrFe2As2 is reduced by ∼30% while on LaFeASO by
∼60% compared to the LSDA/PBE-GGA results. The
maximum deviation is now less than 25% for all materials
with the exception of NdFeAsO and PrFeAsO (see Table 1).
These results indicate that one of the major reasons for the bad
performance of LDA/PBE-GGA for pnictides could be the
presence of large source-terms in these functionals.
For NdFeAsO and PrFeAsO the source-free functionals

provide a considerable improvement over unmodified LSDA or
PBE-GGA, but the percentage deviation from experiment is still
relatively large. We find the reason behind this to be the
moment on the strongly correlated rare earth atoms. In these
materials the moment of the rare-earth atom is known to be
strongly coupled to the moment on the Fe atoms,38 and the
rare earth moment is not accurately described by the source-
free functional alone.48 In order to treat these, we use the well-
established method49 of applying an on-site Coulomb repulsion

U. It is important to mention that U was applied only to the f-
states of the rare-earth atom and chosen to reproduce the
experimental moment of that atom only. Nevertheless, this
substantially improves the moment on the Fe sites (see Table
2). Like experiments we find the moment on rare-earths to be
in-plane and oriented perpendicular to the moment on the Fe
atoms.

The effect of the source-free functional is particularly
apparent in these cases since without it the correct moment
on either atom cannot be obtained for any choice of U. These
results are an indication that the failure of DFT+U in the case
of pnictides may be due to the presence of source fields in the
DFT functionals.
A material that also requires special attention is LaFeAsO,

perhaps the most studied pnictide of all. Reported experimental
values of the magnetic moment range from 0.36 μB

50 to 0.8
μB

51 making it difficult to know to what our theoretical results
should be compared. Perhaps the best choice is with the more
recent experimental value which lies in between these two
extremes, 0.63 μB.

30 This experiment was performed at low
temperature (2 K) which is closest to our theoretical ideal of
zero temperature. Another reasonable choice would be 0.8 μB

51

since, like our theoretical work, these experiments are
performed on single crystals. In either case, our results with
source-free functionals still show a maximum deviation of 25%.
In the case of FeTe, the source-free functionals do not show

an improvement. Experimentally FeTe is always slightly doped
(with excess Fe), and describing it with the stoichiometric unit
cell, as done in our work, might be one of the reasons for
underestimation of the magnetic moment.
Although the source-free functional is a potential functional

(see eq 12), the forces can still be calculated by using the
Hellman-Feynman theorem, which requires only the charge
density and the position of the nuclei. We have done so for
LaOFeAs and BaFe2As2, and we find that the position of the As
atom is within the accuracy of 0.7% which is almost the same as
in the case of PBE-GGA (results for the calculated moment are
presented in Table 1). The reason for this lies in the fact that
the procedure of making a functional source-free affects only
the Bxc and not, directly, the Kohn−Sham scalar potential.
Although, via the self-consistent procedure the density and the
scalar potential also get affected but only weakly. Hence this
does not significantly modify any property which depends upon
the charge density alone, and the good quality of unmodified
LSDA/GGA functionals is retained for such properties.
A means of summarizing the overall quality of results is the

root-mean-square percentage error (RMSPE) which one
expects to be reduced on improving the functional, by going,
for example, from LSDA to the more sophisticated GGA. To
the contrary, the value of RMSPE for LSDA is 90.2% and for
PBE-GGA is 143%, i.e. the quality of results deteriorates on

Table 2. Magnetic Moment (in μB) per Atom
a

material expt LSDA PBE-GGA LSDASF PBE-GGASF

PrFeAsO Fe: 0.5 1.40 1.9 0.65 0.63
Pr: 0.87 0.30 0.30 0.81 0.83

NdFeAsO Fe: 0.54 1.42 1.84 0.50 0.61
Nd: 0.9 2.44 1.25 0.80 0.89

aCalculations are performed using LSDA + U, PBE-GGA + U, LSDASF
+ U, and PBE-GGASF + U. The values of U and J used for these
calculations are given in ref 47.
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improving the functional by adding gradients. These errors are
greatly reduced to 34.3% with LSDASF and 30.6% with PBE-
GGASF. Furthermore, once the LSDASF + U and PBE-GGASF +
U results are considered, the RMSPE are 16% for source-free
LSDA and 11% for source-free PBE-GGA, indicating that
removal of the source term results in GGASF performing better
than LSDASF.
Note that the two steps which comprise this method (i.e.,

scaling and making the functional source-free) must be
performed in combination. Each step if applied alone yields
unreasonable results (see Table 3). We found that the purely

source-free LSDA and PBE-GGA functionals lead to highly
underestimated moments (see Table 3). This is due to
suppression of the z-projected moment. The magnetization
density obtained by purely source-free LSDA and PBE-GGA is
also highly noncollinear (i.e., x and y projected moments are as

significant as Mz). The scaling alone of the LSDA/GGA has, as
expected, a rather trivial effect of increasing the moment
universally since the whole m(r) is uniformly scaled. One could
envisage using the scaling parameter so as to reproduce
experimental moment for the materials. This, however, has the
disadvantage that the scaling parameter is then functional and
material-dependent e.g. s = 1.07 for Ni, s = 0.91 for LaOFeAs,
and s = 0.95 for SrFe2As2 (note that purely LSDA results
correspond to s = 1). This combination of the scaling and
removing the source term leads to good agreement with
experiments for a wide set of materials. Most importantly, we
find that the choice of the scaling parameter is material
independent and depends instead on the functional approx-
imation class; i.e. whether the functional is a LSDA or GGA.
Tests performed by fixing the value of s = 1.14 for various
GGAs (PW91, RevPBE, PBESol, and AM05) show that the
results differ from each other by a maximum of ±4%.
At this point it is appropriate to point the limitations of the

source-free functional: (1) As mentioned earlier, the
correlations in the source-free functional are not sufficient for
treating strongly correlated materials like rare earth magnets.
(2) For Ni3Al and ZnZr2, even though the source-free
functionals show an improvement over LDA/PBE-GGA, the
percentage deviation from experiments stays large (see Table
1). This is indicative of the fact that for these two materials the
presence of source-term in LDA/PBE-GGA is not the reason
for their bad performance. These materials have very small
moments; it is believed that spin-fluctuations have significant
contribution to the physics52,53 even away from a quantum
critical point, and this could be one of the main reasons for
deviation of calculated moments from experiments.
It is enlightening to see how Bxc of LSDA and PBE-GGA and

their new source-free versions differ spatially. We plot this for
the case of BaFe2As2 in Figure 2. It is evident from the direction
of Bxc (see arrows in figure) that removal of the source-term
enhances the noncollinearity. More importantly, the field lines
for LSDA are unphysical in the sense that they begin and end at
different points, whereas the source-free field lines are always
closed. This means that they have to follow more complicated
paths in the crystal, a fact evident from Figure 2. Furthermore,
we note that this source term in LSDA/PBE-GGA for

Table 3. Magnetic Moment (in μB) per Fe Atom for
Pnictides and per Magnetic Atom for the Rest of the
Materialsa

material expt LSDAs

LSDA no
source

PBE-
GGAs

PBE-GGA no
source

LaFeAsO 0.63 2.11 0.07 2.42 0.06
CeFeAsO 0.8 2.12 0.02 2.37 0.01
PrFeAsO 0.5 2.30 0.15 2.40 0.12
NdFeAsO 0.54 2.20 0.32 2.43 0.30
CaFe2As2 0.8 2.20 0.07 2.46 0.06
SrFe2As2 0.94 2.24 0.06 2.50 0.04
BaFe2As2 0.87 2.40 0.06 2.51 0.05
FeTe 2.25 2.60 0.88 2.67 0.95
bcc-Fe 2.2 2.62 1.91 2.66 1.90
hcp-Co 1.7 1.82 1.28 1.87 1.35
Ni 0.65 0.71 0.53 0.69 0.57
Ni3Al 0.077 0.26 0.01 0.29 0.06
ZrZn2 0.085 0.27 0.17 0.36 0.20

aLSDAs/GGAs moments are calculated by enhancing the LSDA, PBE-
GGA magnetization density by 1.12 and 1.14, respectively. LSDA/
GGA no source results are obtained by making LSDA/PBE-GGA
source free (i.e. without any scaling).

Figure 2. Vector field Bxc for BaFe2As2 projected in a plane containing Fe atoms. Plot (a) is LSDA, and plot (b) is source-free LSDA. The colored
plane shows the magnitude of Bxc, and the arrows indicate the direction. The black field lines originate from a regular grid in the plane and follow the
vector field. LSDA field lines show a plane of magnetic monopoles, while making LSDA source-free leads to more complicated but physical field
lines. The arrows indicate that the removal of the source term leads to enhancement of noncollinearity.
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elemental magnets is very small but significantly large for
pnictides, and hence removal of it then leads to improved
magnetic moments.

5. SUMMARY
Motivated by an exact property of spin current DFT, we
removed the source term from the Bxc of LSDA and GGA. The
spin splitting was also enhanced by a simple scaling of the input
magnetization and output field. The resulting functionals were
found to produce moments which were in better agreement
with experiment. This improvement was particularly pro-
nounced for the pnictides where errors were reduced from 100
to 200% down to 25% or less. Furthermore, we find that any
property which depends upon the charge density alone does
not significantly change by making the functional source-free,
and the good quality of unmodified LSDA/GGA functionals is
retained for such properties. We hope that our findings will
spur the development of exchange-correlation energy func-
tionals whose resultant magnetic fields are manifestly source-
free.
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