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Anomalous Dirac point transport due to extended
defects in bilayer graphene
Sam Shallcross1, Sangeeta Sharma2 & Heiko B. Weber 3,4

Charge transport at the Dirac point in bilayer graphene exhibits two dramatically different

transport states, insulating and metallic, that occur in apparently otherwise indistinguishable

experimental samples. We demonstrate that the existence of these two transport states has

its origin in an interplay between evanescent modes, that dominate charge transport near

the Dirac point, and disordered configurations of extended defects in the form of partial

dislocations. In a large ensemble of bilayer systems with randomly positioned partial

dislocations, the distribution of conductivities is found to be strongly peaked at both the

insulating and metallic limits. We argue that this distribution form, that occurs only at the

Dirac point, lies at the heart of the observation of both metallic and insulating states in bilayer

graphene.
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Transport at the Dirac point in structurally perfect bilayer
graphene is expected to exhibit a minimal metallic
conductivity, very similar to that found in single layer

graphene1–3. Contradicting this expectation, recent transport
experiments on ultra-clean bilayer graphene report the existence,
near charge neutrality, of an insulating phase. Curiously,
this occurs only in about 50% of an apparently identical set of
ultra-clean high-mobility samples, with the remainder showing
the expected minimal metallic conductivity4–8. Two different
explanations for the existence of the insulating state have been
proposed: that the eight-fold degeneracy of the bilayer electron
fluid at the Dirac point is responsible for an interaction-driven
symmetry breaking to an insulating phase4–7 or, alternatively,
that the insulating state is a manifestation of charge blocking by
partial dislocations8, a structural defect recently observed in many
bilayer graphene samples9–12.

In both these models the occurrence in experiment of metallic
and insulating states with approximately equal probability is
difficult to explain. In the interaction model we have the difficulty
of apparently identical ultra-clean samples resulting only
sometimes in the transition to an insulating phase; similarly, in
the blocking model the metallic state requires for its existence
samples that are entirely free of partial dislocations, a situation
that would appear unlikely.

Here we resolve this conundrum by identifying an unusual
transport physics that arises from the interplay of extended
defects and evanescent Dirac point transport in bilayer graphene.
We find that some positions of partial dislocations entirely block

transport while others appear not to impede charge transport
at all. In particular, in an ensemble of systems with randomly
placed partials, the distribution function of conductivities has
pronounced—and approximately equal—maxima at both the
insulating and the metallic limits. This behaviour, which sharply
deviates from the well-known paradigm that disorder should
generally act to suppress transport, we argue that this underpins
the observation of both insulating and metallic transport states
in experiment.

Results
Model. The microscopic origin of partial dislocations arises from
the fact that Bernal stacking may be achieved in two equivalent
ways, typically referred to as AB and AC stacking, as shown in
Fig. 1a. While evidently equivalent in a bilayer of infinite extent,
their difference becomes significant if both types coexist in the
same sample. Lattice continuity then requires that domains of
different stacking order be connected by partial dislocations,
localised regions in space within which the transition between
stacking types occurs. Three such partial dislocations are
possible in bilayer graphene9–12, described by one of the three
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(where a is the graphene lattice parameter, and

di the nearest neighbour vectors of the honeycomb lattice).
Note that these stacking fault partial dislocations are very
different in character from the dislocations found in single-layer

0
0

0.5

1
Type 3
Type 1
Type 2

0 1 2

5000 10,000

Length (Å)

1
2
3
4
5
6
7
8
9

–6

–5

–4

–3

–2

–1

0

2000 10,000

System length (Å)

–0.02

–0.015

–0.01

–0.005

0

FWHM
Transmission maxima

–0.0015
0

0.2
0.4
0.6
0.8

1

T
ra

ns
m

is
si

on

–0.006
0

0.2

0.4

0.6

0.8

1

T
ra

ns
m

is
si

on

|t |2

|tAB|2

|tAC|2

0

0.2

0.4

0.6

0.8

1

T
ra

ns
m

is
si

on
AB AC

y

x

x0 x1 L

G
 (

G
0 

x 
10

–4
)

lo
g 

G
 (

G
0)

� m
in
/�

A m
B in

Im
 k

x 
(Å

–1
)

4000 6000 8000 –0.004 –0.002 0 –0.006 –0.004 –0.002 0

Im kx (Å
–1) Im kx (Å

–1)

15,000

Occurence P (�)

Partial position (x1/L)

0.2 0.4 0.6 0.8 1

x1/L = 0.5 x1/L = 0.75

x1/L = 1/10
L
x1/L = 1/2
1/L

|t |2

|tAB|2

|tAC|2

–ln(L/l⊥)/L

0
Im kx

�min/�
A
m

B
in = 1.01 �min/�

A
m

B
in = 0.07

a b c

d e f

Fig. 1 Resonant and blocked transport states for a single partial dislocation in bilayer graphene. a Schematic illustration of a bilayer graphene ribbon
consisting of two domains of structurally perfect Bernal stacking connected by a single partial dislocation, with the grey area depicting the finite non-Bernal
transition region and the upper panels displaying the structure of the local AB, non-Bernal, and AC stacking geometries. b Conductivity σ at the Dirac point
as a function of the partial position x1/L, ranging from minimal metallic conductivity at x1/L= 1/2 to insulating behaviour at x1/L= 2/10. Calculations are
shown for three different partial Burgers vectors of the partial dislocation. The right hand plot shows the probability distribution function of conductivities,
indicating the likelihood of occurrence for a given transport state. c Dependence of the conductance G on sample length for the metallic (x1/L= 1/2) and
insulating (x1/L= 2/10) partial positions, showing 1/L and exponential dependence, respectively. d Transport through a single terrace, showing the
transmission function for L= 1 μm (inset), and (main panel) the maximum and full width half maximum (FWHM) of the transmission resonance as a
function of length. e, f Transmission probability of charge carriers through the full system (|t|2), and through the individual AB (|tAB|2) and AC (|tAC|2)
terraces separately connected to leads, for a conducting and insulating partial position. Evidently underpinning the conducting state is overlap of the
individual terrace transmission resonance peaks e, with transport blocking occurring when these are well separated (f)
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graphene13, 14. Indeed, as they require for their existence only
local strain within the constituent layers of the bilayer, they may
occur between graphene sheets that are essentially structurally
perfect. The weak interlayer bonding of bilayer graphene then
implies a rather low energy cost of stacking fault partial
dislocations and they are, for example, found to form a dense
network in epitaxial graphene grown on SiC (0001)9, 10, where
they arise due to strain induced by the lattice mismatch between
graphene and the SiC substrate.

In order to understand the impact of such stacking defects on
charge transport, we will consider a model of partial dislocations
that are parallel with the left and right electrodes contacting the
bilayer sample (Fig. 1a). This is the simplest conceivable
structural model, and has advantages both in tractability (as it
results in an effectively one dimensional model) as well as, most
importantly for our purpose here, lending itself to a transparent
analysis of the role of structural disorder. We note that while the
imposition of a straight partial geometry might appear a rather
restrictive condition, substantially simplifying mode matching at
the partials, the difference between straight and non-straight
partials was found not to be qualitatively significant in ref. 8. We
will return to this point subsequently. Even with this simplifying
assumption, however, modelling the transport experiments
remains a challenge due to the presence of two very different
length scales: the partial dislocation which occurs on a scale of
≈5 nm, and the length of the suspended bilayer graphene sample
which is typically of the order of 1 μm. This is therefore a multi-
scale problem, and evidently precludes the use of an atomistic
approach such as the tight-binding method. To circumvent this
difficulty we will make use of a recently developed effective
Hamiltonian theory capable of treating large-scale structural
deformations in low-dimensional systems15, and shown recently
to provide a very good description of the electronic structure both
for partial dislocations11, 15 as well as twist faults in bilayer
graphene16–18. In this scheme the individual layers of the bilayer
are modelled by the Dirac–Weyl Hamiltonian H0= vFσ.p
(with gauge fields arising from the strain fields of the partial
included), while the spatially dependent stacking order is
represented by an interlayer stacking field that, importantly,
treats all stacking types on an equal footing (i.e., the approach is
non-perturbative). The transport problem is then addressed
within the framework of Landauer theory with the leads modelled
as highly doped bilayer graphene1, 2. Further details may be found
in the Methods section.

Transport through a single partial dislocation. We first apply
this scheme to the single partial configuration of Fig. 1a, finding a
large range of conductivities as a function of partial position

(Fig. 1b). These include both a slightly resonantly enhanced
minimal conductivity when the partial is at the high symmetry
central position, as well as an essentially insulating behaviour
when the partial moves out of this region towards one of the
leads. The conductance G shows the expected L−1 (minimal
metallic) or expð�L=L0Þ (insulating) dependence on the system
length for the cases x1/L= 1/2 and x1/L= 2/10, respectively
(Fig. 1c). The resonant metallic state is, in fact, very similar to that
found for the structurally perfect AB bilayer by Snyman et al.2,
and indeed the Fano factor is one-third, exactly the value found
for structurally perfect bilayer graphene. Strikingly, this simple
model already shows the preferential occurrence of two transport
states, as may be seen from the probability density function P(σ)
(see Fig. 1b,

R σ2
σ1
dσPðσÞ is the probability of finding a conductivity

σ1< σ< σ2 given a random choice of partial position). As may be
seen, this function has pronounced peaks at both the insulating
and minimally metallic transport states. These results, it should
be stressed, are rather independent of the lead structure, the strain
state of the partial, and indeed the partial Burgers vector—as may
be seen in Fig. 1b, a similar σ(x1) dependence is found for all three
possible partial Burgers vectors of bilayer graphene (the direction
of the partial Burgers vectors for each dislocation type is shown
in the inset of Fig. 1b).

The origin of this unusual two-state transport is, as we now
show, driven by the transmission properties of individual bilayer
terraces at the Dirac point. Assuming delocalisation perpendi-
cular to the transport direction, that is to say a real ky, then Dirac
point transport is governed by the purely evanescent momenta
kx=±iky. For a single terrace geometry this results in the well-
known minimal conductivity of bilayer graphene, a phenomena
underpinned by a transmission function allowing, as shown in
Fig. 1d, charge tunnelling through the device for only a very
limited range of imaginary momenta (of the order of 1/L2).
Furthermore, the window for which a terrace is open to charge
transport depends significantly on its length, with the resonance
centre given by

Im kðRÞx ¼ ln L=l?
L

ð1Þ

where l⊥ ≈ 15 Å. To bring this single terrace physics to the
problem of a dislocation threaded sample, we simply insert
an ideal (i.e., non-scattering) lead between the partial dislocation
and the second terrace such that the transport problem is then
recast as a multiple scattering problem involving single
terrace transmission functions19, with the total transmission
given by t= tAC(1 − rABrAC)−1tAB. In this expression |tAB/AC|2

are the transmission functions of the individual terraces, with
(1 − rABrAC)−1 encoding multiple scattering between them. From
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Fig. 2 Transport states |Ψi(x)|2 at the Dirac point. The vertical lines represent the positions of the partial dislocations, which can be seen to determine the
basic structure of the wavefunction, while the line colour refers to the sublattice projection as indicated by the legend in a. Shown are: a the dislocation free
bilayer, b conducting and c insulating states in a single partial configuration. Significant amplitude of |Ψi(x)|2 occurs only on the non-bonding sublattices,
which are B1 and B2 for the AB stacked geometry, and A1 and A2 for the AC stacked geometry
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this we see that transport will be profoundly influenced by
the resonance centres Im kðRÞx of the individual terraces, as a
non-zero system transmission requires that |tAB/AC|2 have
common evanescent momenta for which they are themselves
non-zero. For a symmetric partial position, entailing AB and AC
segments with similar L, |tAB|2 and |tAC|2 do have coinciding
ranges of their open values of Imkx and so a conducting state is
found (Fig. 1e). On the other hand for an unsymmetrical partial
position, i.e., terraces of different length, there is no overlap
between their open values of Imkx, and so transport is blocked
(Fig. 1f).

This physics may also be understood in an intuitive way from
the point of view of the evanescent transport wavefunction. The
dominant component of such an exponential wavefunction has
the form x=l?e�Im kxx2, a result that may be straightforwardly
obtained by expansion of the standard bilayer eigenfunction with
the assumption of vanishing E and finite ky. Precisely this form
can be seen in, for example, the A1 component—the projection
onto sublattice A of layer 1—of the single terrace wavefunction
shown in panel (a) of Fig. 2. This wavefunction must be matched
to a lead component |Ψlead| < 1 at x= L giving us the expression
L=l?e�Im kxL ¼ Ψlead which, for large L, can be recast as
Im kx ¼ lnðL=l?Þ=L. This is the matching condition between
the right lead and the evanescent bilayer wavefunction and, as
might be expected, is exactly equal to the resonance centre of the
single terrace transmission functions, Eq. (1). As a similar
argument holds for the matching at a partial dislocation, we see
that the high symmetry partial position will generate consistent
matching conditions as the two terraces are of similar length.
Indeed, as may be seen the transport states in Fig. 2a, b have a
very similar form. On the other hand for a low symmetry partial
position x1/L= 0.75—panel (c) of the same figure—the terraces
are of different length and the matching condition cannot be
satisfied with the same Imkx in each terrace. As a consequence of
these incompatible matching conditions, the wavefunction in
the second terrace collapses, and a blocking of charge transport
ensues. While two-state transport for a single partial configura-
tion can thus be clearly motivated in terms of the interplay
between evanescent transport and partial dislocations, it generates
the expectation that only high symmetry (i.e., highly ordered)

configurations of partials will conduct. Interestingly, as we now
show, this is not the case.

Transport in the case of multiple partial dislocations. For more
than one partial, the generic case is disordered among the partial
coordinates {xi} which, as each partial is defined by one
coordinate, may be characterised by a single number—the RMS
of the terrace length distribution L2rms ¼

P
i Li � L
� �2

=L
2
.

In Fig. 3a we consider the case of three partial dislocations, and
plot an ensemble of 57,124 randomly generated configurations
against Lrms. Three distinct regions of transport vs. Lrms may be
seen. For small Lrms< 0.1, corresponding to ordered configura-
tions in which the partials are approximately uniformly spaced,
the transport resembles that of the high symmetry single partial
configuration: a few percent resonant enhancement over the
minimal metallic conductivity of pristine bilayer graphene. This is
the multi-partial geometry directly analogous to the central
position in the case of a single partial, and conducts for a similar
reason: each terrace shares similar values of evanescent
momentum for which transport is allowed. Contrasting this, in
the limit of large Lrms> 0.65 the transport is seen to be completely
blocked. This Lrms regime corresponds to case of a partial pairing
geometry in which two of the three partials have come close to
their minimal allowed separation of 125 Å. This is analogous to
the unsymmetrical partial position, as the very different terrace
lengths lead to non-coinciding transmission windows and thus to
transport blocking. Most interesting, however, is the intermediate
no-pairing but disordered regime. In this region the same value
of Lrms is found to yield almost all transport states from quite
strong resonant enhancement (≈20% above the conductivity of
structurally perfect bilayer graphene) to complete suppression of
transport. The probability density function P(σ) (Fig. 3a) again
shows pronounced peaks at both minimal metallic conductivity
and strong suppression of transport, just as in the case of a
single partial dislocation. Two-state transport is thus robust
against disorder among partial coordinates for multi-partial
configurations—a very surprising result if one considers that in
the case of a single partial the two-state transport was driven by a
high symmetry resonant state. This two-state transport, it should
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of the partial configuration. Each dot represents one of 57,124 calculated realisations of the positions of three partial dislocations

in a 1 μm sample. All transport states between resonant and fully insulating may be seen, however minimal metallic conductivity (indicated by the dashed
green line) and fully insulating states are significantly more likely to be found than any other, as shown by the probability density function in the right hand
panel. The grey bars represent experimental data4, which show a qualitatively similar likelihood of occurrence of transport states (each bar represents a
transport measurement in one suspended bilayer graphene sample). b Conductance as a function of sample length: for a restricted ensemble average
over configurations close to minimal metallic conductivity (defined by σmin=σABmin � 1

�� ��< 10�3) a L−1 dependence on length is seen, while for a restricted
ensemble average performed over the insulating configurations σmin=σABmin

�� ��<10�3
� �

the expected exponential decrease in conductivity with L is found
(σABmin represents the minimal metallic conductivity of bilayer graphene). In c the probability density function for conductivity at the Dirac point is shown and
at a finite doping of 10meV—only at the Dirac point is the two-state distribution function observed
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be stressed, is a feature of transport at the Dirac point, and does
not hold at any finite energy (see Fig. 3c for a comparison of P(σ)
at the Dirac point and at a finite energy of 10 meV). Finally, to
make a direct comparison with experiment we take the data from
ref. 4 which, after rescaling, is presented by the grey bars in the
right hand panel of Fig. 3a. Each bar represents a transport
measurement in a single suspended bilayer graphene sample, and
the experimental distribution of conductivities is seen to match
very well the theoretical probability density function.

To probe the reason behind the occurrence of insulating as well
as conducting samples in the intermediate disorder regime, we
perform a scattering analysis for two configurations having nearly
identical Lrms≈ 0.4 but very different transport states. In a similar
way to the analysis for the single partial configuration, we break
each bilayer sample into two sub-systems: the first three terraces
and partial dislocations and the last terrace (Fig. 4). The overall
transmission is then obtained from multiple scattering between
these sub-systems as t= t2(1 − r1r2)−1t119, where |t|2 is the
transmission probability through the whole system, |t1/2|2

the sub-system transmission probabilities and |r1|2 (|r2|2) the
probability of a left (right) moving wave reflecting from
sub-system 1 (2). As may be seen in Fig. 4, although the maxima
of the sub-system transmission functions are widely separated in
both cases, leading on the basis of the single partial analysis to the

expectation of a blocked transport, for the conducting bilayer—
system (a) in Fig. 4—the maxima of |(1 − r1r2)−1| and t1
coincide, resulting in a pronounced enhancement of the system
transmission function t. Given that the term (1 − r1r2)−1= 1 +
r1r2 + (r1r2)2 +… encodes multiple back and forth scattering at
the boundary between the two sub-systems, this enhancement
corresponds physically to a multiple scattering resonance between
bilayer terraces (as opposed to the evanescent resonance intrinsic
to a single terrace). It is the presence of such resonances, absent in
system (b) for which the maxima of |(1 − r1r2)−1| evidently does
not coincide with the maxima of either t1/2, that is responsible for
the existence of both insulating as well as conducting samples in
the intermediate disorder regime.

To further connect with experiment we now investigate the
physical properties of the insulating configurations seen in Fig. 3a.
To this end we first define, from the full ensemble, an insulating
ensemble consisting only of states that satisfy σmin=σABmin

�� ��<10�3.
We first confirm the insulating character of this reduced
ensemble from the exponential form of the ensemble averaged
σ Lð Þh i (Fig. 3b). Similarly, we may define a minimal metallic
ensemble by the restriction σmin=σABmin � 1

�� ��<10�3 which, reassur-
ingly, displays the expected algebraic L−1 length dependence
characteristic of the minimal metallic state (Fig. 3b). We
now consider the impact on the insulating ensemble of
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introducing a layer perpendicular field E⊥ and changing the
particle number.

Application of a layer perpendicular field E⊥ weakly restores
the metallic state, see Fig. 5a, which in our model follows simply
from the fact that an applied bias results in the well-known
Mexican hat dispersion3, thus imbuing the AB/AC segments with
a small but finite momentum and so opening a propagating
channel between them. As in experiment20, 21, further increase in
E⊥ results once again in a suppression of the minimal metallic
state. Increase in the bilayer density by top gating is also known
to restore transport and, as may be seen in Fig. 5b, our model
also captures this effect with, most interestingly, a gap of 0.2 meV
—within which the insulating ensemble remains fully insulating
for all members—of a similar magnitude (0.2 meV) to that
reported in experiment4. This has a qualitatively similar origin as
restoration by field: an increase in energy will allow real momenta
in the transport direction (as one is no longer at the Dirac point)
and so will reopen propagating channels in the transport.

In both Fig. 5a, b it will be noted that the reestablishment of the
metallic state is rather weak, a fact which prompts a discussion of
the straight partial model we have employed. The inherent
translational symmetry of this model results in a separation of
real lead momenta (ky) from, at the Dirac point, imaginary
transport momenta (kx), which in an irregular partial geometry
will mix. At the Dirac point, however, states of real momenta are
apparently blocked by partials8 and so we expect our Dirac point
results to be robust to this more complex mode matching. On the
other hand at finite doping the re-established propagating
channel is expected to generate a higher conductivity in an
irregular partial geometry than in a straight partial geometry,
precisely due to this mixing of momenta. We thus expect the
weaker establishment of the metallic state at finite doping and
finite symmetry breaking field to be the most significant impact of
the straight partial approximation.

Discussion
We have shown that the approximately equal occurrence of both
conducting and insulating transport states in experimental
samples of bilayer graphene may be explained by an anomalous
Dirac point transport involving partial dislocations and transport
by evanescent states. This is underpinned by the fact that random
arrangements of partial dislocations can support charge transport,
leading to minimal metallic conductivity for arrangements of
partials that one might expect to block transport. For an ensemble

of systems this leads to an unusual two-state distribution function
of conductivities in which minimal metallic and insulating states
occur with approximately equal probability at the Dirac point.
The dramatically different transport states found in experiment
are thus simply a manifestation of this hidden structural degree of
freedom, which will naturally change from sample to sample as
well as be changed by annealing the same sample. Finally, we note
that ultra-clean suspended bilayer graphene has, in addition to
interesting zero field transport physics, interesting physics at
finite magnetic fields, in particular possible indications of a
fractional quantum Hall effect22–24. In the light of the role that
structural disorder plays in explaining the physics at zero field, it
will be of interest to examine the impact of structural disorder at
finite fields.

Methods
Overview. For the transport calculation we use the Landauer formalism, appro-
priate as the experimental system is mesoscopic in dimensions, ultra-clean, and at
low temperatures. Transport is thus likely to be well described by the phase
coherent approach. In this context it is worth nothing the recent work of Bao et al.4

in which two distinct types of bilayer graphene are reported: those having a very
high mobility, for which two-state transport is observed, and those with a sub-
stantially lower mobility that were found always to be conducting. As the high
mobility samples presumably exclude the kinds of single layer disorder likely to
significantly disrupt the terrace wavefunction, we infer that bilayer terraces free
from disorder are required for the two-state mechanism to hold.

In what follows we will describe the three distinct aspects of this calculation:
obtaining the system Hamiltonian; determination of the transfer matrices of the
bilayer sample; and finally deriving the overall scattering matrix and conductance
from these transfer matrices.

System Hamiltonian. The multi-scale nature of the transport problem mandates
the use of a continuum approach in which the dislocation threaded bilayer is
treated via some generalisation of the well-known Dirac–Weyl equation of
graphene. Recently, a general and exact scheme has been presented by which the
tight-binding Hamiltonian of any system can be directly mapped to a effective
continuum H(r, p) Hamiltonian15, and we will employ this method here (see also
ref. 11 where this method has been deployed to treat a partial dislocation network
in bilayer graphene). For our tight-binding method we employ two hopping
functions tkðδÞ ¼ Ake�Bkδ2 and t?ðδÞ ¼ A?e�B?δ2 that describe in-plane and
interlayer hopping, respectively, with the argument δ the length of the hopping
vector. The in-plane constants Ak and Bk are obtained by optimising the band
structure from a standard tight-binding calculation to reproduce a Fermi
velocity vF= 106 ms−1 and the known in-plane nearest neighbour hopping strength
of 2.8 eV, while the interlayer constants A⊥ and B⊥ are similarly fixed to reproduce
the energy separation of the bonding and anti-bonding states in AB stacked
bilayer graphene (0.78 eV) while maintaining a nearest neighbour hopping strength
of 0.38 eV.

The key structural descriptor for the continuum approach is a stacking field
u(x) that describes the local relative displacement of the two layers of bilayer
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graphene from some initial reference stacking due to, for example, a series of
partial dislocations. For the case of a single type, three partial dislocation such a
stacking field is shown in Fig. 6a. Without loss of generality we may take the second
of the two layers of the bilayer to be fixed, and apply the shift field u(x) only to the
first layer. In this case the effective Hamiltonian for a graphene bilayer system with
a general u(x) field is given by

H ¼ �hvFσ: pþ AðxÞð Þ þ 12VðxÞ SðxÞ

S†ðxÞ �hvFσ�:p

0
BBB@

1
CCCA ð2Þ

where 12 is the 2 × 2 unit matrix, and vF the Fermi velocity of graphene. The
diagonal blocks of this Hamiltonian are the Dirac–Weyl operators for each layer,
with the first layer operator augmented by fields arising from strain due to the
application the displacement field u(x) to this layer, while the off diagonal blocks
encode the complex spatially dependent interlayer stacking. The strain induced
layer–diagonal fields are given by the standard results25 with the effective scalar
field given by

V xð Þ ¼ CV uxx ð3Þ

and effective pseudo-gauge field by

AðxÞ ¼ CA �uxx; uyx
� �

; ð4Þ

where the constants CV and CA are the coupling strengths (that depend on the in-
plane hopping constants Ak and Bk , see ref. 15) and uij= ∂jui the components of the
strain tensor with ui the ith component of the displacement field u(x). The strain
associated with a type three partial is shown in Fig. 6b. The interlayer effective field
is a considerably more complex object and is given by refs. 11, 15

SðxÞ ¼ 1
AUC

X
i

Mit? Kið Þe�iKi :uðxÞ: ð5Þ

where AUC is area of the bilayer unit cell. Note that this field—and all subsequent
objects related to it—is a 2 × 2 matrices in interlayer sublattice space, i.e., each
element represents an electron hopping amplitude between the sublattices of
different layers. In this expression the sum i is over the translation group of
the high symmetry point K= 2π/a(2/3,0): Ki=K +Gi where Gi are the
reciprocal space lattice vectors of bilayer graphene. The matrices Mi are given by

Mi½ �αβ ¼ eiGi : να�νβð Þ where να (νβ) the basis vectors of layer one (two) of the
bilayer. Finally, the function t⊥(q) is the Fourier transform of the interlayer
hopping function t⊥(δ) where δ is the separation vector of the two sites (in different
layers) that the electron hops between: δ= |Rj − Ri|. As this function, and hence its
Fourier transform t⊥(q), are exponentially decaying a first star approximation in
which the sum is restricted to include only K, and the two equivalent high
symmetry K points of the bilayer Brillouin zone already constitutes a good
approximation for S(x). Assuming the AB structure as a reference state, and taking
a standard choice of basis vectors ν1= 0 and ν2= a(1, 1/

ffiffiffi
3

p
), the three Mi matrices

in this case are found to be

M1 ¼
1 1

1 1

0
BBB@

1
CCCA; M2 ¼

1 e�i2π=3

e�i2π=3 ei2π=3

0
BBB@

1
CCCA; M3 ¼

1 ei2π=3

ei2π=3 e�i2π=3

0
BBB@

1
CCCA

ð6Þ

The crucial aspect of this field S(x) is that it treats AB, AC, and any intermediate
stacking on exactly the same footing. To see this note that insertion of u= 0
into Eq. (5) yields, as it must, the interlayer coupling of the reference state AB
bilayer

SðxÞ ! SAB ¼ tK
AUC

1 0

0 0

0
BBB@

1
CCCA; ð7Þ

while, on the other hand inserting any of the three nearest neighbour vectors
of graphene, for instance u= a(0, −1/

ffiffiffi
3

p
), gives exactly the interlayer coupling of

the AC bilayer:

SðxÞ ! SAC ¼ tK
AUC

0 0

0 1

0
BBB@

1
CCCA ð8Þ

The partial dislocation, which interpolates between these two limits, we model
using the displacement field u(x) shown in panel of Fig. 6 for the case of a partial
Burgers vector a(0, −1/

ffiffiffi
3

p
). This form of u(x) is chosen to reproduce as closely as

possible the calculated partial structure described in ref. 10. As may be seen—see
panel (b) of Fig. 6—the partial dislocation is strained, with the maximum strain
found at the partial core. The resulting interlayer coupling field S(x) can be
conveniently expressed by projection onto a complete set of four stacking matrices
which, with a c-number coefficient, are sufficient to describe all possible interlayer
coupling fields: S(x) = cAB(x)τAB + cAC(x)τAC + cAA(x)τAA + cz(x)τz. These matrices
are given by

τAB ¼ 1 0

0 0

0
BBB@

1
CCCA; τAC ¼ 0 0

0 1

0
BBB@

1
CCCA; τAA ¼ 0 1

1 0

0
BBB@

1
CCCA; τz ¼

0 1

�1 0

0
BBB@

1
CCCA

ð9Þ

This projection, as the τ matrices evidently inhabit the interlayer and sublattice
space of the S(x) field, is directly informative of the local stacking of the bilayer.
This projection is exhibited in panel (c) of Fig. 6 revealing the expected transition
from AB to AC stacking across the partial but also a non-zero AA component of
the stacking field, that has its maximum at the partial core. The projection onto the
τz type of stacking is zero throughout the partial dislocation.

Sample transfer matrices. Having established the system Hamiltonian H(x),
we proceed by dividing the bilayer sample into a series of small strips (we use
a width of 100 Å for the terraces and 0.2 Å for the partial dislocation) within
which H(x) can be considered constant. By expressing the strip Hamiltonian as
H=H0 +Hxkx +Hyky we may rewrite the eigenvalue problem HΨ= EΨ as

H�1
x 14E � H0 � Hyky
� �

Ψ ¼ kxΨ ð10Þ

(14 is the 4 × 4 unit matrix), which yields four kðiÞx eigenvalues for given values of
E and ky, the constants of motion of transport problem (translational symmetry is
assumed in the y direction). These kðiÞx are the transport momenta, and are shown
in panel (d) of Fig. 6 plotted across the same type three partial dislocation for
which the displacement field u(x) is presented in panel (a). From these, and the
corresponding eigenfunctions Ψi, we can easily construct the transfer matrix of the
strip. Denoting asW that matrix in which each column is one of the eigenfunctions
Ψi, and as B the diagonal matrix with elements eik

ðiÞ
x ΔL where ΔL the strip width,

then the transfer matrix is simply WBW−1.

Transport calculation. Following the usual approach adopted in calculations of
Dirac point conductivity, we model the leads as highly doped bilayer graphene,
see ref. 2. The leads are encoded in a WL matrix in which each column consists of a
highly doped bilayer graphene wavefunction (two right moving and two left
moving states), for an explicit form of WL see the appendix of ref. 2. We have
checked that the qualitative nature of the insulating and conducting partial
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Fig. 7 Dependence of two-state transport on lead doping. Shown are the
ratio of the conductivities of the insulating and conducting systems
exhibited in Fig. 4 a, b as a function of the lead doping U. Evidently the
dramatically different transport states of the two bilayer samples are not
significantly impacted by the lead doping
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dislocation configurations is independent of the doping of the lead (Fig. 7). As may
be seen, deviation from the limiting case of high doping is found only close to the
edge of the bilayer anti-bonding band.

The remainder of the calculation follows the standard methodology of the
scattering theory Landauer approach, see refs. 2, 19 and Snyman. If the sample
consisted of only one strip then the overall system transfer matrix would be

Msystem ¼ W�1
L W BW�1WL; ð11Þ

from which the system scattering matrix Ssystem could then be derived. However, as
the system consists of many such strips this is not the case. Instead, insertion of
leads between each strip (which does not change the transport properties as these
do not scatter) yields a series of strip transfer matrices Mstrip having exactly the
form of Eq. (11), from which a corresponding series of strip scattering matrices can
be derived. These are then, by iterative use of the equations for combining two
scattering matrices19, combined to give the overall system scattering matrix Ssystem.
From this the conductance G is then obtained via the Landauer formula.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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