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The purpose of the paper is to gain deeper insight into microscopic formation of the Dzyaloshinskii-Moriya
interaction (DMI). The paper aims at the development of the physical picture able to address apparently
contradicting conclusions of recent studies concerning the location of the DMI energy in the real and reciprocal
spaces as well as the relation between values of the atomic moments and the DMI strength. The main tools of our
study are the first-principles calculations of the energies of the spiral magnetic states with opposite chiralities.
We suggest a method of the calculation of the spiral structures with account for the spin-orbit coupling (SOC).
It is based on the application of the generalized Bloch theorem and generalized Bloch functions and allows to
reduce the consideration of arbitrary incommensurate spiral to small chemical unit cell. The method neglects
the anisotropy in the plane orthogonal to the rotation axis of the spirals that does not influence importantly the
DMI energy. For comparison, the supercell calculation with full account for the SOC is performed. The concrete
calculations are performed for the Co/Pt bilayer. We consider the distribution of the DMI energy in both real
and reciprocal spaces and the dependence of the DMI on the number of electrons. The results of the calculations
reveal a number of energy compensations in the formation of the DMI. Thus, the partial atomic contributions as
functions of the spiral wave vector q are nonmonotonic and have strongly varying slopes. However, in the total
DMI energy these atom-related features compensate each other, resulting in a smooth q dependence. The reason
for the peculiar form of the partial DMI contributions is a q-dependent difference in the charge distribution
between q and −q spirals. The strongly q-dependent relation between atomic contributions shows that the
real-space distribution of the DMI energy obtained for a selected q value cannot be considered as a general
characteristic of a given material. Our study shows that it is physically most consistent to consider the electronic
hybridization as a primary effect reflecting the nature of the DMI whereas the q-dependent real-space distribution
of the DMI energy is a consequence of the complex processes in the electronic structure including the charge
transfer process. The physical process of the DMI formation is connected with the difference in the hybridization
of the Co and Pt states for q and −q spirals under the influence of the SOC and broken spatial inversion. It depends
sensitively on details of the electronic structure. The calculations with constraints on the values of the Co and Pt
atomic moments show that there is no direct relation between these atomic quantities and the DMI strength since
the details of the electronic structure crucial for the DMI are not reflected in these integral characteristics. The
application of the method to the calculation of the magnon energies in systems with DMI is briefly addressed.

DOI: 10.1103/PhysRevB.96.024450

I. INTRODUCTION

Chiral magnetic structures play an important role in the
modern physics. The recent discoveries in this field are related
to the physics of magnetic skyrmions [1–5], fast-moving
chiral domain walls [6–8], topological Hall effect [9], and
magnetoelectric effects [10,11]. Two types of the chiral
magnetic structures that were discovered and understood first
are weak ferromagnets (WFs) [12,13] and spiral structures
of the relativistic origin, relativistic spirals (RSs) [14,15].
These two physical phenomena can be considered as
providing the basis for the understanding of the formation
of more complex chiral structures. The phenomenon of the
weak ferromagnetism consists in the appearance of a small
ferromagnetic component in the material expected to be a
compensated antiferromagnet [Fig. 1(a)]. Rather similar, the
spiral structure of the relativistic origin appears in the materials
expected to be collinear magnets [Fig. 1(b)] and usually has
a long wavelength. There are two important features inherent
for both WF and relativistic spirals. First, the instability of
the achiral collinear states with respect to the formation of the
chiral noncollinear magnetic structures and, second, different
energies of the magnetic structures with opposite magnetic

chiralities. The latter feature leads to the physical realization
of the structure with only one of the chiralities.

A seminal contribution to the understanding of the preferred
formation in nature of the magnetic states with certain chirality
was made by Dzyaloshinskii [12]. He explained the origin
of the WF in Fe2O3 by the property that the canting of
the magnetic moments from the collinear antiferromagnetic
configuration does not change the symmetry of the system.
Since the collinear antiferromagnetic state corresponding to
angle φ = 0 [Fig. 1(a)] is not distinguished by symmetry with
respect to the canted states with φ �= 0, the minimum of the
total energy cannot be at φ = 0. Indeed, φ = 0 is just one
selected point from the continuum of equivalent points [16].
While there is no symmetry operation transforming the canted
magnetic structure characterized by canting angle φ to the
structure characterized by angle −φ, these two structures are
inequivalent and have different energies. Therefore, the energy
curve as a function of canting angle E(φ) is not symmetric
with respect to the change of the sign of φ and the minimum
happens at an “accidental” nonzero value of φ leading to a
nonzero ferromagnetic component (Fig. 2).

We emphasize that the necessary conditions for the asym-
metry of the energy curve E(φ) are the accounting for the
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FIG. 1. (a) Schematic presentation of the achiral antiferromag-
netic structure and two canted structures with opposite chiralities.
(b) Schematic presentation of the achiral ferromagnetic structure and
two spiral structures with opposite chiralities.

spin-orbit coupling (SOC) and the absence of the spatial
inversion in the symmetry group of the atomic lattice [12,13].
The neglect of the SOC increases the symmetry of the system,
leading to the equivalence of the states with opposite canting
angles φ and −φ, and an extremum of E(φ) at φ = 0 [16,17].

Similar arguments are valid in the case of relativistic spiral
structures. If the SOC is neglected, the spirals with the vectors
q and −q are equivalent, and symmetric curve E(q) has an
extremum at q = 0 (Fig. 2). If the SOC is taken into account
and the spatial inversion is not a symmetry operation of the
atomic lattice, E(q) �= E(−q) and we deal again with an
asymmetric curve of the type discussed above for the case

0
φ or q

en
er

gy

without SOC

with SOC

FIG. 2. Schematic presentation of the energy of the system as
a function of the chirality parameter ξ . ξ = φ in the case of WF
and ξ = q in the case of RS. If the SOC is not taken into account,
function E(ξ ) is symmetric with respect to the sign reversal of ξ . If the
SOC is taken into account, the symmetry decreases and the condition
E(ξ ) = E(−ξ ) does not apply, leading to asymmetric energy curve
with the minimum shifted to an accidental point. In the case of RS
the curve E(q) is not continuous at q = 0 that is indicated by the
empty sphere on the energy curve. The actual value of the energy of
the collinear state (q = 0) is lower than the position of the sphere by
the value dependent on the strength of the magnetic anisotropy.

of WF. (Some important differences between WF and RS will
be addressed in Sec. II.)

If we aim to describe such an asymmetric energy curve
within the model of interacting atomic moments, we notice that
this description cannot be achieved in terms of the Heisenberg
Hamiltonian

HHeis = 1

N

∑
ij

Jij Ŝi · Ŝj (1)

and needs additionally the energy term of the type

HDMI = 1

N

∑
ij

Dij · [Ŝi × Ŝj ], (2)

commonly referred to as Dzyaloshinskii-Moriya interaction
(DMI). Here, i,j number the magnetic atoms, Ŝi is the unit
vector in the direction of the ith atomic moment, Jij are
interatomic Heisenberg exchange parameters, Dij are vector
parameters of the interatomic DMI, and N is the number of
magnetic atoms. The vector products of the atomic moments
are different for the magnetic structures with opposite chi-
ralities, whereas the scalar products entering the Heisenberg
Hamiltonian do not depend on the sign of parameters φ and q
defining the chirality of the magnetic structure (Fig. 1).

The expression (2) for the DMI energy has been intensively
used in the model Hamiltonian studies of the systems with
chiral magnetic order. Therefore, the evaluation of the param-
eters D has become an important task for the first-principles
calculations. There are many approaches suggested for the
calculation of the DMI parameters. References [18–22] deal
with the analytical derivatives of the total energy with respect
to the infinitesimal deviations of the atomic moments from the
collinear structure, Heide et al. [23] consider first-order per-
turbation theory for the electronic states of the nonelativistic
spiral structures, Freimuth et al. [25] suggest the expressions
based on the Berry-phase approach, Yang et al. [26] employ
supercell calculations for spiral structures, Koretsune et al.
[27] consider the derivative of the spin-correlation function
with respect to the wave vector, and Kikuchi et al. [28] suggest
the expression for the DMI parameters in terms of spin current.

Mathematically, the first-principles approaches suggested
for the calculation of the DMI energy are rather different.
On the other hand, the physical basis of the DMI is common
for all approaches and consists of the spin polarization of
the electronic states, low symmetry of the atomic lattice,
accounting for SOC. Therefore, the fact that different recent
studies have arrived at apparently contradicting conclusions
about important aspects of the physics of the DMI demands
for careful analysis. A remarkable example of such apparently
contradicting conclusions is provided by the recent studies of
the Co/Pt bilayers. Thus, Yang et al. [26] in their theoretical
work have come to the conclusion that the energy of the DMI
interaction between Co spins is predominantly located at the
Pt atoms. They make a remark on the presence of frequent
confusion in the recent publications concerning the relation
between spatial location of the interacting spin moments and of
the energy of the interaction. On the other hand, the statement
by Yang et al. of the predominant real-space location of the
DMI energy on the Pt atoms seems to disagree with the
conclusions of several other studies, arguing that the main
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contribution to the DMI energy comes from the points in
the reciprocal space where the so-called avoided crossing of
the electronic bands takes place [27,28]. According to this
viewpoint, not the real-space distribution of the DMI energy
but the properties of the electronic states in the reciprocal space
must be in the focus of the consideration.

Another important conclusion of Yang et al. [26] concern-
ing the microscopic nature of the DMI is the absence of the
direct correlation between induced Pt moment and the DMI
strength that challenges the opposite conclusion of Ryu et al.
[29] arguing to establish a close relation between these two
quantities.

Our purpose in this paper is to gain deeper insight into
the microscopic formation of the DMI energy. In particular,
we investigate in detail the location of the DMI energy in
the real and reciprocal spaces aiming to address the apparent
discrepancies between the conclusions of previous studies.

We apply two different calculation methods to investigate
the chiral spiral structures. One of the applied methods is
suggested in this paper. It is based on the use of the generalized
Bloch functions [17,30] and has features common with the
approach by Heide et al. [23,31] but not equivalent to it
and has important new properties. The second method is
a straightforward supercell approach. Here, the size of the
supercell is determined by the periodicity of the considered
spiral structure. This feature limits the practical feasibility
of the method to the commensurate spiral structures with
reasonably small wavelengths commensurate with the lattice.
On the other hand, the supercell method is free of the
approximations of the first method and can be used for its
testing. The supercell approach was employed in the work by
Yang et al. [26]. As the concrete object of study we have chosen
the prototype thin-film DMI system of the Co/Pt bilayer.

The paper is organized as follows. In Sec. II we briefly
discuss the difference of the WF and RS from the viewpoint of
the first-principles calculations and introduce DMI energy as
the difference of the energies of the RS with opposite chirality.
In Sec. III we introduce a method for the first-principles
calculation of the RS. Section IV contains the results of
the calculations and their discussion. Section V provides the
conclusions.

II. GENERAL REMARKS

Above, we pointed out common features of the E(ξ ) for
both WF and RS, where ξ is either φ or q. It is instructive to
discuss here the difference of the two physical phenomena
from the viewpoint of the first-principles calculations. In
the case of WF, the asymmetric E(φ) curve (Fig. 2) is
continuous at φ = 0 and the canting of the atomic moments
can be predicted with certainty. This canted WF ground state
can be calculated directly using the density-functional-theory
(DFT) codes consistently treating both SOC and noncollinear
magnetic configurations. Indeed, the calculation started with
the achiral collinear antiferromagnetic structure immediately
reveals its instability resulting in the canting of the atomic
moments [16]. The converged iterative process of the DFT
calculation provides the direction of the canting (chirality), the
value of the canting angle, and the energy of the corresponding
chiral state.

For the RS, the direct first-principles calculation is less
feasible. Compared with the case of the WF, here there are
two important aspects. First, the collinear achiral magnetic
structure corresponding to q = 0 is periodic with the peri-
odicity of the chemical lattice whereas the spiral structures
with nonzero q do not have this periodicity. Therefore, the
collinear state has additional symmetry and is calculationally
stable [32]: the collinear structure does not transform into
the spiral in the iterative DFT calculations, also in the case
that spiral structure has lower energy. Second, the energy
curve E(q) is not continuous at q = 0 [4]. The reason for the
incontinuity is the magnetic anisotropy in the plane orthogonal
to the rotation axis of the spiral. In the ferromagnetic (FM)
configuration (q = 0), all moments are directed along the easy
axis whereas in the spiral with arbitrary nonzero wave vector
q the directions of the atomic moments vary with respect to
the crystallographic axes averaging the energies of the easy
and hard directions. Therefore, for a plane spiral structure the
energy of the ferromagnetic state is by 1

2 (Eeasy − Ehard) lower
than the limit of the spiral energy E(q) for q tending to zero
(Fig. 2). As a result, the ground-state magnetic configuration is
determined by the interplay of the DMI and in-plane magnetic
anisotropy. The symmetry constraint of periodicity does not
allow a direct DFT calculation of the ground state of the RS.
Therefore, to establish the ground magnetic state of the system,
one needs to determine the curve E(q).

In this paper, our main focus is on the study of the DMI
through first-principles calculations of the E(q) function. The
concrete calculations will be performed for the Co/Pt bilayer.
We will consider spiral structures

Ŝi = [sin θ cos(q · ai), sin θ sin(q · ai), cos θ ] (3)

with the axis of the spiral parallel to the z axis. Here ai is the
atomic position of the ith atom and q is the wave vector of the
spiral. We will mostly be interested in plane spiral structures
with θ = π

2 and vector q parallel to the xy plane. Such spiral
structures are often referred to as cycloids. This type of the
magnetic structure is found in magnetic thin films [33–35].
The DMI energy can be estimated through the evaluation of
the energy difference between spirals with wave vectors q
and −q:

EDMI(q) = E(q) − E(−q). (4)

In terms of interatomic DMI parameters Dij , the DMI energy
takes the form

EDMI(q) = 2(− sin θ cos θex + sin2 θez) ·
×

∑
j

D0j sin(q · aj ), (5)

where ex , ez are unit vectors in the directions of the x and z

axes. For small q = (q,0,0) vectors parallel to the x axis and
θ = π

2 , expression (5) simplifies into

EDMI(q) = 2q
∑

j

D0j,zaj,x = qD, (6)

where

D = 2
∑

j

D0j,zaj,x . (7)
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Calculating EDMI(q) for vectors q sampling the whole
Brillouin zone (BZ), one can estimate the values of the
interatomic DMI parameters using the procedure similar to the
frozen-magnon approach for the calculation of the Heisenberg
interatomic exchange parameters [36,37]. In this paper, we will
mostly focus on the estimation of the cumulative parameter D.

III. METHODS OF THE CALCULATION OF THE DMI
ENERGY OF THE RELATIVISTIC SPIRALS

To estimate the DMI energy from the difference E(q) −
E(−q), we need to know function E(q). The calculation of
the energy of the system as a function of continuous parameter
q is a nontrivial task. As mentioned above, a straightforward
possibility is to perform the supercell calculations. Selecting
a value of q that is commensurate with the periodicity of
the atomic lattice, we can perform calculations for q and
−q spirals in the supercell whose size is determined by the
wavelength of the spiral. The disadvantage of this approach is
a strong dependence of the size of the supercell on vector q.
For example, for a very small commensurate q, the supercell
is huge that demands for extensive computer resources and
makes difficult to achieve the desired numerical accuracy
of the energy difference E(q) − E(−q). We will apply the
supercell calculation for a selected q value. The main purpose
of applying the supercell method in this paper is to test the
results of the much faster and more convenient approach
suggested below.

This alternative calculation strategy arises from the idea
of employing the concepts of the generalized translational
symmetry and generalized Bloch function [17,30] for the
study of the DMI. In the nonrelativistic and scalar-relativistic
DFT calculations, the Kohn-Sham Hamiltonian of the spiral is
symmetric under the operations of the generalized translations
that combine the usual space translations and spin rotations
[30]. This symmetry allows to reduce, in an exact manner,
the calculation of the spiral with arbitrary wave vector q
to the consideration of the small q-independent chemical
unit cell. However if the SOC is not taken into account,
E(q) = E(−q) and there is no DMI. The inclusion of the SOC
into consideration destroys the symmetry of the Kohn-Sham
Hamiltonian with respect to the generalized translations and
therefore does not allow an exact reduction of the relativistic
calculations to the chemical unit cell [38].

On the other hand, under some approximations the applica-
tion of the generalized Bloch functions for the calculation of
the DMI energy is possible. Heide et al. [23] suggested to con-
sider SOC as small perturbation and calculate the first-order
perturbation energy for the states of the nonrelativistic spiral
[24]. They have shown that within first-order perturbation
theory for plane spiral structures the matrix elements of in-
plane components of the SOC operator are zero and the matrix
elements of the z component of the SOC provide the nonva-
nishing contributions to the energy. Since these contributions
are different for q and −q spirals, their sums over occupied
electronic states give an estimation of the DMI energy.

In this paper, we suggest a different method based on the
use of the generalized Bloch functions. In our opinion, this
method has some advantages with respect to the approach
used by Heide et al. Instead of dealing with the perturbation

energy of the individual electronic states of the nonrelativistic
spiral, we consider the Hamiltonian

H = Hsc + Hz
SO (8)

where Hsc is the scalar-relativistic Hamiltonian of the spi-
ral structure in the atomic-sphere approximation (see, e.g.,
Ref. [17] for details) and Hz

SO is the z component of the SOC
operator

Hz
SO = 1

(2c)2

1

rM2

dV av

dr
σzl̂z, (9)

where

V av(r) = 1
2 [V +(r) + V −(r)] (10)

and

M = 1

2

(
1 − 1

c2
V av

)
, (11)

σz is the Pauli matrix, l̂z is the operator of the z component of
the orbital momentum, and V av is the average of the spin-up
and -down potentials. In Eqs. (9) and (11), the Rydberg atomic
units are used. The SOC in the form (9) neglects the x and
y components of the SOC operator presented by the σx l̂x and
σy l̂y products. (The complete form of the SOC operator can
be found, e.g., in Ref. [39].)

The Hz
SO operator is periodic and spin diagonal with respect

to the z axis. We remind that the z axis is the axis of the spiral.
Both Hsc and Hz

SO and therefore their sum given by Eq. (8) are
invariant with respect to the generalized translations. Hence,
an exact treatment of the Hamiltonian H can be performed
with the use of the chemical unit cell of the system and the
large BZ corresponding to the chemical unit cell.

The secular matrix of the method is the sum of the secular
matrix of the scalar-relativistic spiral [17] and the matrix of
the operator Hz

SO in the basis of generalized Bloch functions.
These two parts of the secular matrix initiate different trends
in the formation of the electronic states. The scalar-relativistic
spin-spiral Hamiltonian Hsc leads to the mixing of the spin-up
and -down states with Bloch wave vectors shifted by vector q
in the reciprocal space. The strength of the mixing depends on
the value of the cone angle θ in Eq. (3). It is the strongest for
θ = π

2 and vanishes for θ = 0 and π corresponding to collinear
magnetic structures. As mentioned above, in this paper we
mostly focus on the plane cycloidal spirals corresponding to
θ = π

2 and maximal spin mixing.
The second term, Hz

SO, stimulates the energy shift of the
electronic states with the direction of the shift depending
on the spin projection of the state on the z axis. Since the
electronic states are spin mixed, operator Hz

SO stimulates
different directions of the energy shifts for different spin
components of the electronic state. The direction and value
of the energy shift depend also on the spatial form of the
wave function because of the lz operator in the expression for
Hz

SO that stimulates opposite energy shifts for the spherical
harmonics with opposite signs of magnetic number m. All
these complex competing trends are consistently taken into
account by the matrix elements of the secular matrix and are
reflected in the energies and wave functions of the calculated
states of the spiral obtained by the diagonalization of the
secular matrix. We remark that in difference to the first-order
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perturbation scheme of Heide et al. [23], the ASW-qSO
method takes into account the modifications of the wave
functions and can include the SOC in the self-consistent
calculations.

There are several arguments why the neglect of the x and y

components of the SOC is expected to be a good approximation
for the estimation of the DMI energy of the spiral structures.
First, we can refer to the consideration by Heide et al. [23] who
have shown that the matrix elements of the x and y components
of the SOC vanish for the generalized Bloch states of the
scalar-relativistic Hamiltonian. Second, neglecting the x and
y components we obtain somewhat different values of E(q)
and E(−q) compared to the corresponding spiral energies
calculated in the supercell approach with full account for the
SOC. However, the difference E(q) − E(−q) identified as the
DMI energy is close in both types of the calculations. The
quality of the approximation can be tested by the comparison
with the results of the supercell calculation with full account
for the SOC. As we show below, the agreement is encouraging.

IV. RESULTS AND DISCUSSION

A. Details of the calculations

The calculations are performed for the Co/Pt bilayer with
one atomic layer of Co on one atomic layer of Pt. In Fig. 3 we
show the geometry of the bilayer and the plane of the cycloidal
spiral structures. The spin-quantization axis z is orthogonal to
the plane of the spiral. The lattice parameter of the in-plane
hexagonal lattice is a = 5.24 au that corresponds to the lattice
parameter of 7.41 au of the bulk fcc Pt. The distance between
Pt and Co layers is 3.89 au. To simulate vacuum, four layers
of the empty spheres were included.

The calculations are performed with the augmented spher-
ical wave (ASW) method [40,41]. The description of the
account for the noncollinear magnetism and SOC within the
framework of the ASW method can be found in Ref. [17]. To
the version of the ASW method dealing with the Hamiltonian
given by Eq. (8), we will refer as ASW-qSO.

Co

Pt

(a)
q

(b)

y

x

x

z

y

z

FIG. 3. (a) The geometry of the Co/Pt bilayer. The atomic
positions of the Co layer are shifted with respect to the atomic
positions of the Pt layer. The y axis is orthogonal to the film.
(b) Schematic picture of the cycloidal spiral structure with atomic
moments parallel to the xy plane and wave vector of the spiral parallel
to the x axis. The z axis is directed into the plane of the figure. The
spiral with positive (negative) q value corresponds to the clockwise
(anticlockwise) spin configuration in terms of Ref. [26].
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supercel l

sinus

FIG. 4. (a) Solid black curve shows function E(q) calculated with
the ASW-qSO method. The broken curve presents E(−q) function.
The red line gives the DMI energy as a function of q obtained as
EDMI(q) = E(q) − E(−q). The inset in the upper-left part of the
panel shows E(q) calculated with a finer mesh for a smaller q

interval from −0.01 to 0.01. (b) Red curve with square symbols shows
EDMI(q) for a larger q interval up to q = 0.3. The black curve is a
sinusoid. The asterisk presents the result of the supercell calculation
for q = 0.25. For the sake of comparison, all energies are given per
chemical unit cell containing one Co atom.

B. DMI energy from the ASW-qSO calculation

In Fig. 4(a) we show E(q) in the interval of q from −0.08
to 0.08 calculated with the ASW-qSO method for vectors q
parallel to the x axis. In the paper the value of q is always given
in units of 2π

a
. The energy origin is selected at the energy of

the FM structure. The asymmetry of E(q) with respect to the
sign reversal of q is clearly seen. Zooming into the region of
small values of q [inset to Fig. 4(a)] shows, in agreement with
general arguments above, negative values of E(q) for small
negative q. Therefore, the minimum of E(q) is not at q = 0
and does not correspond to the collinear magnetic structure.
The difference E(q) − E(−q) appears to be close to a straight
line in this q interval, demonstrating that one q-independent D
parameter describes well the DMI energy in a broad q interval.
The property for positive q values E(q) > E(−q) agrees with
the conclusion of Ref. [26] about anticlockwise type of the
spiral structure.

In Fig. 4(b) we present the DMI energy calculated for
q values up to 0.3. As expected, in this larger q interval
the deviation of EDMI(q) from a linear dependence is well
seen. However, in a broad q interval up to about 0.23, the
dependence is very well described by one sinusoid with period
of 1 [Eq. (5)]. For q from 0.23 up to 0.3, the deviation
from a simple sinusoid becomes substantial. This change
in the character of the q dependence can be interpreted
as involvement for these large q values of new groups of
electronic states in intense hybridization. Below (Fig. 16,
Sec. IV H), we will consider DMI energy for several model
calculations and see that, in general, the strong deviation
from simple dependence may appear for much smaller q

values. In terms of effective Hamiltonian of interacting atomic
moments, the deviation from the simple sine function means
the necessity to include the interatomic interactions beyond the
nearest-neighbor interactions [see Eq. (5)]. The asterisk in the
right panel shows the value of the DMI energy calculated with
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FIG. 5. The fragment of the band structure for six physical cases.
The upper panels [(a)–(c)] show the results of the scalar-relativistic
calculations, the lower panels [(d)–(f)] present the results of the
calculations with the ASW-qSO method. The panels (b) and (e)
correspond to the ferromagnetic structure with q = 0, the other four
panels correspond to the spiral structures with q = ±0.05. Encircled
are the regions of the avoided crossing where the strongest change
in the band structure is observed. In agreement with symmetry
arguments, the band structures of the ±q spirals are identical in the
scalar-relativistic calculation and strongly different in the ASW-qSO
calculation.

the supercell approach for q = 0.25. Obviously, the agreement
between two methods is very good.

To compare our value of EDMI from the supercell calcula-
tion for q = 0.25 with corresponding value d tot from Ref. [26],
we should divide it by three and transform to meV. The
obtained value is 2.0 meV. The corresponding value that we
can read from Fig. 2 of Ref. [26] is d tot = 1.5 meV. According
to the erratum to Ref. [26], this value should be multiplied
by

√
3 what gives d tot ≈ 2.6 meV. Taking into account the

difference in the calculation techniques and, possibly, in the
lattice parameters the values are in fair agreement with each
other. The lattice parameters of the relaxed lattice are not given
in Ref. [26].

C. Reciprocal-space analysis of the contributions
to the DMI energy

To understand the microscopic origin of the DMI, it is
instructive to examine the properties of the band structures
of different magnetic configurations. In Fig. 5 we show
a small fragment of the band structure for six different
physical cases: the ferromagnetic configuration and the spiral
structures with wave vectors q = ±0.05 calculated with both
scalar-relativistic Hamiltonian [Figs. 5(a)–5(c)] and with the
Hamiltonian of the ASW-qSO method [Figs. 5(d)–5(f)]. As
expected on the basis of symmetry arguments, in the scalar-
relativistic calculations the band structures of the q and −q
spirals are identical, leading to vanishing DMI energy. On the
other hand, the ASW-qSO calculations result in the distinctly
different band structures of the ±q spirals [Figs. 5(d) and 5(f)].

In the figures we encircle the region of the strongest
variation of the band structure. This is the region of so-called

0 0.25 0.5
-5

0

5

 E
(m

R
y)

0 0.25 0.5
-5

0

5

0 0.25 0.5
k

-5

0

5

NO SOC

SOC

-q +q

crossings avoided  avoided  

many crossing s

crossings

(a) (b)

(c)

FIG. 6. The fragment of the band structure calculated within the
supercell approach. The size of the supercell corresponds to the wave
vector q = 0.25. (c) FM structure, scalar-relativistic calculation;
(a) spiral with q = −0.25, ASW-qSO calculation; (c) spiral with
q = 0.25, ASW-qSO calculation.

avoided crossing or anticrossing of the energy bands. In the
scalar-relativistic ferromagnetic structure, two bands cross
each other [Fig. 5(b)]. This is the case of the highest symmetry
between the six physical situations shown in the figure. In all
other cases, the decreased symmetry leads to the hybridization
of the states of the intersecting bands. In Figs. 5(a) and 5(c)
we see strong hybridizational repulsion of the bands in the

scalar-relativistic calculation for spirals with nonzero wave
vectors. The hybridizational repulsion is the strongest around
the intersection point where the energies of the interacting
states are close to each other.

The account for the SOC decreases the symmetry already
in the FM state [Fig. 5(e)] and leads to the mixing and
hybridizational repulsion of the bands. The most important
is that, in contrast to the scalar-relativistic case, the variation
of the band structure with respect to the FM case is different
for q and −q spirals [Figs. 5(d) and 5(f)]. In the case of
q = 0.05, the states of the two bands become closer to
each other [Fig. 5(d)] than in the FM case; in the case of
q = −0.05 the energy distance between the states increases
further [Fig. 5(f)]. Thus, the influences of the SOC and
noncollinearity of the spin structure are enhancing each other
in one case [Fig. 5(f)] and compensating each other in the other
case [Fig. 5(d)]. The difference in the electronic states of the
magnetic configurations with opposite chirality is the essence
of the DMI. It is worth noting that an apparent intersection
of the bands in the circle in Fig. 5(d) in reality does not take
place. Strong zooming into this region shows that also here the
bands do not cross. The avoiding of the crossing happens very
sharp in a very narrow k and energy interval. This feature is
in agreement with results of previous studies [25,27]. On the
other hand, in the scalar-relativistic FM case [Fig. 5(b)] the
intersection indeed takes place.

The processes shown in Fig. 5 are clearly seen also in the
band structures obtained in the supercell calculations (Fig. 6).
The supercell corresponds to the periodicity of the spiral with
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FIG. 7. (a) k-resolved contributions to the DMI energy calculated
with the ASW-qSO method for spirals with q = ±0.05. The red line
corresponds to the numerical integration over the k-points mesh.
(b) k-resolved difference in the number of the occupied states for
spirals with q = ±0.05. (c) The 900 k points used in panels (a) and
(b) uniformly fill the 2D unit cell in the reciprocal space. The sequence
of the points in the k mesh corresponds to the sequence of the straight
lines parallel to the y axis in this panel. There are 30 straight lines
with 30 points on each of them.

q = 0.25. Since in this case the BZ is smaller, the number of
bands correspondingly increases. The scalar-relativistic calcu-
lation gives a large number of the band crossings [Fig. 6(c)].
Most of them disappear in the relativistic calculations for
the spiral structures forming numerous avoided crossings
[Figs. 6(a) and 6(b)]. Again, there is clear difference between
band structures of the spirals with opposite chirality. We
remark that in the supercell calculation shown in Fig. 6 we
used the wave vector whose length is five times larger than the
length of the wave vector used in the ASW-qSO calculation
shown in Fig. 5. The supercell calculation with q = 0.05 needs
a much larger supercell and the number of the bands strongly
increases further.

In Fig. 5 we present only one small fragment of the
electronic structure calculated with the ASW-qSO method.
A more complete picture of the contributions of different k
points of the reciprocal space to the DMI energy is given
in Fig. 7(a). Here, we show for the case of q = 0.05 the
differences EDMI(k|q) = E(k|q) − E(k| − q) for 900 points
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FIG. 8. Partial atomic DOSs of Co (blue curves) and Pt (black
filled curves) calculated for the ferromagnetic structure. Above the
abscissa axis are the spin-up DOSs, below the abscissa axis are the
spin-down DOSs.

in the unit cell of the reciprocal lattice. The k points are
uniformly distributed over the 30 lines parallel to the the y axis
[Fig. 7(c)]. The strongly fluctuating behavior of the k-resolved
contributions is determined by the varying local properties of
the band structures of the two spirals with opposite chirality. In
particular, the closeness of the avoided-crossing points to the
Fermi energy and corresponding strong repulsion of the energy
states can bring some of the states above the Fermi level. This
results in different numbers of the occupied bands at a given k
point for the q and −q spirals and, correspondingly, in stronger
contribution to the DMI energy. Since, however, the total
number of electrons is conserved, the increased occupation
of the electronic states for the q spiral at a given point k
leads to an increased occupation for the −q spiral at another k
point. In Fig. 7(b) we present the k-resolved difference in the
number of occupied states Qdiff(k|q) = Q(k|q) − Q(k| − q)
where Q(k|q) is the number of the occupied states at point
k for the spiral with wave vector q. There is correlation
between the deviations of the Qdiff(k) from zero [Fig. 7(b)]
and the strong features in EDMI(k) [Fig. 7(a)]. The fluctuations
of the contributions of the individual k points considerably
compensate each other in the integral quantity [see red line in
Fig. 7(a)].

D. Role of the Co-Pt hybridization

The consideration above, in particular the contribution of
the avoided-crossing points in the electronic structure to the
DMI energy, reveal the importance of the hybridizational
processes in the electronic structure. It is of special interest
to investigate the role of the Co-Pt hybridization since such
a hybridization suggests an important channel of connecting
different physical components crucial for the DMI: spin
degrees of freedom of the Co subsystem and strong SOC of
the Pt subsystem.

At the first stage we inspect the partial Co and Pt DOSs
(Fig. 8). The presence of the Co-Pt hybridization is seen
through numerous common peak and deep structures that
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functions (red curve, diamond symbols), (3) full calculation (black
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reveal the origin of these structures from the same hybridized
electronic states.

To study the impact of the Co-Pt hybridization on the DMI,
we performed two model calculations with the ASW-qSO
method neglecting either the hybridization between Pt 5d

and Co 3d basis ASW functions or the hybridization of all
Pt ASW basis functions with the rest of the system. The
neglect of the hybridization was introduced in the calculation
by setting to zero the matrix elements of the Hamiltonian and
overlap matrices on the corresponding ASW basis functions.
The results of the calculation are presented in Fig. 9. We
see that in the first case the slope of the EDMI(q) decreased
by roughly 50% and in the second case it changed the sign
and further strongly decreased in the absolute value. These
model calculations very clearly demonstrate the importance
of the Co-Pt hybridization in the electronic states for the DMI
strength [42]. The conclusion of the importance of the
interatomic hybridization for the DMI agrees with the results
of the tight-binding-model study reported in Ref. [43].

E. Real-space distribution of the DMI energy

To address the problem of the location of the DMI energy
in the real space we need to calculate the distribution of the
DMI energy over atomic spheres. This is done as follows.
The ASW method employed in our calculations, as many
other DFT methods, provides both electronic energies εkn and
corresponding electronic wave functions ψkn(r). The wave
functions are normalized to unity in the unit cell∫

	UC

ψkn(r)†ψkn(r)dr = 1, (12)

where the integral is taken over the volume of the unit cell.
This unity is distributed over the atomic spheres according to
the shape of the wave function:

∑
ν Qν

kn = 1 where

Qν
kn =

∫
	ν

ψkn(r)†ψkn(r)dr (13)

and 	ν denotes the νth atomic sphere. The portion εknQ
ν
kn of

the energy of a given state (kn) can be assigned to the νth
atomic sphere. The sum Eν = ∑

εkn�EF
εknQ

ν
kn over occupied
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FIG. 10. (a) q dependence of the atom-resolved contributions to
the DMI energy. Blue (red) line shows Co (Pt) contribution. The black
line presents the sum of the Co and Pt contributions. (b) q dependence
of the atom-resolved redistribution of the electronic density between
q and −q spirals. In both panels, the lines close to the abscissa
axis correspond to the small contributions from the empty spheres
simulating vacuum region.

states gives the contribution of the atom ν to the energy of the
system. The difference of the atomic energies calculated for q
and −q spirals provides the contribution of the νth sphere to
the DMI energy.

In Fig. 10(a) we plot the atom-resolved contributions
to the DMI energy. We obtained an interesting result that
the q dependencies of the atom-resolved contributions are
nonmonotonic for both Co and Pt. The linear pieces connecting
the values of the functions at neighboring points of the q mesh
have the slopes strongly varying from q interval to q interval.
It is remarkable, however, that in the total EDMI(q) the peculiar
features of the Co and Pt contributions compensate each other
resulting in an almost perfect straight line.

To shed light on the physical origin of this behavior,
we consider the q-dependent redistribution of the electronic
density between Co and Pt atoms for q and −q spirals
Qν

diff(q) = Qν(q) − Qν(−q) [Fig. 10(b)]. The corresponding
piecewise linear functions have the features strongly correlated
with the features of the atom-resolved energy functions
[Fig. 10(a)]. Since the total electronic number is the same
for all spirals, the both partial curves of the charge differences
are approximately opposite and their sum is close to zero for
all q values. (The small deviation from zero results from small
contributions of the empty spheres in the vacuum region.) The
q-dependent difference in the charge distribution between the
spirals with opposite q vectors results in the corresponding
q dependence of the atomic contributions to the DMI energy.
These specific features of the atomic contributions compensate
each other in the total DMI energy.

We remark that the peculiar q dependence of the atom-
resolved DMI contributions could not be obtained in the
calculations of the “atom-resolved spin-orbit matrix elements”
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FIG. 11. (a) The atom-resolved contributions to the DMI energy
and the total EDMI as functions of the band occupation ne for q =
0.03. (b) Corresponding dependence of the atom-resolved charge
redistribution Qdiff (ne).

reported in Ref. [23] using the unperturbed wave functions of
nonrelativistic spirals. Neglecting the modification of the wave
functions, one neglects the effects of charge redistribution
caused by the SOC.

These results show that the real-space atomic distribution
of the DMI energy is strongly q dependent in contrast to the
total DMI energy that is much less sensitive to the variation
of the magnetic configuration. The strong dependence of the
atomic contributions on the wave vector q and the strong
compensation of the features of the partial contributions in
the total DMI energy demonstrate that these features should
be treated as complex consequences of the hybridizational
processes in the electronic structure playing a primary role in
the formation of the DMI energy. Further calculational data
presented below support the validity of these conclusions.

F. DMI as a function of the number of electrons

To gain further insight into the formation of the DMI, we
consider EDMI as a function of band occupation. For each
value of Qe we, keeping the electronic structure unchanged,
determine the position of the Fermi level and calculate the
band energy of the occupied states.

In Fig. 11 we present for the case of q = 0.03 the
dependence of partial atomic contributions to the DMI energy
and the total EDMI [Fig. 11(a)] as well as the corresponding
charge transfer quantities [Fig. 11(b)] as functions of ne =
Qe/Qt . In Fig. 12 we present the same type of data for the
case of q = 0.25.

The ne-depended quantities for both q values confirm
the conclusions derived in the previous section for the
q dependence of the quantities considered for the actual
electron number corresponding to ne = 1 (Fig. 10). The
atomic DMI energy contributions fluctuate strongly with the
variation of the number of electrons [Figs. 11(a) and 12(a)].
These oscillations correlate with the oscillations in the ne

dependencies of the atomic redistribution of the electronic
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FIG. 12. The same as in Fig. 11 but for q = 0.25.

charge differences [Figs. 11(b) and 12(b)]. The sum of the
atomic contributions to EDMI(ne) for both q presented is
considerably smoother than the corresponding atomic contri-
butions themselves [Figs. 11(a) and 12(a)]. This result shows
again that many features of the partial atomic contributions
strongly compensate each other and, therefore, these features
are of limited physical significance for the interpretation of the
total DMI energy.

For the case of q = 0.25 we performed the calculations of
the ne-dependent quantities also with the supercell method.
The results obtained in this calculation are similar to those
shown in Fig. 12 and we do not present them. The total
EDMI(ne) calculated with the supercell method is presented
for comparison in Fig. 13.

Another important feature obtained in the calculation of
the ne dependencies is the similarity in the shapes of EDMI(ne)
curves calculated for different q values (Fig. 13). The increase
of q leads to the expected increase of the amplitude of the
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FIG. 13. EDMI(ne) calculated for different values of q =
0.03,0.08,0.25 with the ASW-qSO method (solid curves). Increasing
amplitude of the curves corresponds to the increasing q value. For
comparison, the EDMI(ne) calculated with the supercell approach for
q = 0.25 is also shown (broken line).
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peaks. In addition, for large q = 0.25 there is less fine structure
in the peaks. Otherwise, the positions and signs of the peaks
are identical for a broad range of q values.

This behavior can be explained as follows. The spiral
structure leads to the hybridization of the electronic states
of the ferromagnetic configuration that are separated by
vector q in reciprocal space [17]. Therefore, for larger q
the hybridization involves the states from larger regions of
the reciprocal space. Also, the strength of the hybridization
increases with increasing q since the off-diagonal matrix
elements of the secular matrix responsible for the hybridization
increase with increasing q. Indeed, these matrix elements
contain the differences of the structure constants between
reciprocal space points separated by vector q. The details of
the hybridization are different for q and −q spirals giving
rise to the DMI. The similarity of the EDMI(ne) curves
calculated for different q shows that for broad q interval,
the states involved into hybridization and the character of
the hybridization are qualitatively similar, differing in the
quantitative characteristics of the number of states involved
into intense hybridization and the strength of the hybridization.
This qualitative similarity is the origin of the simple sinusoidal
form of the EDMI(q) dependence in a broad q interval
presented in Fig. 4. For larger q, the states involved into
hybridization can become principally different that leads to
considerable complication of the EDMI(q) curve [see Fig. 16(b)
and corresponding discussion below]. To deal with such
complications, one needs to introduce the q dependence of
the effective nearest-neighbor DMI parameter or to consider
longer-range interatomic DMI interactions or to deal with
more complex forms of antisymmetric interactions of atomic
moments.

In addition to the EDMI(ne) dependencies calculated with
the ASW-qSO method for three different q values, we show in
Fig. 13 this dependence obtained with the supercell calculation
for q = 0.25. The corresponding functions EDMI(ne) obtained
with both methods are in good agreement.

G. Relation between induced Pt moment and DMI strength

Ryu et al. [29] analyzed their measurements of the velocity
of the current driven motion of the domain walls in Co film
grown on different substrates of nonmagnetic heavy elements
and arrived at the conclusion that the strength of the DMI
in the magnetic film is in direct relation to the value of the
induced moment in the nonmagnetic substrate. Yang et al.
[26] challenged this conclusion. They performed calculations
imposing constraint on the value of the Pt spin moment and
have shown that decrease of the Pt moment to zero can even
lead to an increase of the DMI.

We also performed calculation with constraint on the Pt
moment aiming to compare our results with those reported by
Yang et al. and to relate these results to the conclusions derived
in the earlier parts of this paper. The constrained calculation
was performed by applying the constraining magnetic field to
the Pt atoms [44,45]. The value of the field of 21 mRy in energy
units was determined for the FM structure under the condition
on the Pt spin moment mPt = 0. Although the induced Pt
moment in the constrained calculation is zero, the inspection of
the spin-projected Pt DOS (Fig. 14) shows that the difference
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FIG. 14. The comparison of the spin-projected Pt-DOSs cal-
culated with the constraint mPt = 0 (blue curves) and without
constraint (black filled curves). The calculations are performed for the
ferromagnetic structure. The unconstrained value of the Pt moment
is mPt = 0.28 μB .

of the Pt-DOS obtained in constrained calculation from the
Pt-DOS in the unconstrained case is small. It is crucial that
the Pt-DOS in the case of mPt = 0 remains spin polarized. The
difference between partial spin-up and -down DOSs has not
considerably decreased compared to the unconstrained case.
The ASW-qSO calculation of the spiral structures with the
atomic potentials obtained in the constrained calculation gave
the results shown in Fig. 15. We see a noticeable change
in the E(q) curve with respect to unconstrained calculation
(Fig. 4) but the difference EDMI(q) = E(q) − E(−q) remains
almost unchanged. This result shows that, in agreement with
the conclusion of Yang et al. [26], the value of the induced
Pt moment does not appear as a crucial quantity governing
the strength of the DMI. On the other hand, it is very
important to remark that although this integral quantity by
itself is not crucial, the spin polarization of the Pt states
through the hybridization with spin-polarized states of Co is an
important component of the DMI formation. This crucial spin
polarization of the individual electronic states is not directly
reflected in the total induced Pt moment. The zero value of
the induced Pt moment is the result of the compensation of the
spin contributions coming from different electronic states. But,
this compensation is basically the feature of the nonrelativistic

-0.08 -0.04 0 0.04 0.08
 q

-0.2

0

0.2

E
D

M
I (

m
R

y/
U

C
)

 constraintE(q) E(-q)

E
DMI

  m
Pt

=0
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mPt = 0.
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FIG. 16. The influence of the constraint on the value of the Co
moment on the DMI energy as a function of spiral wave vector.
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mCo = 1.85 μB . Curves (2) and (3) correspond to the constrained
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processes that does not tell us how different is the response
of the individual electronic states of the ±q spirals to the
SOC. This response depends sensitively on which electronic
states are close in energy and therefore participate in intense
hybridization, especially if this hybridization takes place close
to the Fermi level.

H. Relation between Co moment and DMI strength

To complete the physical picture developed in the previous
sections, we consider the influence of the value of the Co
moment on the DMI strength. The calculations are performed
in the same way as in Sec. IV G with the only difference
that the constraining field is now imposed on the Co atoms.
In Fig. 16 we compare the EDMI(q) functions calculated for
the unconstrained value of mCo = 1.85 μB and constrained
values of mCo = 1.5 μB and 2.0 μB . In Fig. 16(a) we consider
a small q interval where all three dependencies can be well
approximated by linear functions. The slope of the function is
positive for the unconstrained calculation. It increases about
two times for the smaller value 1.5 μB of the Co moment and
changes sign for the larger value 2.0 μB of the Co moment.
Therefore, also in these calculations we see the absence of a
simple relation between the integral atomic characteristic of
the Co moment and the DMI strength.

This conclusion receives further support if we consider the
three EDMI(q) functions in a larger q interval [Fig. 16(b)].
As already discussed above, the EDMI(q) function of uncon-
strained calculation is well described by a simple sine function
up to q of 0.23. On the other hand, the shape of the EDMI(q)
dependencies obtained for two constrained calculations are
much more complex and also very different with respect to
each other. This means that to describe the influence of the
consequences in the changes of the electronic structure on
the DMI energy, one needs to introduce different sets of
the effective parameters of the interatomic DMI interaction
when using Eq. (2) for the magnetic configurations strongly
deviating from the ferromagnetic configuration.

I. Asymmetry of the magnon spectrum due to the DMI

The magnon spectrum in the systems with DMI is not a
topic of this paper. However, we feel it is useful to point
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for three values of angle θ . (b) �E as a function of 1 − cos θ playing
the role of the number of magnons for three values of q.

out that the ASW-qSO method is well suited to address the
asymmetry of the magnon spectrum due to the DMI. [46,47]
We attract attention of the reader to the fact that the calculations
considered in this section should be treated as a demonstration
of the potential of the method by an application to a model
system and not as a study of the real properties of a concrete
physical system. In the calculation we assume that the ground
state of the Co/Pt bilayer is the ferromagnetic state with the
magnetization parallel to the in-plane z axis. We will show that
the ASW-qSO method is able to reproduce the asymmetry of
the spin-wave spectrum obtained experimentally, e.g., in the
case of two layers of Fe on W(110) [47].

The magnon energy for a given q can be defined as

ω(q) = ∂E(nq)

∂nq
, (14)

where nq is the number of magnons with wave vector q and
E(nq) the corresponding energy of the system. Since E(nq) is
not symmetric with respect to the reversal of the sign of q, also
the magnon energies do not possess this symmetry.

We performed calculations for spiral structures with differ-
ent values of θ . In Fig. 17(a) we show �E(q,θ ) = E(q,θ ) −
E(q,0) as a function of q for three different values of θ . The
curves are not symmetric with respect to the reversal of the sign
of q. The number of magnons is proportional to (1 − cos θ ).
This quantity determines the decrease of the magnetization of
the system. In Fig. 17(b) we present �E(q,θ ) as a function of
(1 − cos θ ) for three values of q = 0,±0.05. The fact that all
three dependencies have the form of practically ideal straight
lines demonstrates that the description of the change of the
energy of the system in terms of the number of magnons is
valid for the selected intervals of θ . The slopes of the lines
give the values of the magnon energies for the corresponding
wave vectors (q,0,0).

Two aspects are important. First, the slopes of the lines for
q = 0.05 and −0.05 are different, which reveals the difference
of the magnon energies for the opposite values of q. This
is the consequence of the DMI. Second, since the magnetic
anisotropy with respect to the variation of the angle θ is taken
into account by the ASW-qSO method, the Goldstone theorem
is not valid and the magnons corresponding to q = 0 do not
have zero energy. This feature is reflected in the nonzero slope
of the line corresponding to q = 0.
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V. CONCLUSIONS

The purpose of the paper is to gain deeper insight into
microscopic formation of the DMI. We aimed at the devel-
opment of the physical picture able to address apparently
contradicting conclusions of previous studies. The main tools
of our study are the first-principles calculations of the spiral
magnetic states with opposite chiralities. The value of the
DMI energy is estimated as EDMI(q) = E(q) − E(−q). We
applied two different methods. The first method is suggested
in this paper and is based on the application of the generalized
Bloch theorem and generalized Bloch functions. Since in its
full form the SOC destroys the symmetry of the Hamiltonian
with respect to the generalized translations, the ASW-qSO
method relies on approximation in the form of the SOC. The
advantages of the method are, first, the possibility to apply
it to arbitrary q values, second, a low demand on computer
resources and, third, high numerical accuracy because of the
exact reduction of the calculation to small q-independent
chemical unit cell. The method neglects the anisotropy in the
plane orthogonal to the rotation axis of the spiral structures,
which is not expected to influence importantly the DMI energy.

The second method is the supercell approach with full
treatment of the SOC. The size of the supercell corresponds to
the periodicity of the spiral and the method is practical only for
spiral structures with rather large wave vectors commensurate
with the atomic lattice. We applied both methods to the Co-Pt
bilayer. The comparison of the results of the methods revealed
good performance of the ASW-qSO method in the study of
the DMI.

An important factor of the microscopic formation of the
DMI is the hybridization between the Co and Pt atomic states.
The Co states contribute with strong spin polarization and the
Pt states with the consequences of strong SOC. Because of the
absence of the spatial inversion in the geometry of the bilayer,
the Co-Pt hybridization is different for the magnetic structures
with opposite chiralities. This difference is the microscopic
origin of the DMI since it leads to different energy of the
electronic states and, as a result, to the different energies of the
magnetic structures. The importance of the hybridizational
interactions correlates directly with the conclusions of the
earlier studies emphasizing the importance of the avoided
crossings in the band structure for the DMI.

We considered the distribution of the DMI energy in both
real and reciprocal spaces and the dependence of the DMI
on the number of electrons. The results of the calculations
reveal a number of energy compensations in the formation of
the DMI. Thus, the partial atomic contributions as functions
of q are nonmonotonic and have strongly varying slopes.
However, in the total EDMI(q) these atom-related features
compensate each other, resulting in a smooth q dependence.

Our calculations show that the reason for the peculiar form of
the partial DMI contributions is a q dependent difference in the
charge distribution between q and −q spirals. Because of total
charge neutrality, these charge-distribution-related features of
the atomic contributions strongly compensate each other. The
physical process of the DMI formation is connected with the
difference in the hybridization of the Co and Pt states under
the influence of the SOC and broken spatial inversion. On
the other hand, the strong q dependence of the real-space
distribution of the DMI energy shows that it is physically most
consistent to consider the electronic hybridization as a primary
effect reflecting most directly the nature of the DMI, whereas
the q-dependent real-space distribution of the DMI energy
is a complex consequence of the processes in the electronic
structure including the charge transfer process.

Also, in the dependence of the total DMI on the electron
number we see clearly the traces of the compensating mecha-
nisms. Such behavior is characteristic for the hybridized states
where the lower-energy antibonding state and higher-energy
bonding states give opposite contributions to the property. This
behavior is in direct correlation with the statements of the
importance of the anticrossing points in the band structure.
The essence of the anticrossing points is the lifting of the
degeneracy of the two electronic states because of a lower
symmetry interaction which in the present case is the SOC.

Concerning the role of the induced Pt moments in the
DMI formation, it is important that the Co-Pt hybridization
leads to the spin polarization of the Pt states. This spin
polarization is clearly seen in the spin-projected partial Pt
DOSs. The integrated quantity, the Pt atomic spin moment,
is less informative and depends on the details of the band
structure of the system that are not necessarily important for the
DMI. The imposed constraint of the zero Pt moment influences
very weakly the spin polarization of the Pt DOS reflected in
the difference of the spin-up and -down contributions to the
DOS. Therefore, the hybridization mechanism leading to the
different electronic energies of the q and −q spirals remains
intact also in the case that the integrated magnetic moment
vanishes.

Our ASW-qSO calculations with constraint on the Co
moment have shown that also in this case there is no simple
relation between the value of the Co moment and the the DMI
strength. This is an additional support for the conclusion that
the details of the electronic structure crucial for the DMI are
not directly reflected in the integral characteristic of the atomic
moments.

We briefly address the application of the ASW-qSO method
to the calculation of the magnon spectrum with account for the
SOC. The asymmetry of the magnon spectrum caused by the
DMI and nonzero energy of the q = 0 magnon due to magnetic
anisotropy are correctly reproduced.
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