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Surface hopping in laser-driven molecular dynamics
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A theoretical justification of the empirical surface hopping method for the laser-driven molecular dynamics is
given by utilizing the formalism of the exact factorization of the molecular wave function [Abedi et al., Phys.
Rev. Lett. 105, 123002 (2010)] in its quantum-classical limit. Employing an exactly solvable H,"-like model
system, it is shown that the deterministic classical nuclear motion on a single time-dependent surface in this
approach describes the same physics as stochastic (hopping-induced) motion on several surfaces, provided Floquet
surfaces are applied. Both quantum-classical methods do describe reasonably well the exact nuclear wave-packet
dynamics for extremely different dissociation scenarios. Hopping schemes using Born-Oppenheimer surfaces or
instantaneous Born-Oppenheimer surfaces fail completely.
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I. INTRODUCTION

For more than two decades, surface hopping (SH) [1]
has been among the most popular and successful methods
to describe nonadiabatic phenomena in atomic many-body
systems (for reviews, see Refs. [2-5]). From the theoretical
point of view, however, any SH scheme is inherently a phe-
nomenological approach. The ad hoc assumption of stochastic
jumps between electronic potential energy surfaces (PES) has,
so far, never been rigorously deduced from the time-dependent
Schrodinger equation (TDSE) for electrons and nuclei, and
even the choice of the applied PES is ambiguous.

Very recently, however, first attempts have been made to
justify the SH methodology on Born-Oppenheimer surfaces
(BOSs), solely for the laser-free nonadiabatic dynamics [6-9].
A close similarity between the exact wave-packet propagation
and SH on BOSs has been found in the framework of the
exact factorization of the molecular wave function [6]. In this
theory, the so-called exact time-dependent potential energy
surface (EPES), together with an exact time-dependent vector
potential, governs the true nuclear wave packet dynamics. The
EPES can exhibit nearly discontinuous steplike features, just
in the vicinity of avoided crossings between BOSs, leading
simultaneously to acceleration and deceleration of certain parts
of the quantum wave packet and resulting in its splitting.
In close analogy, the SH mechanism can create branches of
classical trajectories at avoided crossings. The findings [6]
justify, albeit qualitatively but anyhow convincingly, the SH
methodology on BOSs, in the field-free case.

For the laser-driven dynamics, any validation of SH is
still lacking and the appropriate choice of the applicable
PES is discussed controversially at present [10-12]. In fact,
the hitherto purely intuitively chosen PES in SH models are
fundamentally different from each other, and include BOSs
[10,13-17], instantaneous BOSs (IBOSs) [18-22], as well as
Floquet surfaces (FSs) [22—-24]. From the massive differences
in definition and properties of these PES, one can hardly expect
that the appendant SH schemes can describe the same physics.
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Obviously, the situation requires clarification and the general
questions persist: Is there any validation of SH methodology
at all in this case, and if yes, what are the adequate PES?

In this paper, we will provide answers to both questions
employing the quantum-classical limit of the exact factor-
ization [6,25-27] and using deliberately an exactly solvable
model system. The exact factorization leads to a TDSE for
the nuclear subsystem alone which is exact in the sense
that the absolute square of the corresponding, purely nuclear,
wave function yields the exact nuclear N-body density of
the full electron-nuclear system. Hence, if the true quantum-
mechanical nuclear density is approximated by an ensemble of
classical trajectories, the correct classical force on the nuclei
is uniquely given by the gradient of the EPES. In other words,
the EPES contains all electron-nuclear correlations which
generally can be retained in the quantum-classical limit of
the TDSE. Consequently, ensembles of classical trajectories
on the EPES can serve as judge for all the phenomenological
SH models.

From the present comparative numerical studies, it will
become apparent that the role of the BOSs in the field-free
case is taken over by FSs in the laser-driven case, although
the mechanism is more complex. Ensembles of classical
trajectories, propagated stochastically on FSs (Floquet-SH,
F-SH) and deterministically on the EPES (exact surface
dynamics, ESD), do describe the same physics. Moreover, in
the considered cases, the results are in excellent agreement
with those of the TDSE. Complementary SH calculations
with BOSs (BO-SH) and IBOSs (IBO-SH) deliver unphysical
results.

The paper is organized as follows: In Sec. II, the theoretical
background is summarized, i.e., the utilized model system and
its relevant PES (Sec. II A), the hopping methods on different
PES (Sec. IIB), and the exact factorization theory and its
application in the quantum-classical limit (Sec. II C).

In Sec. III, extensive comparative numerical results for
different dissociation scenarios are presented applying all
three SH methods (BO-SH, IBO-SH, F-SH), the ESD, as
well as the TDSE. In Sec. IV, the findings are summarized.
Appendix A contains a discussion of the choice of classical
initial conditions in quantum-classical trajectory calculations.

©2017 American Physical Society
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In Appendix B, numerical details are presented. Several
movies are provided as Supplemental Material to this paper
[28]. They contain visualizations of the time dependence of
PES and nuclear densities. The movies are briefly described in
Appendix C.

Atomic units are used unless stated otherwise.

II. THEORY

A. Model system and potential energy surfaces

We use a numerically exactly solvable two-dimensional
H,"-like model and a linear polarized laser in dipole approx-
imation for all exemplary calculations in this paper. In the
center-of-mass frame, the soft-core Hamiltonian of this model
system reads

Ar A,

1
H=—2_"C4
2M 2 T R+0.03

1 1
- Vi —R/2)?+1 - Jr+R/2P+1

with M the reduced nuclear mass, R the internuclear distance,
and r the electronic position operator. The laser-molecule inter-
action (laser frequency w = 0.2 a.u. [A = 225] nm throughout
the whole paper) is included in the length gauge (dipole
operator u© = —r). We apply laser fields where the envelope
F(t) does not change considerably during one optical cycle
T =2m/w ~ 0.8 fs.

We calculate BO surfaces EBO(R) by diagonalizing the
fixed-nuclei field-free Hamiltonian

A 1
HBO R) = _=r -
(R) 2 + R +0.03
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The relatively low laser intensities (I < 10> W/cm?)
considered in this paper allow us to focus on the two lowest BO
surfaces EgO(R) and EFO(R). The corresponding BO states
lpo/1(R)) are strongly coupled to each other via the dipole
matrix element (@o(R)|u|@i1(R)) = ,uOB,O(R) ~ R/2, but only
weakly coupled to BO states with i > 1.

The time-dependent IBO surfaces E(I)]?IO(R,t), eigenvalues
of the fixed-nuclei Hamiltonian including the laser

H'™O(R) = HBO(R) — wF(t) cos wt, 3)

— wF(t)cos(wt)

2)

can be calculated as
EQIP(R.1) = EgR(R) cos® O(R,1) + EPQ(R) sin” 6(R, 1)
+ uBO(R)F (t)cos(wt) sin 26(R,t) 4)
with the mixing parameter

1 2uBO(RYF (1 t
O(R,t) = — arctan Hor (R)F(1)cos(wr)

2 EBO(R) — EBO(R) ~ )

Floquet surfaces EF(R,t), time dependent only via the
envelope F(t) of the laser, are calculated by diagonalizing
the Floquet matrix [29,30] (for details, see also Ref. [24]).

Figure 1 shows the two lowest BOSs, the corresponding
IBOSs, and two relevant FSs for the model system (1) using
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FIG. 1. The two lowest BOSs and IBOSs (for | cos wt| = 1), the
excited BOS shifted down by 7w (light gray), as well as the two FSs
(Ow and 1w FS) forming the one-photon crossing for a A = 225 nm

laser with I = 10" W/cm?. The vertical arrow of length /iw marks
the one-photon resonance between the BOSs.

a laser intensity of I =10 W/cm?. The different time
dependence of the PES is visualized in the Supplemental
Material [28]. The displayed PES look very different, although
they do have some common aspects: The IBOSs are identical
with the BOSs whenever cos wt = 0. The FSs are piecewise
equal to BOSs, appropriately shifted by the photon energy
hw (dressed BOSs). The decisive difference between the PES
concerns their behavior just at the one photon resonance
located at R ~ 3.5 a.u. Whereas BOSs and IBOSs do not
show any peculiarities, the FSs exhibit an avoided crossing.
These typical crossings are the crucial difference to all other
PES. The resulting gap size (even tunable by the electric field
strength) allows for both deterministic evolution on one FS
surface (without hops) or stochastic dynamics on both FS
(with hops). To what extent this peculiarity favors the use
of FSs in corresponding SH schemes will be analyzed in the
comprehensive dynamical calculations in Sec. III.

B. Surface hopping methods on different PES
(BO-SH, IBO-SH, F-SH)

In Sec. III, we will compare numerical results obtained
with different hopping methods, namely BO-SH (hopping
between BOSs), IBO-SH (hopping between IBOSs), and
F-SH (hopping between FSs). All these hopping methods are
based on Tully’s fewest switching algorithm [1], where the
time evolution of an electronic wave function determines the
hopping probability for classical nuclear trajectories between
different PES. Details of the hopping methods and their
numerical implementation are given and discussed in our
previous work for BO-SH [31-34] and FS-H [24]. For IBO-
SH, we adopt the method presented in Refs. [19,20].

As discussed in Sec. IT A, the various PES are quite dif-
ferent. In addition, the hopping schemes using these surfaces
differ considerably in the way how hops are performed. If a
hop occurs in BO-SH, the trajectory is set onto the new BO
surface. The momentum of the trajectory is strictly conserved,
assuming that the energy difference before and after the
hop is provided by the laser field [35]. If a hop occurs in

063424-2



SURFACE HOPPING IN LASER-DRIVEN MOLECULAR ...

F-SH, the trajectory is set onto the new Floquet surface. The
laser-molecule interaction is incorporated into the Floquet
surfaces, and thus the energy is strictly conserved. Therefore,
the momentum after the hop is adjusted to match the new
kinetic energy. If a hop would result in negative kinetic energy,
it is considered classically forbidden and rejected. If a hop
occurs in IBO-SH, the trajectory is set onto the new IBO
surface. The use of IBO-SH comes with some peculiarities
concerning energy and momentum conservation. We apply the
ratio method, developed in Ref. [20]. This method proposes
a weighted conservation of energy and momentum, based on
the ratio of different contributions to the hopping probability
(see Sec. 3 in Ref. [20]). The ratio method manages to
connect special cases of strict momentum and strict energy
conservation, resulting, however, in neither strict momentum
nor strict energy conservation for most cases. Hops which
result in negative kinetic energy are rejected.

C. The exact factorization theory and propagation on the EPES

In this section, we briefly summarize the exact factorization
theory of the time-dependent electron-nuclear wave function
[25,36], the calculation of the EPES, and the classical
equations of motion in the quantum-classical limit of the
theory.

The full wave function, to be obtained by numerically
solving the TDSE for our model system (1), is factorized to
read

V(R,r,1) = X(R,1)pg(r1), (6)

with a nuclear part

X(R,1) = ei””,/ / dr|y(R,r,0)|2, (7)

and an electronic part
V(R,r1)
X(R,0)

The phase S(R,t) is determined in a gauge with vanishing
vector potential

¢r(r.1) = ®)

A(R,t) = —i /dr Gr(r)drpr(r,t) =0 ©)]

and reads
R Im{ [dry (R ,r,t)0p W (R ,r,t
S(R,t):/dR’ Ldry ,)sz( )}. (10)
Ro |x(R',1)|
In the same gauge, the EPES is calculated as (see Ref. [36])
0 x(R,t Arx(R,t
e(R,z):i’X( ) rRX( ). (11
x(R,t) — 2Mx(R.1)

In the quantum-classical limit, the exact force on the
nuclei is given by the gradient of the EPES. We use this
to perform ESD calculations (deterministic propagation of
classical nuclear trajectories on the EPES obtained from the
TDSE solution of the specific scenarios) for our comparative
numerical studies in Sec. III.

The EPES may still be shifted (globally) by a constant to
fix the gauge entirely. We use this later to shift the EPES
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FIG. 2. Wave packet of the TDSE for scenario 1 (thin black line),
together with the ground-state BOS, the 1w FS, and the EPES at
t =25fs.

towards the Floquet surfaces in Figs. 2 and 4. Furthermore,
for the comparison of Floquet surfaces and EPES, the latter
is averaged over one optical cycle of the laser T = 27 /w ~
0.8 fs. The averaged EPES reads

1 T/2
€(R,t) = —/ dr'e(R,t). (12)
T J_rp
The difference between € and € mainly consists in an
oscillation of € around € with twice the laser frequency and
an R-dependent amplitude (see also the visualization in the
Supplemental Material [28]).

III. RESULTS

To validate surface hopping for laser-driven molecular
dynamics and to unambiguously demonstrate the differences
between surface hopping using BO surfaces, IBO surfaces,
and Floquet surfaces, we present exemplary calculations for
generic scenarios of molecular dissociation in this section.
In these calculations, we will consider the most detailed
observable quantity of all, namely the resulting nuclear prob-
ability density in position and momentum space. This allows
for a direct comparison of the quantum-classical dynamics
with the exact wave-packet dynamics of the TDSE and
excludes artificial agreement between the different methods
in (possibly) insensitive integral quantities. For the classical
initial conditions, we use the Wigner distributions of the
exact initial quantum wave packets (see Appendix A). The
various methods to be applied are outlined Sec. II (and
references therein); additional information about the numerical
implementation is given in Appendix B.

In the following, we will consider various dissociation
scenarios with initial conditions which ensure extremely
different mechanisms.

A. Scenario 1 (photon absorption)

The first scenario is designed to steer the molecule into the
bond-softening dissociation channel. The H,"-like molecule
(M =918 a.u.) is initially in the electronic ground state. The
nuclei are assumed to be in an excited state constructed by pro-
viding an additional momentum of —2.5 a.u. to the vibrational
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FIG. 3. The nuclear densities for scenario 1 at ¢t = 25 fs, obtained
by solving the TDSE and with the different quantum-classical
methods, in position (left panel) and momentum space (right panel).
In the inset, the electric field and the envelope of the laser are shown.

ground state v = (. This choice guarantees both a sufficiently
large bond-softening dissociation probability together with
classical initial conditions in terms of positive Wigner distribu-
tions (Appendix A). Pronounced bond-softening dissociation
probabilities can also be realized by starting with certain
excited vibrational eigenstates, for which, however, the Wigner
distributions are not positive (Appendix A). The molecule is
exposed to a cw laser with I = 10'> W/cm? (same as used
for Fig. 1), switched on with a sin?-shaped ramp (see inset in
Fig. 3).

We will first discuss the exact quantum-mechanical prop-
agation of the system. In Fig. 2, the resulting wave packet
of the TDSE at ¢ = 25 fs is shown. Most of the initial wave
packet remains bound, localized at the equilibrium distance at
R ~ 2.5 a.u. The dissociating part exhibits a maximum at R &~
9 a.u. In Fig. 3, it is presented together with the momentum
distribution of the whole wave packet. The dissociating part is
sharply localized at P =~ 13.5 a.u. The corresponding kinetic
energy release of the fragments of P2/2M ~ 0.1 a.u. equals
the difference between the photon energy Ziw = 0.2 a.u. and
the binding energy of the molecule in its vibrational ground
state of Ey =~ 0.1 a.u. This perfect energy balance strongly
suggests (although does not yet conclusively prove) that one
photon absorption is the dominant dissociation mechanism. So
much about the exact solution of the problem.

The interesting question now is how the EPES of this
scenario, calculated from the exact solution of the TDSE,
compares to the different PES discussed above and presented
in Fig. 1. In Fig. 2, the ground-state BOS, the 1w FS, and
the EPES are shown at t = 25 fs. The EPES is averaged over
one optical cycle of the laser; the whole time dependence of
the EPES and of the 1w FS is visualized in the Supplemental
Material [28]. Evidently, and indeed surprisingly, the averaged
EPES and the 1w FS coincide perfectly at all distances and all
times. Hence, the deterministic quantum-classical dynamics
on both surfaces is definitely the same. To a large extent, this
should hold also for an ensemble of trajectories in ESD and full
F-SH calculations, as long as the number of hops per trajectory
N between FS remains very small (N < 1). This is indeed the
case (see Table I) and can also be expected from the discussion
of Fig. 1. Hence, and now not surprisingly, the nuclear densities
obtained with ESD and full F-SH calculations are nearly equal
(see Fig. 3). In addition, they do compare nicely with that of
the TDSE in position as well as in momentum space. Finally,
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TABLE I. The average number of hops per trajectory in the
different surface hopping methods for the investigated scenarios.

Method  Scenario 1 (cw) Scenario 2a (pulse) Scenario 2b (cw)

BO-SH 2.6 1.0 15.7
IBO-SH 2.9 2.5 559
F-SH 0.01 0.6 0.7

the analysis of the dynamics in terms of FSs confirms directly
the upper assumed one-photon absorption mechanism.

The nuclear densities calculated with BO-SH and IBO-SH
are in striking qualitative disagreement with that obtained
by the other methods (see Fig. 3). In position space, no
distinct maximum around R = 9 a.u. is present. In momentum
space, the high-energetic peak around P = 13.5 a.u. is totally
missing. Any dissociation of the molecule on these surfaces
requires stringently a certain number of hops (see Fig. 1),
which do occur (see Table I) but, at the same time, lead to
fundamentally different nuclear dynamics.

Summarizing this part, we found, somewhat surprisingly,
that the EPES can coincide with a single FS. In this case,
the nonadiabatic dynamics proceeds deterministically, i.e.,
without any hops in the F-SH procedure. In the following, we
will consider a scenario where hops between FSs stringently
do occur.

B. Scenario 2a (photon emission in a laser pulse)

ANa;-like molecule (M = 23 x 918 a.u.) is initially lifted
into its first excited electronic state (first excited BO state).
The initial nuclear state is the Franck-Condon projection of
the vibrational ground state v = 0 onto the eigenstates of the
nuclei in the potential energy surface of the excited electronic
state (see wave packet at t = 0 in Fig. 4). The molecule is
exposed to a short Gaussian-shaped laser pulse of 7 fs duration
(full width at half maximum of the intensity), wavelength of
A = 225 nm, and peak intensity of / = 3 x 10'2 W/cm? (see
inset in Fig. 5). The laser envelope is tuned such that the wave
packet passes the one-photon resonance when the maximal
intensity is reached, which itself is chosen such that the wave

t=0fs t=15fs t=30fs FSs
-0.3
wn EPES
s 0 _/\_/\
-lw

0w
\..I'rrrrrr.-.-.-.-.-,-..l

5 6 7
distance R (a.u.)

-0.7

N asvr,,
-0.6 "
4

2 3

FIG. 4. Wave packet of the TDSE for scenario 2a (snapshots at
t =0, 15, and 30 fs; thin black lines with different scales), together
with the relevant FSs and the EPES. For R > 5.5 a.u., the EPES is
also plotted shifted down to the Ow FS.
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FIG. 5. The nuclear densities for scenario 2a at t =40 fs,
obtained by solving the TDSE and with the different quantum-
classical methods, in position (left panel) and momentum space (right
panel). In the inset, the electric field and the envelope of the laser pulse
are shown.

packet splits into two nearly equal parts during the dynamics
[37].

Again, we will first discuss the exact wave-packet dynamics
resulting from the TDSE. It is depicted at different times
t =0,15,30 fs in Fig. 4. The final nuclear densities of the
TDSE in position and momentum space are given in Fig. 5,
at t = 40 fs. As clearly seen, the initial wave packet is split
into a fast-moving part (with mean momentum of P ~ 95 a.u.)
and a slow-moving part (with P & 35 a.u.). The mean kinetic
energy of the fast one P?/2M ~ 0.21 a.u. corresponds to the
energy difference on the excited BOS between the initial mean
internuclear distance of R ~ 2.5 a.u. (E ~ —0.46 a.u.) and the
final one of R ~ 8 a.u(E ~ —0.67 a.u.), reflecting free motion
(sliding down) on this surface as dissociation mechanism.
On the other hand, the mean kinetic energy of the retarded
part P2/2M = 0.03 a.u. is smaller by almost one photon
energy fiw = 0.2 a.u., suggesting (but not definitely proving)
stimulated photon emission as the dissociation mechanism for
this fraction of the wave packet.

In Fig. 4, snapshots of the corresponding EPES as well
as of the Ow and —lw FSs are presented (a time-dependent
visualization is given in the Supplemental Material [28]).
Field-free FSs are generally identical with BOSs, dressed
by a certain number of photons. The EPES, respectively its
gradient, also coincides with BOSs, in the field-free case
[6]. Thus, at + =0 the first excited BOS is equal to the
EPES as well as the —1w FS (in our notation). The Ow FS
equals the ground-state BOS, dressed (shifted up) by one
photon. After the pulse at + = 30 fs, the FSs change their
assignment with respect to the (dressed) BOSs. The EPES,
however, and indeed somewhat surprisingly, coincides with
the (one-photon-shifted) ground-state BOS (and the — 1w FS)
in the range of the retarded part of the wave packet, and
with the excited BOS (and the Ow FS) in the region of the
fast-moving part. We note in passing that this already proves
the interpretation of the dissociation mechanisms for both parts
of the wave packet given above.

During the laser pulse (+ = 15 fs in Fig. 4), the EPES
does not coincide with one of the other surfaces. Its al-
ternating gradients lead, at the same time, to acceleration
and deceleration of certain parts of the wave packet of
the TDSE, resulting in the splitting of the wave packet.
This pure quantum mechanical effect survives the crude
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quantum-classical approximation in terms of decelerated
and accelerated classical trajectories in appendant ESD cal-
culations, which is convincingly demonstrated in Fig. 5.
The nuclear densities, resulting from the deterministic ESD
calculations, are in excellent agreement with that of the TDSE
in position as well as in momentum space.

As an important result of this work, it will be shown
in the following that the same mechanism can be clearly
understood and adequately described also with the stochastic
SH methodology, provided FSs are applied. In Fig. 4, both
relevant FSs are shown at r = 15 fs. They exhibit a typical
avoided crossing located at the one photon resonance (R ~
3 a.u.). This crossing induces a strong nonadiabatic coupling
between both surfaces. Thus, in classical F-SH calculations,
trajectories staying on the upper FS are decelerated owing
to the loss of one photon. Trajectories performing one hop
between the upper and lower FS are further accelerated and
slide down the initial excited BOS. The almost equal partition
of both types of trajectories (see number of hops per trajectory
in Table I) will lead to an almost symmetric splitting of the
nuclear density in position space with two pronounced maxima
in momentum space. The results of the dynamical F-SH
calculations are in intriguing agreement with ESD calculations
as well as the TDSE solution (see Fig. 5).

Avoided crossings, located at photon resonances, basically
do not exist between BOSs and IBOSs, owing to their
photonless definition. On the other side, it is just the addi-
tional nonadiabatic coupling ~R{®_;,|drPo,) between the
Floquet states |®), which leads to the different dissociation
mechanisms [24]. Hence, it is not very surprising that the
SH calculations with BOSs or IBOSs yield nuclear densities
which disagree, even qualitatively, with that of F-SH (see
Fig. 5). In these approaches, hops are (mainly) created by
the laser-induced coupling (~R F(t) cos wt for BOSs [24]; see
Ref. [19] for IBOSs) and do occur at all internuclear distances.
Accordingly, the number of hops is distinctly larger than in the
F-SH approach (middle column in Table I).

C. Scenario 2b (photon emission in a cw-like laser)

To further examine the different SH methods, we repeat the
dynamical calculations of scenario 2a, but replace the short
laser pulse by a cw-like laser (see inset in Fig. 6). From
the discussion above, the results of the F-SH calculations
are expected to remain largely unaffected by this change,
because the whole dissociation process is determined during
a short time interval of about 15 fs where both laser fields

5 1.0} == TDSE laser
; == ESD | P .,“yu!l\WI'|U|U|!W“WUHWUNWW " 0.06
go_g — ;’g:H i o ui'“l“l“““MMM ‘.
§0-6 — IBO-SH 0 10 t2(]95) 30 40, 0.04
0.4t t—40fs Ja\
s 0.02
S 0.2
2 / AN

0'03 4 5 6 7 8 9 20 40 60 80 100 0.00

distance R (a.u.) momentum P (a.u.)

FIG. 6. The nuclear densities for scenario 2 at t = 40 fs, using a
cw-like laser (see inset) instead of a finite pulse.
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are practically equal (cf. insets in Figs. 5 and 6). Indeed,
the calculated nuclear densities are nearly identical with that
obtained for the short laser pulse (cf. nuclear densities in Figs. 5
and 6). In addition, they do agree nicely with that of the TDSE
and ESD. In striking contrast, the nuclear densities calculated
with BO-SH or IBO-SH for the cw-like laser are drastically
different from that obtained for the short pulse (cf. Figs. 5
and 6). This unphysical behavior results from the artificial
large number of hops (see last column in Table I) which, in
addition, will further increase in time (up to N — oo!) in both
approaches.

IV. SUMMARY AND OUTLOOK

We have performed a comprehensive study of the laser-
driven dynamics, using different quantum-classical approxi-
mations of the TDSE for electrons and nuclei. We have shown
that the inherently deterministic propagation of the nuclei on
the EPES can be well described by stochastic motion on several
surfaces mediated by hops between them, provided FSs are
used. Both methods (ESD and F-SH) deliver the same results
which, in addition, are in excellent agreement with the exact
wave-packet dynamics of the full electron-nuclear TDSE.
The studies justify the SH methodology for the laser-driven
case. At the same time, the investigations also conclude the
present, controversially led debate about the applicability of
BOSs or IBOSs in SH schemes [10-12], because both are not
appropriate. These conclusions are valid for (and at the same
time limited to) laser fields where the Floquet treatment of the
time-dependent Hamiltonian approximately applies.

Whereas the solution of the full electron-nuclear TDSE is
restricted to small model systems, the SH approach can be
applied to realistic systems and should, as we have shown,
reproduce the correct laser-driven dynamics as long as the
stochastic hopping is done between Floquet surfaces.
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APPENDIX A: CLASSICAL INITIAL CONDITIONS

In Sec. I1I, we compare quantum-classical nuclear densities
(obtained with different quantum-classical methods) with
the exact quantum-mechanical nuclear density (obtained by
solving the TDSE). This comes with some constraints in the
initial conditions. The appropriate choice of initial conditions
for an ensemble of classical nuclear trajectories in a quantum-
classical calculation is a fundamental question of general
interest, which we do not want to address here. Focusing on the
nuclear probability density as observable, however, the initial
conditions must lead to a quantum-classical nuclear density
identical to the nuclear density of the corresponding quantum
state, att = (0. One way to satisfy this is to sample the classical
initial conditions (in phase space {R, P}) from the Wigner
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FIG. 7. The Wigner distribution for the vibrational states v =
0,1,2,3 for the H;’-like model. The black line shows the accessible
phase space for a classical trajectory propagated in the BO ground-
state surface with the corresponding vibrational energy E, .

distribution of the initial nuclear quantum state ¢(R,t),

Woio) (R, P) = 27 f do e“’%(R + %m)

X (p*<R — %,Io).

The reader not familiar with the Wigner distribution is
encouraged to have a look at Ref. [38]. W(R, P) fulfills

(Al)

/ dPW,u)(R,P) = |p(R,1)|? (A2)

and

[arwao P = tpipp. (A3)
such that the quantum-classical nuclear densities at t = 0 are
identical to the nuclear density of the initial quantum state,
in position space as well as in momentum space. The time-
dependent Wigner distribution can be obtained by solving the
TDSE for the corresponding state |¢(¢)), or by solving the
Wigner-Liouville equation for Wy,—o)(R, P) (see Ref. [38]).
In Fig. 7, the Wigner distributions of the first four
vibrational states for our H;r -like model are shown. It becomes
apparent that the phase space distribution W (R, P) is remark-
ably different compared to the phase space accessible by a
classical trajectory, propagated in the ground-state BOS with
the corresponding vibrational energy E,,. Figure 7 furthermore
reveals that the Wigner distribution is negative in wide phase
space regions for v = 1,2,3. These large regions of negative
values are well understandable, since the Wigner distributions
of orthogonal quantum states are orthogonal,
(p1lg2) =0 & /dePle Wy, = 0. (A4)
Thus, with the positive Wigner distribution of the vi-
brational ground state v = 0, the Wigner distributions of
all excited vibrational states will take negative values in
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considerable phase space volumes to satisfy (A4). The role
of positive and negative values in W(R, P) is crucial when
calculating observables, e.g., the nuclear densities (A2) and
(A3). Even in cases where the full Wigner-Liouville dynamics
only marginally deviates from purely classical dynamics, the
balance of positive and negative trajectories is disturbed. The
predictions for observables, calculated by an ensemble of
classical trajectories, become physically meaningless. This
restricts quantum-classical calculations to initial quantum
states with positive Wigner distributions. A valid choice is
the vibrational state v = 0, or any wave packet which leads to
a positive Wigner distribution, e.g., the initial states used in
Sec. III.

APPENDIX B: NUMERICAL DETAILS
1. Numerical solution of the TDSE

To obtain the full time-dependent electron-nuclear wave
function for the calculation of the EPES and the quantum-
mechanical nuclear probability density, we solve the TDSE

ioy(R,r,t) = H(R,r,t)Y(R,r,t) B

for the model system defined by the Hamiltonian (1) using the
second-order split-operator method on a grid. The grid spans
from R = 0 a.u.to R = 20 a.u. for the nuclear bond length and
fromr = —20 a.u. tor = 20 a.u. for the electronic coordinate.
This small grid is sufficient for the investigated examples. To
prevent unphysical reflections, the values of the wave function
near the grid boundaries are damped by an absorber function.
For the H,"-like model (M = 918 a.u.), we use 512 grid points
for the electron as well as the nuclei. For the Na," -like model
(M =23 x 918 a.u.), we use 512 grid points for the electron
and 32 x 512 grid points for the nuclei. The relatively large
number of nuclear grid points is due to the larger nuclear
momenta and necessary for convergence of the calculation of
the EPES. We use a time step of Az = 0.1 a.u. in all cases.

2. Details for the surface hopping calculations (BO-SH,
IBO-SH, F-SH)

To obtain the quantum-classical nuclear densities with
BO-SH, IBO-SH, and F-SH, an ensemble of N = 100000
independent classical trajectories is propagated using the
respective hopping scheme to mimic the quantum-mechanical
wave packet dynamics. The large number of trajectories is
not necessary for convergence but favorable for binning and
displaying the resulting nuclear probability densities. The
classical initial conditions are discussed in Appendix A. The
trajectories are propagated using the leap-frog algorithm with
atime step At = 0.01 a.u. Simultaneously, for each trajectory,
a TDSE for the electronic wave function is solved in basis
expansion. Following Tully’s fewest switching algorithm [1],
the time evolution of this wave function determines the
hopping probability between different PES. The electronic
wave function is expanded into the two lowest BO states
(BO-SH and IBO-SH) or into dressed BO states (F-SH; see
Ref. [24]). This wave function is then transformed into the
basis of IBO states for IBO-SH, and into Floquet states for
F-SH. For more detailed information on the calculation of
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the hopping probabilities and how hops are performed, see
Sec. II B and references therein.

BO-SH is the numerically most efficient of the considered
SH schemes, closely followed by IBO-SH. F-SH requires the
use of a larger basis for the propagation of the electronic
wave function, which leads to a larger numerical effort (in
the examples for Sec. III, the computation time for a F-SH
trajectory is about three times larger than for a BO-SH
trajectory).

3. Details for the exact surface dynamics (ESD)

For the propagation of classical trajectories on the EPES,
the same initial conditions and numerical parameters as for
the surface hopping methods are used (see Sec. B 2). We note
that, for the chosen laser parameters and nuclear masses, the
nuclear probability densities obtained with classical trajecto-
ries propagated on the EPES ¢ and the time-averaged EPES &
[see (11), resp. (12)] are practically identical.

APPENDIX C: VISUALIZATION OF PES AND NUCLEAR
DENSITIES (MOVIES)

In this section, we briefly discuss the movies provided with
the Supplemental Material [28].

The movie “figurel.mov” is a time-dependent version of
Fig. 1. It shows BO, IBO, and Floquet surfaces for the H2+-like
model system for the first 10 fs of the laser used in scenario 1.
The differences between the surfaces (time-independent BO
surfaces, slowly time-dependent Floquet surfaces, and rapidly
oscillating IBO surfaces) are apparent.

The movie “scenariol.mov” is a time-dependent version of
Fig. 2. It shows the time-dependent nuclear density, obtained
by solving the TDSE, alongside with the ground-state BO
surface and the Floquet surface relevant for one-photon
dissociation. The EPES as well as the EPES averaged over one
optical cycle of the laser are shown in regions of nonvanishing
nuclear density. While the oscillation of the EPES is similar
to that of the IBO surfaces, the shape of the EPES is already
clearly comparable to the Floquet surface. Averaging the EPES
over one optical cycle yields a surface remarkably close to the
Floquet surface, in shape and time dependence. For the chosen
nuclear mass and laser parameters, the oscillation of the EPES
has practically no impact on the classical nuclear dynamics.

The movie “scenario2.mov” is a time-dependent version
of Fig. 4. Also this movie shows the time-dependent nuclear
density, obtained by solving the TDSE, alongside with the
ground-state BO surface and the two relevant Floquet surfaces.
The EPES in regions of nonvanishing nuclear density is shown
twice, clamped at the different Floquet surfaces. After the
nuclear density passed the region of resonant one-photon
emission, the EPES forms a cone, actively splitting the
classical nuclear density propagated on it (not shown) into
the two peaks also observed in the exact TDSE dynamics.
The gradient of the EPES left (right) of the cone is practically
identical to the gradient of the upper (lower) Floquet surface.
As shown in Sec. III, F-SH also yields the correct splitting,
due to the hopping during the laser pulse.
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