
© 2017 José A. Flores-Livas et al., published by De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Nov. Supercond. Mater. 2017; 3:6–13

Research Article Open Access

José A. Flores-Livas, Antonio Sanna, and Stefan Goedecker

Accelerated materials design approaches based
on structural classification: application to low
enthalpy high pressure phases of SH

3
and SeH

3

DOI 10.1515/nsm-2017-0002
Received November 5, 2016; accepted January 18, 2017

Abstract: We propose a methodology that efficiently ass-

eses major characteristics in the energy landscape for a

given space of configurations (crystal structures) under

pressure. In thisworkwe study SH
3
and SeH

3
, both of fun-

damental interest due to their superconducting properties.

Starting from the crystal fingerprint, which defines config-

urational distances between crystalline structures, we in-

troduce an optimal one dimensional metric space that is

used to both classify and characterize the structures. Fur-

thermore, this is correlated to the electronic structure. Our

analysis highlights the uniqueness of the Im − 3m phase

of H
3
S and H3

3
Se for superconductivity. This approach is

an useful tool for future material design applications.

The theoretical prediction by Duan et al. [1] and the

successful experimental discovery by Drozdov et al. [2] of

superconductivity in H
3
S at 200 GPa, with the record crit-

ical temperature (T
C
) of 203 K, rekindled the century-old

dream of a room temperature superconductor. A plethora

of hydrogen rich materials have been proposed in the

quest for novel high-T
C
superconductors, as the presence

of hydrogen seems to be fundamental to reach the very

high phonon frequencies, strong electron-phonon cou-

pling, and thereforehigh critical temperatures [3–6]. Ama-

jor emphasis has been given to the class of hydrides [7–19]

such as silane [8, 20–23], disilane [24], sulfur hydride [25–

33], sodium hydride[34], to name a few.

It is clear that in this research field a key role is played

by materials design algorithms [35, 36] both providing

predictions [1, 37, 38], prior to experiments, and help-

ing with their interpretation afterwards [39–44]. Several

of these computational synthesis tools exist: evolutionary
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based algorithms [45], particle swarm optimization [46],

random sampling methods [47], and hopping based algo-

rithms [48], to name a few.

What all these tools have in common is the use den-

sity functional theory (DFT) as the workhorse to evalu-

ate energy and forces due to its reasonable accuracy for a

relatively moderate computational cost and overall repro-

ducibility [49].Within the global optimization codes, what

the routines usually do is to rank structures according to

their total energy. One usually expects that the absolute

enthalpyminimum is the one experimentally realized and

many significant predictions have been made in this way.

However, due to the limited intrinsic precisionofDFT func-

tionals, to the accuracy limit of the computational meth-

ods, as well as the non ideal experimental conditions (for

instance under high pressure non hydrostaticity can play

an important role in the synthesis), all the low enthalpy

structures may be experimentally relevant as in the case

discussed in Ref. [39].

In this work we consider hydrogen sulfide and hydro-

gen selenide systems, also studied in Ref. [37], as test case

to present a method for the characterization of structures

based onfingerprint classification of energetically compet-

itive structures, i.e. in the vicinity of the global minimum

structure. We will focus on some key aspects of this clas-

sification, in particular on the problem of structural simi-

larity, and the relation with electronic properties. Besides

the possible experimental relevance of the set of these low

enthalpy structures, as mentioned before, this approach

is also useful post-analysis to help in the characteriza-

tion of the configurational energy landscape for finite sys-

tems, and could be used to improve crystal prediction al-

gorithms.

We start from the calculation of the energetically com-

petitive structures in H
3
S and H

3
Se at high pressure found

by the crystal prediction minima hopping method [48] at

the level of DFT (sec. 1). We then analyze the predicted

structures by means of the structural fingerprint method

as introduced by Zhu et al [50, 51] (sec. 2). Based on this

structural fingerprint, we define an optimal one dimen-
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Accelerated materials design approaches based on structural classification | 7

sional classification (sec. 3.1) that further is correlated to a

more general trend, the electronic density of states (DOS).

1 Computational Details
Structural data was generated by using ab initio crystal

structure prediction,minima hoppingmethod (MHM) [52].

Givenonly the chemical composition of a system, theMHM

aims at finding the global minimum on the enthalpy sur-

face while gradually exploring low-lying structures. This

method has been successfully used for global geometry

optimization in a large variety of applications [53–57]. Pre-

viously we have explored selenium and sulfur hydride un-

der pressure with MHM [37]. We have restricted the study

to considered only simulations cells with single formula

unit of Se and S -H
3
at different pressures between 50

and 200GPa. Once identified the global minimum, we al-

low the algorithm to visit even higher energy structures up

to 2 eV. Hundred’s of visited structures were relaxed with

tight convergence at the density-functional theory level

using the Perdew-Burke-Ernzerhof exchange-correlation

function [58] and plane-wave basis set with of 900 eV was

used to expand the wave function together with the pro-

jector augmented wave (PAW) method as implemented

in the Vienna ab initio simulation package VASP [59].

Monkhorst-Pack grid meshes with spacing of 2π×0.15Å
were used, resulting in total energy convergence to better

than 2meV/atom and forces on the atoms were less than

2meV/Å and the resulting stress less than 1 kB.

2 The Crystal Fingerprint method
In order to characterize a crystal structure in condensed

matter physics it is most convenient to adopt a Bravaisma-

trix and base representation, that allows for a clear de-

scription of symmetry properties and therefore is optimal

for computational purposes. However, while this descrip-

tion is excellent to characterize a single system, the de-

scription becomes inefficient when comparing hundreds

of different crystals closely related, simply because com-

parisons are not straightforward due to the non-unique

representation; the same crystal may be described with an

infinite number of different, but equivalent ways. This is

the typical situation when working with structures gener-

ated by crystal structure prediction methods. One there-

fore has to introduce alternative descriptions that allow

to compare structures on an unambiguous ground. The

initial aim of the crystal fingerprints was to solve a very

specific problem, to classify and remove duplicate crys-

tal structures from the results generated by crystal predic-

tion methods. Early work by Oganov-Valle in fingerprints

were developed based on local atom distances and ana-

lyzed in diffraction spectra type plots [60]. Another inter-

esting approach to this problem was proposed by Ceriotti

et al. [61], in which they analyzed the pairwise distribu-

tion distances between frames (molecules) and reduced

the high dimensional free-energy surface to a sketch map,

see for instance Ref. [62]. Another successful crystal repre-

sentation inspired by radial distribution functions as used

in the physics of X-ray powder diffraction, was introduced

by Glawe et al. [63] and used for machine learning algo-

rithms. In this work we will use the configurational finger-
print approach, and correlate it to the electronic structure
of high temperature superconducting materials, thus we

briefly review in this section [50, 51].

For each atom k in a crystal located at Rk, we obtain a
cluster of atoms by considering only those contained in a

sphere centered at Rk. For this cluster, one calculates the
overlap matrix elements Ski,j as described in Ref. [51] for a

non-periodic system, i.e., we construct on each atom one

or several Gaussian type orbitals and calculate the result-

ing overlap integral. The orbitals are indexed by the letters

i and j and the index w(i) gives the index of the atom on

which the Gaussian Gi(r) is centered, i.e.,

Ski,j =
∫︁
drGi(r - Rw(i))Gi(r-Rw(j)) (1)

In this first step, the amplitudes of the Gaussians c
norm

are chosen such that the Gaussians are normalized to one,

and the width of each Gaussian Gi(r) is given by the co-

valent radius of the atom w(i) on which it is centered. To

avoid discontinuities in the eigenvalues when an atom en-

ters into or leaves the sphere, a second step constructs a

matrix Tk such that

Tki,j = fc(|Rw(i) − Rk|)S
k
i,j fc(|Rw(j) − Rk|). (2)

The cutoff function fc smoothly goes to zero on the sur-

face of the sphere with radius

√
2nσc,

fc =
(︂
1 −

r2

2nσ2c

)︂n
. (3)

In the limit where n tends to infinity, the cutoff func-

tion converges to a Gaussian of width σc. This character-
istic length scale is typically chosen to be the sum of the

two largest covalent radii in the system. The value n de-

termines how many derivatives of the cutoff function are

continuous on the surface of the sphere (in our case n = 3

was used). One can consider the modified matrix Tk to be
the overlap matrix of the cluster where the amplitude of
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8 | José A. Flores-Livas, Antonio Sanna, and Stefan Goedecker

Figure 1: (Top panels) show the correlation between the enthalpy difference (eV/unit cell) and the fingerprint distance (arbitrary units) for
H
3
S at 100GPa and 200GPa and (Bottom panels) for H

3
Se at 50GPa and 150GPa. Each point in the plot correlates energy difference and

fingerprint distance between two structures. For each set of structures, the enthalpy difference is with respect to the global minimum.
Based on energetics, different structures are distinguishable above 10meV (1E-02 eV/u.c.); below this threshold the structures are consider
identical. Indicated in yellow areas is the fingerprint "gap", in which the function differentiates between structures.

the Gaussian at atom i is determined by c
norm

fc(|Ri − Rk|).
In this way atoms close to the surface of the sphere give

rise to very small eigenvalues of Tk and are weighted less
than the atoms closer to the center.

The eigenvalues of this matrix Tk are sorted in de-

scending order and form the atomic fingerprint vector Vk.
¹ The Euclidean norm |Vk − Vl|measures the dissimilarity

between the atomic environments of atoms k and l.

1 Since one cannot predict exactly how many atoms will be in the

sphere, we estimate amaximum length for the atomic fingerprint vec-

tor. If the number of atoms is too small to generate enough eigenval-

ues to fill up the entire vector, the entries at the end of the fingerprint

vector are filled up with zeros. This also guarantees that the finger-

print is a continuous function with respect to themotion of the atoms

when atoms might enter or leave the sphere. If an atom enters into

the sphere, some zeros towards the end of the fingerprint vector are

transformed in a continuous way into some very small entries which

only contribute little to the overall fingerprint.

The atomic fingerprintsVpk andV
q
k of all the Nat atoms

in two crystalline configurations p and q can now be used

to define a fingerprint distance (FD) d(p, q) between two

crystals,

d(p, q) = minP

(︂ Nat∑︁
k

|Vpk − V
q
P(k)|

2

)︂
1/2

(4)

where P is a permutation functionwhichmatches a certain

atom k in crystal p with atom P(k) in crystal q. The op-
timal permutation function which minimizes d(p, q) can
be foundwith the Hungarian algorithm [64] in polynomial

time. If the two crystals p and q are identical, the Hungar-
ian algorithm will in this way assign corresponding atoms

to each other. The Hungarian algorithm needs as its input

only the cost matrix C given by

Ck,l = |Vpk − V
q
l |
2

. (5)

A key concept is that d(p, q) satisfies the properties of
a metric, positiveness, symmetry, coincidence axiom and
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the triangle inequality, and have been demonstrated in the

work by Zhu et al.[50]. We restrict this study only to the

use of Rk typical s-type Gaussian orbitals with centered

spheres (with about 80-120 atoms).

3 Results
In Fig 1 we plot the FD versus enthalpy difference. For the

low pressure case of H
3
S we consider 63 structures, for the

high pressure (200GPa) 423 structures. H
3
Se contains 227

for the low pressure and 241 structures for the high pres-

sure. Each point in these plot correlates energy difference

and fingerprint distance between two structures. For each

set of pressure, the energy difference is with respect the

global minimum. An ideal fingerprint produces, in these

type of plots, a clear gap along the FD axis, clearly sepa-

rating structures that are classified as identical from those

that are different. In bothmaterials, independently of pres-

sure there is a clear distinguishable gap. After visual in-

spection of the structures, we observe that many of the

structures are fairly similar and hardly distinguishable by

eye, many of them only having small distortions of hydro-

gen and different vector cell description. Based on ener-

getics, and after visual inspection, different structures are

distinguishable above 10meV (1E-02 eV/u.c.), below this

threshold the structure is consider identical. Fingerprint

distances (FD) > 0.1 can differentiate between structures

for the case of SH
3
at low pressure. We confirm that at

low pressure, both systems still have high molecular na-

ture, this also means that many energetically degenerated

structures are possible withing little change in their en-

ergies (we will come back to this point in the next sec-

tion). However, at high pressure the situation changes and

in both systems the fingerprint distance is shifted toward

lower FD values. For instance in H
3
S at 200 GPa FD is 4E-

02, while for selenium-hydride we found the gap for > 2E-

02 FD values. We found that there is a clear correlation in

both systems between pressure and fingerprint distance,

i.e. the gap is shifted towards lower FD values as increas-

ing pressure. This is due to the changes in the potential

energy landscape; as increasing pressure in both systems

there are much less structures with small variations in the

hydrogen positions.

3.1 Optimal 1D classification of crystal
structures

As seen in Sec. 2, the structural fingerprint maps the struc-

tures into a metric space. This allows for further analysis

but still lacks the possibility for a simple (visual) represen-

tation since this space still is a high dimensional one. For a

simply representation it would be best tomap it into an Eu-

clidean space of low dimensionality (degree two or three).

This means to associate, to each element in the set (crys-

tal), coordinates in an Euclidean space in such a way that

the distance is as close as possible to the fingerprint dis-

tance. Clearly the higher the dimension, themore accurate

would be the mapping, however at the cost of being less

intuitive the graphical representation.

Since the case of the (low enthalpy) SH
3
/ SeH

3
struc-

tures is relatively simple (and we known the global mini-

mum), we can consider for this work the case of a one di-

mensional representation, for that we introduce a rather

simple mapping algorithm and yet easily expandable to

higher dimensions:we associate to each crystal in the set a

randomposition in the one dimensional space, such away

the length scale of the distribution is of the order of the av-

erage fingerprint distance. Then we define the following

force field:

F(i, j) = sgn(xi − xj)||(xi − xj)| − d(i, j)| (6)

for all pairs of systems i, and j, where xi and xj are the po-
sition in the 1D axis. And we run dynamics. Since many

local minima exist, the operation is repeated for different

starting order (randomized) to minimize the quantity

S =
∑︁
i,j

||(xi − xj)| − d(i, j)|. (7)

This stochastic approach may require many iterations

to reach the optimal configuration especially in multidi-

mensional spaces and when large number of systems are

involved. In the systems considered in this work and for

the number of structures, the algorithm finds a minimum

within a few thousand iterations (a couple of minutes of

computing time). Other alternative to use instead, while

dealing for larger data-sets, is to resort genetic algorithms.

This have been proved to efficiently solve similar mathe-

matical problems, as in Ref. [65].

The resulting 1D optimization is shown in the bottom

panels of Fig. 2 and Fig. 3, respectively for SH
3
and SeH

3
.

First we can distinguish that structures are more clustered

at high pressure than at low pressure, this indicates that

at high pressure the crystal data-set covers all the well

defined minima, while at lower pressure a larger number
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Figure 2: (Color online) Density of states (top panels) and one dimensional classification (bottom –see text) of SH
3
structures generated by

the minima hopping algorithm, at 100GPa of pressure (left) and at 200GPa of pressure (right). The color code is used to match a structure
group with its corresponding density of states (and alphabetically labeled). The solid black lines that connect the points (bottom panels)
serve only as guide to the eye. In the structures, hydrogen is represented in white and sulfur in yellow. For each family we shown a repre-
sentative structure for the data set, depicting variations in structure motif, coordination number and bond type.

of different structures are found. These can be local min-

ima but also saddle points, since the only criterion for

their convergence is a threshold on the inter-atomic forces.

Note also that all the structures (including the lowest en-

ergy one) could beunstable towards phonondisplacement

with finite q. The full dynamic stability has to always be

verified (independently) to guarantee that a given predic-

tion is physically relevant. At lower pressures (particularly

evident for SH
3
at 100 GPa) we observe a large spread of

structures that are distributed in amorehomogeneousway

on the 1D axis. This indicates that minima in the poten-

tial energy surface are very shallow, indeed of a highly

molecular nature.We can also see thatwhenever the struc-

ture contains internal blocks of detached H
2
molecules,

the more the FD, and consequently the 1D classification,

is spread out, regardless of their energetics, see for exam-

ple set b and c for SH
3
at 200 GPa.

One of the most interesting features that result from

this type of analysis is the identification of low-enthalpy

structures, only 1D distance separated from the global

minimum. In short this points to the existence of energet-

ically plausible structures that are structure-wise very dif-

ferent from the ground state and therefore could in prin-

ciple be accessible to synthesis because they belong to a

different funnel. A funnel is the basin of attraction where

the global minimum or local minima lives, different fun-

nels are typically separated by high energy barriers and

feature distinct structures. However, there are no flagrant

cases that point to this situation in these systems, apart

from the structure group of SeH
3
at 50GPa labeled c and

b (see different motifs and similar energetics). Structure b

is the pre-cubic structure (Im − 3m) that becomes stable

at high pressure and is superconducting. Although the 1D

structure distance from c to b is not large, they are sepa-

rated enough to be classified as two different funnels, and

under further compression both, will evolve to the cubic

structure (main attractor funnel at high pressure). We can

also point out that the highlymetallic cubic structure is al-

ways localized by the classification at the (left) edge of the

set (violet circles in all classification plots) and in all cases

is well separated from the rest of the structures, indicat-

Bereitgestellt von | Max-Planck-Institut für Mikrostrukturphysik/Max Planck Institute of Microstructure Physics
Angemeldet

Heruntergeladen am | 27.02.17 15:09



Accelerated materials design approaches based on structural classification | 11

Figure 3: (Color online) Density of states (top panels) and one dimensional classification (bottom –see text) of SeH
3
structures generated

by the minima hopping algorithm. At 50GPa of pressure (left) and at 150GPa of pressure (right). The color code is use to match a struc-
ture group with their corresponding density of states (as well alphabetically labeled). The solid black line that connects the points (bottom
panels) serves only as guide to the eye. Hydrogen is represented in white and selenium in green spheres. For each family we shown a repre-
sentative structure for the data-set, depicting variation in structure motif, coordination number and bond type.

ing the uniqueness of the Im − 3m phase, in both SH
3
and

SeH
3
at high pressure.

3.2 Correlation between classification and
electronic properties

The structure fingerprint distance and the one dimen-

sional classification can be correlated to a more general

trend: the electronic density of states (DOS). For this anal-

ysis we proceed in the followingway:we compute the elec-

tronic DOS for all the systems in the sets and group them in

classes according to the similarity. This classification can

be somehow arbitrary and there are cases (structures) in

which it is not uniquely define. For that cases we compute

the occupation at the Fermi level (per structure) and build

an histogram type plot. As shown in the top panels of Fig. 2

and Fig. 3 a clear separation in families is achieved for all

the cases. The Fermi level is set to 0 eV in all the plots. Fam-

ilies are depictedwithin different colors and correspond to

the crystals depicted in the bottom panels.

The 1D classification correctly clustered structures

that are labeled as similar and that have similar DOS, after

deep investigation we did not find situations in which dif-

ferent classes (families of structures or DOS) overlap. This

means that despite of its simplicity, by mapping into the

1D Euclidean space we are able to classify different exis-

tent funnels in both compositions. It is also important to

notice that spread (structures avoid clustering, as in the

low pressure case) in the 1D classification corresponds as

well a spread in the shape of the DOS function. This be-

comes clear and perhaps considered as obvious, but it is

not trivial; we are not directly comparing the DOSwith the

crystal structure, we are stepping through several non triv-

ial steps as the conversion of crystal representation into

distances and reducing it to 1D-mapping. Therefore, our

mapping is actually allowing a direct comparison between

structures and electronic properties without the complex-

ity of the Bravais lattice representation.

From a physical point of view there are some patterns

that is worth to point out. The superconducting phase (cu-

bic/rhombohedral) Im−3m/R3m respectively at high and
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12 | José A. Flores-Livas, Antonio Sanna, and Stefan Goedecker

low pressure - see Ref. [37] for details) has always a charac-

teristic sharp peak near the Fermi level, highly metallic in

comparison with the rest of structures living in other fun-

nels, that instead tend to show a dip at the Fermi level as

in indication of a remaining molecular character in their

bonding. This mirrors the fact that the classification lo-

cates cubic/rhombohedral phases at the extreme side (in

this case left) of the configurational space.

4 Conclusions
In this work we presented a new type of analysis and clas-

sification for materials design algorithms and we applied

it for the first time to the case of high temperature, high

pressure, superconducting families SH
3
and SeH

3
. Materi-

als design algorithms are intended to compute low enthal-

phy structures of a system at a given chemical composi-

tion. However due to both the limited accuracy of calcula-

tions and the complexity of the physical conditions it is not

always the case that the experimentally synthesized sys-

tem has the lowest predicted enthalphy. It is important to

develop methods to characterize the full set of predicted

structures. Based on the structural fingerprint, we define

a metric distance between two given structures. The dis-

tances between structures are minimized with a simple

algorithm; by doing this we are able to reduce the free-

energy landscape to 1D-dimensional representation. With

this 1D-dimensional structural classification it is easy to

observe patterns of clustering of stable/metastable struc-

tures and their grouping into families. We showed that

the corresponding structural grouping also corresponds

to that of their electronic structure. From this description

it appears that the covalent bonded cubic/rhombohedral

phase responsible for the measured high T
C
is unique. Fi-

nally, our post 1D-dimensional analysis could be useful in

genetic-based algorithms for crystal prediction: identify-

ing outsiders at each generation and keeping a good as-

set of novelty in crystal motifs, thus acceleratingmaterials

design.
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