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We investigate the coupled electron-nuclear dynamics in a model system showing a conical intersection
(CoIn) between two excited state potential energy surfaces. Within the model, a single electron
and nucleus move in two dimensions in an external static field. It is demonstrated that the nuclear
density conserves its initial Gaussian shape when directly passing the CoIn, whereas the electronic
density remains approximately constant. This is in sharp contrast to the picture which evolves from
an analysis within the basis of adiabatic electronic states. There, dramatic changes are seen in the
dynamics of the different nuclear components of the total wave function. It is thus documented that,
in the case of a highly efficient population transfer between the respective adiabatic states, neither
the nuclear nor the electronic density is influenced by the existence of a CoIn. This is the case
because the nuclear-electronic wave packet moves on the complete potential energy surface which
changes its topology smoothly as a function of all particle coordinates. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4975811]

The complete quantum mechanical treatment of molecules
is traditionally performed in two steps. First, the electronic
Schrödinger equation is solved for a set of fixed nuclear
geometries. These electronic structure calculations1,2 yield
potential energy surfaces Vm(R) depending on the nuclear
coordinates R and on the electronic quantum number m. Within
the Born-Oppenheimer approximation,3 the quantum dynam-
ics in a single electronic state is treated.4,5 This involves the
solution of the Schrödinger equation for the nuclei including
only one potential Vm(R). In electronically excited states of
molecules, this approximation usually breaks down because
strong non-adiabatic couplings between different electronic
states are present. Such couplings are often manifested by the
so-called conical intersections (CoIns)6–11 which determine
the outcome of many photochemical reactions. The scenario
is such that, after the preparation of a nuclear wave packet
in an excited state, an ultrafast passage of the CoIn between
two excited states takes place. As a consequence, this non-
adiabatic transition results in products formed predominantly
in the initially un-populated state.

The theoretical description of the quantum dynamics
involving conical intersections usually treats nuclear wave
packets on coupled diabatic surfaces,12 and many studies can
be found in the literature, see the compilations Refs. 7 and 8.
Modern experiments aim at the characterization of signatures
of dynamics close to CoIns. Here, for example, pump-probe
measurements,13–15 femtosecond two-dimensional optical16

(a theoretical description of such a scheme can be found in
Ref. 17), or high harmonic spectroscopy18 were employed.
Also, the use of attosecond X-ray Raman measurements has
been proposed.19,20

In the present paper we pose the question of how electrons
and nuclei behave during their coupled motion at a conical
intersection. This follows our recent work which investigated
the dynamics at avoided crossings.21 In order to get insight

into this problem, it is necessary to treat the dynamics of
electrons and nuclei on the same footing which, for many-
particle systems, is simply not possible. Therefore, we concen-
trate on a model system first introduced by Shin and Metiu22,23

for a one-dimensional motion, for later applications see, e.g.,
Refs. 24–29. The here used extension of the model consists of
one electron and one proton moving in two dimensions in an
additional static field provided by two fixed ions.30 The parti-
cle configuration is displayed in the upper part of Fig. 1. The
system exhibits a CoIn at the symmetric configuration with
D3h-symmetry. We integrate the time-dependent Schrödinger
equation for the coupled motion and monitor the dynamics
at times when the electronic-nuclear wave packet passes the
conical intersection. This situation is compared to the case
where the dynamics, within the adiabatic picture, takes place
exclusively in the lower excited state.

Denoting the nuclear and electron coordinates as R
= (Rx, Ry) and r = (x, y), respectively, the Hamiltonian is
(atomic units are employed)

H =
p 2

2
+

P 2

2M
+ V (r, R), (1)

with the momentum operators for the electronic (p) and nuclear
motion (P), M being the proton mass. The potential energy is

V (r, R) =

(
R
Rc

)4

+ V en(|r − R1 |) + V en(|r − R2 |)

+ V en(|r − R |) + Vnn(|R − R1 |)

+ Vnn(|R − R2 |) + Vnn(|R1 − R2 |). (2)

Here, R1 = (–L/2,0) and R2 = (L/2,0) are the positions of the
fixed ions, where we take L = 4

√
3/5 a.u., and the particle

interactions are screened Coulomb-potentials of the form

V en(ξ) = −
1√

a + ξ2
, Vnn(ξ) =

1√
b + ξ2

, (3)
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FIG. 1. Upper panel: The particle configuration of the model system: An
electron (coordinates r = (x, y)) and a proton (coordinates R = (Rx , Ry)) move in
a plane in the field of two additional but fixed protons at distances±L/2. Lower
panel: Potential energy surfaces for two excited electronic states with quantum
numbers m = 1, 2. The arrows mark the initial positions of the wave packets
which lead to the density dynamics displayed in Figs. 4 and 6, respectively.

with a = 0.5 (a.u.)2 and b = 10.0 (a.u.)2. To ensure that the
system remains bound, an extra quartic potential is added
where the parameter Rc = 3.5. a.u. enters.

Born-Oppenheimer adiabatic potential energy surfaces
Vm(R) are defined as eigenvalues of the electronic Schrödinger
equation,

[
p 2

2
+ V (r, R)

]
ϕm(r; R) = Vm(R) ϕm(r; R), (4)

with the electronic eigenfunctions ϕm(r; R). Using imaginary
time-propagation,31 we calculate the potentials and the elec-
tronic wave functions for the first two excited states (m = 1,2).
The potentials are displayed in the lower part of Fig. 1.
Clearly, the conical intersection at the D3h symmetric configu-
ration RCoIn = (0, YCoIn), with YCoIn =

√
3L/2 (=1.2 a.u.) can be

seen.
To study the quantum mechanical motion, we solve the

time-dependent Schrödinger equation,

i
∂

∂t
ψ(r, R, t) = Hψ(r, R, t), (5)

imposing different initial conditions. This is done with the
split-operator method32 on a four-dimensional grid. To achieve

convergent results, a grid ranging from �3 a.u. to 3 a.u. with
N (n) = 101 grid points is chosen for the nuclear degrees of free-
dom. For the electron coordinates, the grid covers the interval
[–12,+12] a.u., with N (e) = 81 points.

The time-dependent wave function depends on four coor-
dinates and to visualize its dynamics we examine the electronic
(ρ(e)) and nuclear (ρ(n)) densities defined as

ρ(e)(r, t) =
∫

dR |ψ(r, R, t)|2, (6)

ρ(n)(R, t) =
∫

dr |ψ(r, R, t)|2, (7)

respectively. Expanding the wave function in terms of the
adiabatic basis set defined by Eq. (4),

ψ(r, R, t) =
∑
m′
ψm′(R, t) ϕm′(r; R), (8)

we obtain the adiabatic nuclear density in state (m) by
projection

ρ(n)
m (R, t) = |〈ϕm(r; R)|ψ(r, R, t)〉r |

2 = |ψm(R, t)|2. (9)

The respective population then is

Pm(t) =
∫

dR ρ(n)
m (R, t). (10)

For the dynamics, we first set the initial condition

ψ(r, R, t = 0) = Ne−β(Rx −Rx,0)2
e−β(Ry,0 −R0)2

ϕ2(r; R), (11)

which represents a Gaussian wave packet in the nuclear
degrees of freedom and we start in the m = 2 adiabatic state.
Here, N is a normalization constant and the parameters are β
= 9 (a.u.)–2, Rx,0 = 0, and Ry,0 = 2.1 a.u. This choice localizes
the initial wave packet in the middle between the two fixed
ions (Rx,0 = 0) with a displacement of Ry,0 along the Ry,0-axis,
which is above the conical intersection. The localization of
the initial nuclear wave packet is indicated by a red arrow in
Fig. 1, lower panel. The mean energy 〈H〉 = �0.1158 a.u. is
much higher than that of the CoIn at �0.2829 a.u.

In Fig. 2, upper panel, we show the populations in the two
electronic states as a function of time (solid lines, case (a)).
Starting in the second state, it is seen that after about two fs,
a non-adiabatic transition takes place and population is trans-
ferred to the lower state (m = 1). The transfer proceeds ultrafast
and it is completed within less than two fs. Regarding the den-
sities displayed in Fig. 3, details of the dynamics are revealed.
The left hand panels show the total nuclear density ρ(n)(R, t) at
selected times, as indicated. The initial Gaussian wave packet
moves towards smaller values of Ry thereby remaining of
almost constant shape. During the covered time interval, the
conical intersection located at RCoIn = (0,1.2) a.u. is passed.
This can clearly be seen in the state-specific nuclear densities
ρ(n)

m (R, t) which are shown in the middle and right hand panels
of Fig. 3. Note, that the total density can be written as the sum
of the two densities ρ(n)

m (R, t). Between 2.3 and 3.2 fs, most of
the density is transferred to the lower excited state which leaves
a hole in the remaining density ρ(n)

2 (R, t). Figure 3 illustrates
that, besides the dramatic changes which are present in the two
nuclear density components (or the two nuclear components
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FIG. 2. Time-dependent populations Pm(t) in the two adiabatic electronically
excited states. The upper panel shows two cases where, starting in the upper
state (m = 2), the CoIn is passed resulting in an efficient population transfer. In
the situation (a), the nuclear wave packet is placed at Rx,0 = 0, Ry,0 = 2.10 a.u.,
and it is shifted to have its center at Rx,0 = 0.3 a.u., Ry,0 = 1.72 a.u. in the case
(b). For an initial wave packet being prepared in the lower state (m = 1), only
a small fraction of the population is temporarily transferred to the upper state
(lower panel).

of the total wave function), the complete nuclear density is just
a Gaussian moving along the Ry direction.

We now pose the question of what happens to the electron
during the motion through the CoIn. Therefore, we compare,
in Fig. 4, the nuclear density ρ(n)(R, t) (left hand panels, same
as in Fig. 3) with the electronic density ρ(e)(r, t) (right hand
panels). Also marked, as red circles, are the positions of the
fixed ions and the position of the conical intersection (blue). To
connect the time-evolution of the densities to the interaction
potential, we include contours of averaged potentials defined
as

〈V (n)(R, t)〉 =
∫

dr V (R, r) ρ(e)(r, t), (12)

〈V (e)(r, t)〉 =
∫

dR V (R, r) ρ(n)(R, t). (13)

The figure demonstrates that, as the proton moves, the averaged
potential 〈V (e)(r, t)〉 does not change significantly in the region
where the electronic density is non-zero. As a consequence, the
latter remains almost constant and preserves its px-like orbital
shape. This is not the case for the nuclear motion. There, the
gradients of the potential 〈V (n)(R, t)〉 are such that the nuclear
density is driven along the symmetry line Rx = 0, thereby show-
ing only insignificant broadening. As a main result we find that

FIG. 3. Motion through the conical intersection. Shown are the total nuclear
density ρ(n)(R, t) (left hand panels) and the densities in the two adiabatic states
ρ

(n)
m (R, t), as indicated.

the electron density is not influenced by the passage of the wave
packet through the CoIn. This is the characteristic for a diabatic
motion where electronic properties do not change as a func-
tion of the nuclear geometry. Note, however, that for a strictly
diabatic dynamics, the population transfer should amount to
100%, whereas here, it is only about 70%. This accounts for
the small temporal changes seen in the electron density. The
fact that a nuclear wave packet passes essentially unchanged
through a non-adiabatic region as a single Gaussian has the
consequence that, in a mixed quantum/classical scheme, the
population transfer/branching-ratio is correctly captured even
when a single trajectory is used for the nuclear motion, as was
found in Refs. 33 and 34.

The dynamics illustrated in Fig. 3 results from an initial
nuclear wave packet being placed at Rx,0 = 0. Then, this packet
directly moves towards the CoIn along the Ry,0 direction and
the nuclear density remains symmetric with respect to Rx = 0.
To investigate what happens if this symmetry is broken, we
place the initial wave packet at a position of Rx,0 = 0.30 a.u.,
Ry,0 = 1.72 a.u. As can be taken from Fig. 2, the population
transfer (case (b)) is similar as in the above discussed case.
The dynamics is illustrated in Fig. 5. It is seen that the nuclear
density (left hand panels) now approaches the CoIn differ-
ently but, as in the former case, remains Gaussian-like during
the time the passage takes place. The electronic density (right
hand panels) is rotated at an angle of ≈20◦ as compared to the
symmetric situation and, as before, does not exhibit significant
changes as the nucleus moves through the location of the CoIn.
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FIG. 4. Motion through the conical intersection. Shown are the total nuclear
(ρ(n)(R, t), left hand panels) and electronic density (ρ(e)(r, t), right hand pan-
els). The positions of the fixed nuclei and the conical intersection are marked
by red and blue circles, respectively. The red circles in the right hand pan-
els denote the positions where the electron is at the positions of the fixed
nuclei. Also shown are contours of the averaged nuclear (left panels) and
electronic (right panels) potentials defined in Eqs. (12) and (13). In the left
hand panels, the contours start at an upper value of �0.7 a.u. and decrease in
steps of 0.01 a.u. The lower values are �0.86 a.u. (1.5 fs), �0.89 a.u. (2.3 fs),
�0.92 a.u. (3.1 fs), and �0.94 a.u. (3.9 fs), respectively. The contours in the
right hand panels start at �0.5 eV (black line) and decrease in steps of 0.5 a.u.

For comparison, we also consider a case where the initial
nuclear wave packet is the one defined in Eq. (11) but now
we start in the lower excited state (m = 1) with wave func-
tion ϕ1(r; R) and the displacement in Ry is R0 = 1.5 a.u (see
Fig. 1, lower panel). For this choice, the mean energy 〈H〉
= �0.2835 a.u. is slightly lower than the energy of the CoIn.
This results in a dynamics being mainly restricted to the first
excited state which means that the population P1(t) should
be close to its initial value of one. The population dynam-
ics shown in the lower panel of Fig. 2 indeed reveals that
only a small fraction is temporarily transferred between the
two adiabatic states. Figure 6 (left hand panels) documents
that the nuclear density moves towards the CoIn and splits
symmetrically into two parts. This motion is driven by the
averaged potential 〈V (n)(R, t)〉 which, as a function of time,
flattens substantially along the Rx-direction so that a large dis-
persion occurs. Because we here encounter the situation of a

FIG. 5. Same as Fig. 4 but for an initial nuclear wave packet displayed from
the symmetry line having its center at Rx,0 = 0.3 a.u., Ry,0 = 1.72 a.u.

motion in only a single adiabatic state, the nuclear motion may
also be interpreted using the adiabatic potential V1(R). As can
be taken from Fig. 1, the splitting is related to the barrier being
present in this potential.

During the nuclear motion, the averaged potential
〈V (e)(r, t)〉 seen by the electron becomes steeper along the
y-direction and flatter along the x-direction. The time-
dependent gradients cause the electron density which initially
is oriented along the y-axis, to localize along the x-axis. These
changes proceed smoothly which indicates that the electron
adiabatically adapts to the nuclear geometry. At a time of 10 fs,
the two maxima of the nuclear density approximately corre-
spond to the linear nuclear configuration. The moving proton is
found with equal probability at positions of R ≈ (±1.8, 0) a.u.,
and the electronic density is mainly localized between these
positions and those of the two fixed ions.

To conclude, we study the coupled electron-nuclear
motion taking place in the vicinity of a conical intersection
which is identified from the topology of two excited state
potential energy surfaces. Starting in the higher adiabatic state,
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FIG. 6. Same as Fig. 4 but for the case of an adiabatic motion. The separation
of the contours in the left hand panels is 0.01 a.u. and they start at an energy
of �0.755 a.u. and end at �0.845 (1 fs, 4 fs), �0.905 a.u. (7 fs), and �0.915 a.u.
(10 fs), respectively.

an ultrafast population transfer takes place upon passage of
the wave packet through the configuration where the CoIn is
located. Regarding the total nuclear and also the electronic
density, no significant changes can be observed: the nuclear
density reflects a localized wave-packet dynamics and the elec-
tronic density remains constant. On the contrary, defining the
initial wave packet as having exclusively the character of the
lower excited state results in an adiabatic motion where the
electron density smoothly adapts to the nuclear position. In
both cases, the fate of the time-dependent nuclear/electronic
density can be related to potentials obtained by averaging the
complete interaction potential over the electronic/nuclear den-
sity, respectively. To answer the question formulated at the
beginning of the paper, the used model provides an example
where the passage through a CoIn, if analyzed in terms of a
wave packet motion in the complete electron-nuclear config-
uration space, does not show any reminiscence of this special
topology. In particular, because the electron density does not
change during the respective time-interval, one might conclude
that the electron “does not care” about the conical intersection.

It has to be kept in mind that our conclusions are based on a
one-electron model and a single moving nucleus both moving

in a plane. Besides the much more demanding numerical task
which arises if more particles moving in three dimensions are
to be described, for many-electron systems one has to include
the exchange symmetry. This means that additional symmetry
constrains have to be imposed on the initial electronic wave
function. We do not believe that this changes much of the
dynamical features illustrated in this paper because, as for the
present system, they derive from the motion of a wave packet
moving on a single potential energy surface. Nevertheless, we
cannot prove this, and further research might be able to clarify
this point.
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