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The ground state energy of a system of electrons (r ¼ r1; r2;…) and nuclei (R ¼ R1;R2;…) is proven
to be a variational functional of the electronic density nðr; RÞ and paramagnetic current density jpðr; RÞ
conditional on R, the nuclear wave function χðRÞ, an induced vector potential AμðRÞ and a quantum
geometric tensor T μνðRÞ. n; jp; Aμ and T μν are defined in terms of the conditional electronic wave
function ΦRðrÞ. The ground state ðn; jp; χ; Aμ; T μνÞ can be calculated by solving self-consistently
(i) conditional Kohn-Sham equations containing effective scalar and vector potentials vsðrÞ and AxcðrÞ
that depend parametrically on R, (ii) the Schrödinger equation for χðRÞ, and (iii) Euler-Lagrange equations
that determine T μν. The theory is applied to the E ⊗ e Jahn-Teller model.
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The foundations of density functional theory (DFT) [1,2]
are inextricably tied to the Born-Oppenheimer (BO)
approximation. In DFT applications, e.g., electronic band
structure calculations, it often suffices to treat the nuclei
classically or to fix them to their equilibrium positions.
Quantum nuclear effects such as tunneling, delocalization,
and zero-point energy are, however, relevant for several
interesting problems, e.g., the phases of ice [3–6] and the
local structure of water [7–10], and were recently reported
to enable thermally activated tunneling of protons through a
graphene layer [11,12]. Some quantum nuclear effects can
be included in DFT-based calculations by quantizing
nuclear vibrations on the adiabatic ground state potential
energy surface, but because such an approach relies on the
Born-Oppenheimer approximation, it is not formally exact.
When the nuclear variables and electron-nuclear coupling
are treated exactly and fully quantum mechanically, the
electrons feel, instead of the external potential vðrÞ of DFT,
a “weighted” potential −

P
i

R jχðRÞj2Zie2=jr −RijdR,
modified by the delocalization of the nuclear probability
density jχðRÞj2, but also additional interactions induced by
nonadiabatic electron-nuclear correlations [13,14] not
included in standard DFT functionals.
Particularly in time-dependent processes such as photo-

induced chemical bond dynamics [15], proton transfer in
hydrogen-bonded systems [16], dissociative adsorption of
H2 on Pd(100) [17], and molecular processes involving
conical intersections of BO potential energy surfaces [18],
nonadiabatic and quantum nuclear effects may be signifi-
cant. Mixed quantum-classical approaches, which couple
quantum mechanical electrons to classical nuclear motion,
usually adopt an effective single-particle description of the
electrons, and DFT is often the only method capable of
treating large systems of interest with sufficient accuracy.
For the further development of theories capable of

describing quantum nuclear effects in large systems, it
would be useful to know whether it is, in principle, possible

to include full quantum nuclear motion and electronic-
vibrational coupling while retaining a density functional
formulation of the electronic part of the problem. One way
to answer this question is to define a multicomponent DFT
in terms of an electronic density ρðrÞ in the body-fixed
frame of the nuclei and an Nn-body nuclear density
ΓðRÞ ¼ R jΨðr; RÞj2dr, where Nn is the number of nuclei.
A Hohenberg-Kohn-type theorem establishing a one-to-one
correspondence between the densities fρðrÞ;ΓðRÞg and
auxiliary potentials fvðrÞ; VðRÞg has been proven [19–21].
To use this theory, one needs an approximation for a
Hartree-exchange-correlation (hxc) functional Ehxc½ρ;Γ�
depending on both densities.
Here, we pursue a different approach that is also exact in

principle and allows one to reuse the well-developed
exchange-correlation functionals of DFT at the first level
of approximation. Being built on the exact factorization
scheme [13,14,22], our approach incorporates the true
nuclear Schrödinger equation, including induced scalar
and vector potentials. The objective of this Letter is to prove
that theground state energy is avariational functional of (i) the
conditional electronic density nðr; RÞ and paramagnetic
current density jpðr; RÞ, (ii) the nuclear wave function
χðRÞ, and (iii) an induced vector potential AμðRÞ and
quantum geometric tensor T μνðRÞ responsible for electro-
magnetic effects in the nuclear Schrödinger equation [23–25].
We propose a minimization scheme that preserves the single-
particle picture of DFTwhile including full quantum nuclear
effects and electronic-vibrational coupling.
Exact factorization.— We start from the nonrelativistic

Hamiltonian of a system of Ne electrons and Nn nuclei,

Ĥ ¼ −
XNn

i¼1

ℏ2∇2
Ri

2Mi
−
XNe

i¼1

ℏ2∇2
ri

2me
þ V̂nn þ V̂ee þ V̂en; ð1Þ

where the Coulomb interaction between nuclei is
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V̂nn ¼
1

4πε0

X
i

X
j<i

ZiZje2

jRi −Rjj
; ð2Þ

and the electron-electron (V̂ee) and electron-nucleus (V̂en)
terms are defined analogously. It was shown [22] that the
full wave function can be written exactly in the factorized
form Ψðr; RÞ ¼ ΦRðrÞχðRÞ, where ΦRðrÞ is a conditional
electronic wave function depending parametrically on the
nuclear coordinates and obeying the partial normalization
condition

R jΦRðrÞj2dr ¼ 1 for all R and χðRÞ is the
marginal nuclear wave function. ΦRðrÞ and χðRÞ are
determined by a pair of coupled equations [13,14].
Since the Hamiltonian is translationally invariant, any

eigenstate Ψðr; RÞ belongs to a continuum. To get square
integrable eigenstates, we change coordinates from ðr; RÞ
to ðq;Q;RcmÞ, where Rcm is the total center of mass,
Q ¼ ðQ1; Q2;…Þ represents a set of 3ðN − 1Þ generalized
nuclear coordinates, and q is the set of electronic coor-
dinates referred to the nuclear center of mass [26]. After
dividing off a function of Rcm, the exact factorization
scheme can be used to write the remaining wave function as
ΦQðqÞχðQÞ and to derive a pair of coupled equations for
the factors ΦQðqÞ and χðQÞ that are formally equivalent to
those for ΦRðrÞ and χðRÞ in Ref. [13], except for mod-
ifications to the Hamiltonian operators (see Supplemental
Material [27]). Thus, we change our notations and from
now on let R denote the setQ and r the set q. The equations
for the factors ΦRðrÞ and χðRÞ are then�
ĤBO þ 1

2
IμνðPμ − AμÞðPν − AνÞ

þ Iμν

�
Pμχ

χ
þ Aμ

�
ðPν − AνÞ

�
jΦRi ¼ EðRÞjΦRi; ð3Þ�

1

2
IμνðPμ þ AμÞðPν þ AνÞ þ EðRÞ

�
χðRÞ ¼ EχðRÞ; ð4Þ

where ĤBO ¼ Ĥ − T̂n − P̂2
cm=2Mtot and the nuclear kinetic

energy operator has been put in the Watson-type form
T̂n ¼ 1

2
IμνPμPν [28] with an inverse inertia tensor Iμν

and momentum Pμ¼ðℏ=iÞð∂=∂QμÞ conjugate to nuclear
coordinateQμ. Equation (4) has the same form as the nuclear
Schrödinger equation in the BO approximation [29]
except the adiabatic potential energy surface and Mead-
Truhlar vector potential [30] are replaced by their exact
counterparts [13],

EðRÞ ¼ hΦRjĤBOjΦRi þ EgeoðRÞ ð5Þ
AμðRÞ ¼ ℏImhΦRj∂μΦRi: ð6Þ

Here, ∂μ ¼ ∂=∂Qμ and Egeo ¼ ðℏ2=2ÞIμνgμν is a geometric
contribution to the potential energy surface [25], which is
analogous to a corresponding term in the BO approximation
[23,24], and depends on the metric gμν, the real part of the
quantum geometric tensor [23]

T μν ¼ h∂μΦRjð1 − jΦRihΦRjÞj∂νΦRi: ð7Þ
The imaginary part is 1=ℏ times the Berry curvature Bμν.
The conditional electronic wave function acts like the

BO wave function in standard DFT but includes all non-
adiabatic effects. For example, the conditional electronic
density and paramagnetic current density are

nðr; RÞ ¼ hΦRjψ̂†ðrÞψ̂ðrÞjΦRi

jpðr; RÞ ¼
ℏ

2ime
hΦRjψ̂†∇ψ̂ðrÞ − ½∇ψ̂†ðrÞ�ψ̂ðrÞjΦRi. ð8Þ

From Eq. (4), we define the energy functional

E½n; jp;T ; χ; A� ¼ Tn;marg½χ; A� þ
Z

EgeoðRÞjχj2dR

þ
Z

½Venðr; RÞnðr; RÞdr

þ VnnðRÞ þ F½n; jp; T ��jχj2dR; ð9Þ
where Tn;marg is the “marginal” nuclear kinetic energy

Tn;marg ¼
Z

χ�ðRÞ 1
2
IμνðPμ þ AμÞðPν þ AνÞχðRÞdR

and the constrained search procedure [31] is used to define
the implicitly R-dependent functional

F½n; jp; T � ¼ min
Ψ→ðn;jp;T Þ

hΦRjT̂e þ V̂eejΦRi: ð10Þ

We restrict ourselves to the bound states of isolated finite
systems; external fields can be added straightforwardly.
The paramagnetic current jp is included as a basic variable
because doing so leads to Kohn-Sham equations containing
a vector potential [32], without which the density is not
noninteracting v-representable in some cases.
Theorem I.—The energy functional E½n; jp; T ; χ; A� is

variational, i.e., E½n; jp; T ; χ; A� ≥ E0, and equality with
the ground state energy E0 is achieved for ground state
ðn; jp; T ; χ; AÞ. The domain of E is the set of
ðn; jp; T ; χ; AÞ for which there exists a state Ψðr; RÞ with
the correct particle exchange symmetry such that Ψ →
ðn; jp; T ; χ; AÞ (Ψ representability).
Proof.—For anyΨ representable ð ~n; ~jp; ~T Þ, there exists a

conditional wave function ~ΦR which delivers the minimum
in Eq. (10) and for which F½ ~n; ~jp; ~T � ¼ h ~ΦRjT̂e þ V̂eej ~ΦRi.
Since for ~Ψ ¼ ~ΦR ~χ we have the identity

Tn;marg½~χ; ~A� þ
Z

EgeoðRÞj~χðRÞj2dR ¼ h ~ΨjT̂nj ~Ψi; ð11Þ

the right-hand side of Eq. (9) is equal to

h ~ΨjT̂n þ V̂en þ V̂nn þ T̂e þ V̂eej ~Ψi ¼ h ~ΨjĤj ~Ψi: ð12Þ
Hence, the Rayleigh-Ritz variational principle implies

E½ ~n; ~jp; ~T ; ~χ; ~A� ¼ h ~ΨjĤj ~Ψi ≥ E0: ð13Þ
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To complete the proof, we need to show that the equality
holds if ð ~n; ~jp; ~T ; ~χ; ~AÞ derive from a ~Ψwhich belongs to the
ground state manifold. By definition, the right-hand side of
Eq. (10) delivers the minimum of hΦRjT̂e þ V̂eejΦRi among
states with ð ~n; ~jp; ~T Þ and so, in particular,

Z
F½ ~n; ~jp; ~T �j~χðRÞj2dR ≤ hΨ0jT̂e þ V̂eejΨ0i; ð14Þ

whereΨ0→ ðn0;jp0;T 0;χ0;A0Þ is any state from the ground

state manifold with ðn0;jp0;T 0; jχ0jÞ¼ð ~n; ~jp; ~T ;j~χjÞ. Since

Tn;marg½~χ; ~A� þ
Z

ðEgeo þ Vnn þ Ven ~ndrÞj~χðRÞj2dR

¼ h ~ΨjT̂n þ V̂nn þ V̂enj ~Ψi
¼ hΨ0jT̂n þ V̂nn þ V̂enjΨ0i;

if ð ~n; ~jp; ~χ; ~AÞ ¼ ðn0; jp0; χ0; A0Þ to within a gauge trans-
formation, then by adding the first and last members of the
above chain of equalities to Eq. (14), we obtain

E½ ~n; ~jp; ~T ; ~χ; ~A� ≤ E0; ð15Þ
which together with Eq. (13) implies the desired result
E½ ~n; ~jp; ~T ; ~χ; ~A� ¼ E0 for ground state ð ~n; ~jp; ~T ; ~χ; ~AÞ.
The theorem is valid for degenerate and nondegenerate

ground states, and it is an important point that the basic
variables ðn; jp; T ; χ; AÞmay partially or completely resolve
any degeneracy that is present; i.e., it is generally the case
that not all of the states in a degenerate ground state manifold
have the same ðn; jp;T ; χ; AÞ. An example occurs in the
model triatomic molecule studied in Ref. [25], where n; jp
and T μν single out a unique degenerate ground state. As in
DFT, we now need a workable procedure for minimizing the
functional E½n; jp; T ; χ; A�.
Minimization scheme.— The ground state ðn; jp; T ; χ; AÞ

can be calculated by solving the following three sets of
equations self-consistently. (i) The Kohn-Sham equations�½pþ e

cAxcðrÞ�2
2me

þ vsðrÞ
�
ψRkσðrÞ ¼ ϵRkσψRkσðrÞ ð16Þ

with vsðrÞ¼venðrÞþvhxcðrÞ−ðe2=2mec2ÞjAxcðrÞj2Þ deter-
mine nðr;RÞ¼P

kσfRkσjψRkσðrÞj2 and jpðr; RÞ ¼
ðℏ=meÞ

P
kσfRkσIm½ψ�

RkσðrÞ∇rψRkσðrÞ�, where fRkσ is
the occupation number of the state ψRkσ . The hxc potentials
are defined as

vhxcðrÞ ¼
δEhxc

δnðrÞ and
e
c
AxcðrÞ ¼

δEhxc

δjpðrÞ
; ð17Þ

wherewe have suppressed the parametricR dependence and
Ehxc½n; jp; T � ¼ F½n; jp; T � − Ts½n; jp� is the conditional
hxc energy and the conditional kinetic energy functional of
noninteracting electrons is defined as

Ts½n; jp� ¼ min
ΦRs→n;jp

hΦRsjT̂ejΦRsi: ð18Þ

Here, the search is over Slater determinants ΦRsðrÞ (or over
ensembles of degenerate Slater determinants if fractional
fRkσ are needed [33,34]). The stationary conditions
δE=δnðr; RÞ ¼ 0 and δE=δjpðr; RÞ ¼ 0 subject to the con-
straint

R
δnðr; RÞjχðRÞj2drdR ¼ 0 give�
venðrÞ þ vhxcðrÞ þ

δTs

δnðrÞ
�
jχðRÞj2 ¼ 0

�
e
c
AxcðrÞ þ

δTs

δjpðrÞ
�
jχðRÞj2 ¼ 0: ð19Þ

For all R for which jχðRÞj ≠ 0, these are exactly the
stationary conditions of standard current DFT [32] for
noninteracting electrons in a potentials vsðrÞ and AhxcðrÞ,
which implies that nðr; RÞ and jpðr; RÞ can be calculated by
solving Eq. (16). We expect vhxc to be similar to the vhxc of
standard DFT for regions of R where nonadiabatic effects
and the electronic current are weak. This was the motivation
for choosing T μν as a basic variable and for deriving
conditional Kohn-Sham equations in the form of Eq. (16).
As a first approximation forEhxc, we can substitutenðr; RÞ in
existing DFT functionals. The optimized effective potential
equation in Ref. [13] also provides a way to approximate
venðr; RÞ þ vhxcðr; RÞ. (ii) The stationary condition with
respect to variations of χðRÞ yields the nuclear Schrödinger
equation, Eq. (4). (iii) The ground state quantum geometric
tensor T μν could be determined by direct minimization;
however, we find it more useful in practice to calculate T μν

indirectly from a set ofN auxiliary functions λμðRÞ, whereN
is the dimension of the nuclear configuration space Q. This
meanswe considerE to be a functional of λμ and∂νλμ instead
of T μν by a straightforward generalization of theorem I. The
λμ then satisfy the Euler-Lagrange equations

δE
δλμ

−
d

dQν

δE
δð∂νλ

μÞ ¼ 0: ð20Þ

To calculate T μν from λμ, we start by defining a different
quantum geometric tensor Tμν ¼ h∂μΦjð1 − jΦihΦjÞj∂νΦi,
where the derivatives ∂μ are taken with respect to canonical
coordinates ξμ ¼ ðq1;…; qnjp1;…; pnÞ for the projective
Hilbert space PΦ of the electronic function jΦi [23,35],
which, for convenience, and in accordance with the way
calculations are done, has been represented by a finite basis

with dimension 2n ≥ N. The mapQ!ΦRPΦ defines functions
ξμ ¼ ξμðRÞ. We now assume that the functions λμ

are related to the ξμ by a local coordinate transformation
ξμ → λα ¼ ðλ1;…; λN; λNþ1;…; λ2nÞ such that λα½ξμðRÞ�
obey the conditions

∂λα
∂Qμ ¼ 0 for all μ; R and α > N: ð21Þ
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The first N functions λμðRÞ then determine T μνðRÞ by

T μν ¼ Tαβ
∂λα
∂Qμ

∂λβ
∂Qν ; ð22Þ

where Tαβ ¼ h∂λαΦjð1 − jΦihΦjÞj∂λβΦi. Lastly, we note
that we can calculate the Nn-body nuclear current as

JμðRÞ ¼ IμνðℏImχ�∂νχ þ Aνjχj2Þ: ð23Þ

This scheme provides a way to calculate the ground state
ðn; jp; T μν; χ; AμÞ. Equations (i)–(iii) implicitly couple
many-body electronic structure to induced electromagnet-
ism in the nuclear Schrödinger equation.
Example calculation.—The E ⊗ e Jahn-Teller model

consists of a doubly degenerate electronic level coupled
to two degenerate vibrational normal modes, whose
amplitudes are conventionally denoted Q2 and Q3. The
Hamiltonian is Ĥ¼ðℏ2=2MÞðP2

2þP2
3ÞþðK=2ÞðQ2

2þQ2
3Þþ

Ĥen with electronic-vibrational coupling

Hen ¼ g

�
Q2 −Q3

−Q3 −Q2

�
ð24Þ

in the basis ðjoi; jeiÞ of odd or even states. Transforming

to coordinates ðQ; ηÞ ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

2 þQ3
3

q
; tan−1ðQ3=Q2Þ�, and

applying the unitary matrix U ¼ ð1= ffiffiffi
2

p Þ½ði;−iÞ; ð1; 1Þ�
gives

U†HenU ¼ g

�
0 −Qe−iη

−Qeiη 0

�
; ð25Þ

in the basis j�i ¼ ð1= ffiffiffi
2

p Þðjei � ijoiÞ. The adiabatic poten-
tial energy surface EBO ¼ ðK=2Þ½Q − ðg=KÞ�2 − g2=2K is
the well-known sombrero potential with a conical intersec-
tion at Q ¼ 0 and classical Jahn-Teller stabilization
energy g2=2K.
The ground state manifold is spanned by the two states

with angular momentum quantum numbers j ¼ � 1
2
(see

Supplemental Material [27]). For definiteness, we take
the j ¼ 1

2
state, which can be written jΨi ¼ aðQÞjþiþ

bðQÞeiηj−i. Defining χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
and θ ¼ 2 tan−1ðb=aÞ

gives jΦRi ¼ cosðθ=2Þjþi þ sinðθ=2Þeiφj−i with φ ¼ η.
To calculate the ground state ðn; T ; χ; AÞ, we need to

self-consistently solve Eqs. (i)–(iii). Since the sum of the
occupations of jei and joi orbitals is 1, we choose n≡
ne − no ¼ sin θ cos η as the single independent density
variable. In the adiabatic limit θ → π=2, this gives cos η,
which means, e.g., that the even orbital is fully occupied if
the nuclei are distorted along normal modeQ2, cf. Eq. (24).
Since n is completely determined by θ and η, and θ is
determined by Eq. (iii), it is not actually necessary here to
set up the conditional Kohn-Sham equations, and we can
proceed to Eq. (ii) for χ, which from Eq. (4) is found to be

−
ℏ2

2M

�
1

Q
d
dQ

Q
d
dQ

−
1

Q2
sin4

θ

2

�
χ þ Eχ ¼ Eχ; ð26Þ

where

E ¼ K
2
Q2 − gQ sin θ þ Egeo;

Egeo ¼
ℏ2

2M

�
1

4

�
dθ
dQ

�
2

þ sin2θ
4Q2

�
; ð27Þ

and we used IQQ ¼ ð1=MÞ, Iηη ¼ ð1=MQ2Þ,
Aη ¼ ℏsin2ðθ=2Þ, and g ¼ ReT from T in the ðη; QÞ basis

T ¼ 1

4

�
sin2 θ −i sin θ∂Qθ

i sin θ∂Qθ ð∂QθÞ2
�
: ð28Þ

For convenience, we use ðφ; θÞ coordinates, which
are related to the canonical coordinates q ¼ φ and
p ¼ ℏsin2ðθ=2Þ. The crucial difference between the exact
potential energy surface E and the BO potential energy
surface EBO is the appearance of the factor sin θmultiplying
the term −gQ responsible for the Jahn-Teller distortion
in the static picture. Since θðQÞ deviates from its constant
adiabatic value π=2 due to nonadiabatic mixing between
BO states, the sin θ factor weakens the electronic-
vibrational coupling and the Jahn-Teller stabilization
energy with respect to its classical adiabatic value g2=2K.
From the imaginary part of T , we can obtain the Berry

curvature BQη ¼ ðℏ=4Þ sin θ∂Qθ and calculate the molecu-
lar geometric phase on a circular path of radiusQ bounding
the disk S as [13,25,36,37]

γðQÞ ¼ 1

ℏ

Z
S
BμνdQμ∧dQν ¼ π½1 − cos θðQÞ�; ð29Þ

which coincides with the geometric phase of a pseudospin
precessing with polar angle θ ¼ θðQÞ on the Bloch sphere.
Turning to (iii), we note that the two λμ variables are

λ1 ¼ q and λ2 ¼ p. λ1 ¼ η is already known, and since θ
uniquely determines λ2 ¼ ℏsin2ðθ=2Þ, we can derive a
single Euler-Lagrange equation for θ instead of λ2,

Q2
d2θ
dQ2

þ
�
1þQ

d
dQ

log jχj2
�
Q

dθ
dQ

− sin θ

þ 4gM
ℏ2

Q3 cos θ ¼ 0: ð30Þ
The original linear system has thus been transformed to a
pair of coupled nonlinear differential equations, Eqs. (26)
and (30), which are to be solved with the boundary
conditions χð∞Þ ¼ 0, θð0Þ ¼ 0, and θð∞Þ ¼ π=2. The
latter condition is directly related to a topological invariant
of the Berry curvature, namely, the surface integral of BQη

over the ðQ2; Q3Þ plane must be a multiple of π because the
plane can be compactified to a sphere and BQη vanishes as
Q → ∞. Therefore, in accordance with Eq. (29), θð∞Þ ¼
π=2 gives the j ¼ 1

2
state. The numerical solution of
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Eqs. (26) and (30) is shown for several values of M in
Fig. 1. We have also calculated χðQÞ and θðQÞ after solving
the model by exact diagonalization [38], verifying that the
same results are obtained by both methods.
In the BO limit M → ∞, θðQÞ jumps discontinuously

from 0 to π=2 (see Fig. 1). This is the well-known result that
in the BO approximation the Berry curvature is a Dirac
delta function ðh=2ÞδðQ2ÞδðQ3Þ, which can be neatly
attributed to the flux of an infinitesimal Aharonov-Bohm
flux tube located at the conical intersection. In contrast, the
smooth rise of θ from 0 to π=2 in the exact calculation is a
result of the “smearing out” of the Aharonov-Bohm flux
tube due to nonadiabatic effects [25].
The above approach can be used to identify the inter-

actions that control the smearing width. The electronic-
vibrational interaction energy −∬ gQ sin θjχj2QdQdη
favors a peaked Berry curvature, and if it were the only
relevant term, minimizing the energy with respect to
BQηðQÞ would yield a delta function. The geometric
term

R
Egeojχj2QdQdη and the centrifugal repulsion

ðℏ2=2MÞ∬ ð1=Q2Þsin4ðθ=2Þjχj2QdQdη, which both origi-
nate from the nuclear kinetic energy, favor a broader
profile. Hence, the true profile of the Berry curvature
results from a compromise between Jahn-Teller stabiliza-
tion energy and kinetic repulsion.
The conditional density is isotropic in η at the origin

ðne ¼ noÞ but becomes anisotropic for Q > 0. This
anisotropy is weakened by nonadiabatic effects embodied
in the sin θ factor of n. The size of the region aroundQ ¼ 0
where the anisotropic response is significantly weakened
correlates with the smearing width of the Berry curvature.
The identity hΦRjĴzjΦRi¼LzðQÞþ lzðQÞ¼ 1

2
withLzðQÞ ¼

sin2ðθ=2Þ (see Supplemental Material [27]) implies that the

nuclei transfer angularmomentum to the electrons asQ → 0
and that the electronic state must cross over from the
anisotropic adiabatic state jΦBO

R i ¼ ð1= ffiffiffi
2

p Þðjþi þ eiηj−iÞ
to the isotropic current-carrying state jþi atQ ¼ 0, resulting
in a weakened density response near the origin. The width
of the crossover region is given by the characteristic scale of
the rise of θ (see Fig. 1) and is therefore determined by the
same nonadiabatic effects as the Berry curvature smearing
width. The exact conditional density and the energy surface
E are smooth in contrast to the adiabatic case, where they
are nonanalytic (“topologically scarred”) at the conical
intersection [39].
The theory presented here couples electronic density

functional theory to the nuclear Schrödinger equation in a
rigorously exact way. If the full solution of the nuclear
Schrödinger equation is prohibitive, approximations such
as the trajectory-based methods developed within the exact
factorization scheme [40,41] can be used to solve the
nuclear part of the problem. Exact factorization-based DFT
can be used to include nonadiabatic quantum nuclear
effects in systems with many electrons and nuclei, such
as large molecules, models of water and ice, and nano-
structures, if accurate functional approximations can be
found for Ehxc½n; jp; T �. One can hope that the small
parameter me=mn, the ratio of electronic and nuclear
masses, can be used to derive asymptotic approximations
for the T dependence. While quantum nuclear effects
are small in the ground states of most systems, they are
utterly inescapable in many real-time physical and chemi-
cal processes, which fall within the scope of the time-
dependent version of the theory presented here.
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