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Low-energy theory for the graphene twist bilayer
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The graphene twist bilayer represents the prototypical system for investigating the stacking degree of freedom
in few-layer graphenes. The electronic structure of this system changes qualitatively as a function of angle,
from a large-angle limit in which the two layers are essentially decoupled—with the exception of a 28-atom
commensuration unit cell for which the layers are coupled on an energy scale of ≈8 meV—to a small-angle
strong-coupling limit. Despite sustained investigation, a fully satisfactory theory of the twist bilayer remains
elusive. The outstanding problems are (i) to find a theoretically unified description of the large- and small-angle
limits, and (ii) to demonstrate agreement between the low-energy effective Hamiltonian and, for instance, ab
initio or tight-binding calculations. In this article, we develop a low-energy theory that in the large-angle limit
reproduces the symmetry-derived Hamiltonians of Mele [Phys. Rev. B 81, 161405 (2010)], and in the small-angle
limit shows almost perfect agreement with tight-binding calculations. The small-angle effective Hamiltonian is
that of Bistritzer and MacDonald [Proc. Natl. Acad. Sci. (U.S.A.) 108, 12233 (2011)], but with the momentum
scale �K , the difference of the momenta of the unrotated and rotated special points, replaced by a coupling
momentum scale g(c) = 8π√

3a
sin θ

2 . Using this small-angle Hamiltonian, we are able to determine the complete
behavior as a function of angle, finding a complex small-angle clustering of van Hove singularities in the density
of states (DOS) that after a “zero-mode” peak regime between 0.90◦ < θ < 0.15◦ limits θ < 0.05◦ to a DOS that
is essentially that of a superposition DOS of all bilayer stacking possibilities. In this regime, the Dirac spectrum is
entirely destroyed by hybridization for −0.25 < E < 0.25 eV with an average band velocity ≈0.3v

(SLG)
F (where

SLG denotes single-layer graphene). We study the fermiology of the twist bilayer in this limit, finding remarkably
structured constant energy surfaces with multiple Lifshitz transitions between K- and �-centered Fermi sheets
and a rich pseudospin texture.

DOI: 10.1103/PhysRevB.93.035452

I. INTRODUCTION

The rich physics associated with the interlayer degree of
freedom in few-layer graphenes is manifest perhaps most
strikingly in the graphene twist bilayer system. This system,
consisting of two mutually rotated layers of graphene, exhibits
a wide range of electronic effects as a function of the twist
angle, and it has attracted sustained attention from both
theory and experiment [1–24]. The electronic structure of
the twist bilayer is both diverse at the single-particle level
and challenging to the naive application of band theory. The
failure of a straightforward band theory approach lies in the
fact that the twist angle of the bilayer, which obviously fixes all
physical properties, is insufficient to define the lattice vectors
of the system. The classical picture of backfolded bands in a
twist bilayer Brillouin zone hybridizing to open a gap leading
to van Hove singularities in the density of states evidently
cannot hold: there is no unique bilayer Brillouin zone. In fact,
it has been shown that the system is endowed with an emergent
coupling momentum scale that depends only on the twist angle
of the bilayer. Real-space periodicity is thus a physically
irrelevant property of the twist bilayer for the electronic
structure [5]. The electronic structure itself is enormously
rich and can be characterized by three regimes: a large-angle
regime in which the two layers are essentially decoupled, an
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intermediate-angle regime in which van Hove singularities
move toward the Dirac point renormalizing the Fermi velocity,
and a small-angle regime in which van Hove singularities are
dense in energy near the Dirac point, and the two layers are
strongly coupled. In real space, this small-angle regime is
associated with the emergence of a geometric moiré lattice,
and electron localization on the “AA spots” of this moiré.

The large-angle regime has been studied ab initio with the
finding that the Dirac point degeneracy generally found at large
angles is, for the smallest 28-atom unit cell commensuration,
lifted on an energy scale of ≈8 meV [18–21]. Within this
window, the band structure shows either a sublattice exchange
(SE) even (C3) or a Bernal bilayer (C6) form depending on the
point-group symmetry of the bilayer, in agreement with a large-
angle continuum theory of the twist bilayer [15]. The recent
work of Kazuyuki et al. has taken the ab initio approach to the
beginning of the strongly coupled regime [25], where they find
the first “magic angle” at which the Fermi velocity vanishes
to be 1.1◦. However, as the minimum number of atoms to
realize a supercell is N = 1/2 sin2 θ with θ = cos−1(3q2 − 1)/
(3q2 + 1), q ∈ N, q odd, the ab initio approach cannot, with
the present state of the art, penetrate the small-angle regime.
Semiempirical tight-binding calculations have been used to
explore the small-angle regime [13,16,26] finding a complex
clustering of moiré bands at the Dirac point. Finite flakes of the
graphene twist bilayer have also been calculated in the tight-
binding scheme, where it has been shown that, remarkably,
a single moiré unit cell in a finite geometry is sufficient to
reproduce the density of states and electron density of the
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extended twist bilayer [2]. For rotation angles smaller than
about 0.8◦, however, even the tight-binding approach reaches
computational limits. To explore the physics below this angle
a tight-binding scheme with a single-layer graphene (SLG)
basis set [5] and effective Hamiltonians obtained from various
expansions of the tight-binding method [8,22,27–29] have
been developed. Of these effective Hamiltonian approaches,
perhaps the most elegant is that due to Bistritzer et al. [8],
which consists of two Dirac-Weyl operators coupled by a real-
space moiré field S(r), which possesses the peculiar feature of
having a periodicity exactly

√
3 larger than the moiré length

D = 1
2 sin θ/2 (we present all real-space quantities in units of the

SLG lattice constant a, and reciprocal space quantities in units
of 2π/a). Calculations based on this Hamiltonian revealed a
series of angles at which the band velocity at the Dirac point
vanished, the so called magic angles. The SLG basis approach
of Shallcross et al. revealed both the existence of the coupling
momentum scale g(c) = 4√

3
sin θ

2 as well as the emergence of
an approximately self-similar peak in the density of states at
the smallest angles that could be reached (0.46◦).

While the state of understanding of a twist bilayer band
structure would appear to be impressively complete, a number
of questions remain. First, the low-energy Dirac-like Hamil-
tonian of Bistritzer et al. [8] has been reported to require
rescaling [26] in order to reproduce band structures and ve-
locity renormalization found from tight-binding calculations,
throwing into doubt the validity of the low-energy approach.
Furthermore, the continuum theories presented in the literature
do not clearly relate the origin of the low-energy physics of
twisted bilayer graphene to the crucial role the momentum
scale g(c) plays in the interlayer coupling. It also remains
unclear what connection there is, if any, between the small-
angle [8,22] and large-angle continuum models [29]. These
questions are not merely academic: the twist bilayer continues
to be intensely investigated, with more recent work looking at
many-body effects [30–33] or more complex manifestations of
the twist geometry [34]. It is important, therefore, to clarify the
“fruit fly” model of twist stacking physics: the single-particle
physics of the twist bilayer.

To clarify this situation, in this paper we derive a low-energy
continuum Hamiltonian for twisted bilayer graphene, making
direct use of the g(c) coupling momentum scale, and we show
that it agrees perfectly with tight-binding calculations in the
intermediate and small-angle limit. The form of this low-
energy Hamiltonian is identical to that derived by Bistritzer
et al., but with the momentum scale �K = 4

3 sin θ
2 replaced

by g(c). Interestingly, the resulting moiré field S(r) now has
exactly the periodicity of the real-space moiré lattice. The
numerical efficiency of the low-energy approach allows us
to completely characterize constant energy surfaces, band
velocities, and density of states in the small-angle limit for
0.03◦ < θ < 1.2◦.

Furthermore, we derive from the tight-binding method a
large-angle continuum model in which the interlayer inter-
action is expressed as a multiple scattering series through
high-energy states. This reproduces the large-angle symmetry-
derived continuum Hamiltonians [15], but with all parameters
fixed by the underlying electronic theory, and again it shows
near perfect agreement with full tight-binding calculations.

The small- and large-angle limits are thus conceptually unified
by the notion of multiple scattering through high-energy
states, with the principal difference between the large- and
small-angle limits being simply a vast increase in the number
of scattering paths required in the small-angle limit, which is
encoded in a real-space moiré field S(r).

The remainder of this article is structured as follows. In
Sec. II we rederive the momentum scale g(c) as a selection
rule for the coupling of single-layer Bloch states, and in
the subsequent two sections we develop fully electronic
low-energy continuum approximations based on this selection
rule for both the large- (Sec. III) and small- (Sec. IV) angle
regimes. We then explore in detail the single-particle properties
in the small-angle regime: in Sec. VI we calculate the density of
states and electron density in the very small-angle limit, finding
remarkable accuracy between the continuum and tight-binding
approaches, and in Sec. VII we consider how the band velocity
behaves as a function of twist angle and energy (of which the
magic angles represent a special E = 0 case), and we also
describe the rich Fermi surface topology as a function of both
rotation angle as well as doping. Thereafter, we summarize
our results and discuss possible future research in Sec. VIII.

II. SELECTION RULE FOR SINGLE-LAYER BLOCH
STATES

In this section, we will recast the two-center tight-binding
method in a way that will subsequently provide a transparent
route to a low-energy description of the twist bilayer, for
both large and small twist angles. These two limits will be
conceptually unified by possessing the same fundamental
form for the way in which Bloch functions (or single-layer
eigenstates) from each layer are coupled by the interaction.
We consider the Bloch functions∣∣φ(n)

αkn

〉 = 1√
N

∑
Rn

eikn·(Rn+ν(n)
α )

∣∣Rn + ν(n)
α

〉
, (1)

where Rn runs over all lattice sites in the nth layer, ν(n)
α

represents the layer n basis vectors, and 1/
√

N denotes a
normalization factor. We will first consider interlayer matrix
elements in this basis. These are given by〈

φ
(1)
αk1

∣∣H ∣∣φ(2)
βk2

〉 = 1

N

∑
R1R2

e−ik1·(R1+ν(1)
α )eik2·(R2+ν

(2)
β )

× 〈
R1 + ν(1)

α

∣∣H ∣∣R2 + ν
(2)
β

〉
︸ ︷︷ ︸

t(|R2+ν
(2)
β −R1−ν

(1)
α |)

. (2)

Writing the hopping function t in this expression in terms
of its Fourier transform t(r) = 1/(2π )2

∫
dq e−ir·qt(q) and

performing the resulting phase sums with the help of the
Poisson sum formula, we find a reciprocal space representation
of this matrix element given by〈

φ
(1)
αk1

∣∣H ∣∣φ(2)
βk2

〉 = 	

(2π )2

∑
i

t(k1 + G̃1i)[Mi]αβ (3)

with 	 the area of the single-layer graphene Brillouin zone
and where the Mi matrices are defined as

[Mi]αβ = eiG̃1i ·ν(1)
α e−iRG̃2i ·ν(2)

β , (4)
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with G̃1i and RG̃2i representing the ith solution to the
interlayer momentum-conservation equation

G1 = RG2 + k2 − k1, (5)

and where G1 and RG2 represent reciprocal-lattice vectors in
layers 1 and 2, respectively. It is this equation, and not those
that describe the lattice commensuration, that determines the
interlayer coupling. To see this, we note that if the momentum
of the Bloch state k1 lies at the high-symmetry K point K1 =
(2/3,0) of the graphene Brillouin zone, then if the second-
layer Bloch state has momenta k2 = k1, we can set G1 =
RG2 = 0 to solve Eq. (5) and yield a coupling constant of
≈ t(|K1|) = t(K) in the matrix element sum Eq. (3). For k2 −
k1 = G(c)

i − RG(c)
i , with G(c)

i a reciprocal vector connecting
K1 to one of the other two equivalent K points K2 and K3 of
the Brillouin zone, i.e., K2 = K1 + G(c)

2 and K3 = K1 + G(c)
3 ,

we will also evidently find a coupling constant of ≈ t(K). All
other reciprocal vectors G will yield a momentum K1 + G that
is outside the first Brillouin zone and hence a much reduced
coupling constant t(K1 + G) � t(K). Thus only layer 1 and
layer 2 Bloch states that have momenta satisfying

k2 − k1 = G(c)
i − RG(c)

i

= g(c)
i (6)

will yield a significant order ≈t(K) contribution to the matrix
element sum and hence a non-negligible matrix element
〈φ(1)

αk1
|H |φ(2)

βk2
〉. The vectors g(c)

i may easily be calculated from
Eq. (6) yielding

g(c)
1 = 0, (7)

g(c)
2 = g(c)

(
cos(π/3 + θ/2)
sin(π/3 + θ/2)

)
, (8)

g(c)
3 = −g(c)

(
cos(π/3 − θ/2)

− sin(π/3 − θ/2)

)
, (9)

where the length scale of the coupling in momentum space
is given by g(c) = 4/

√
3 sin θ

2 . In contrast to the momentum
scale provided by the reciprocal-lattice vectors of the twist
bilayer, which cannot be fixed by the rotation angle, Eqs.
(7)–(9) depend only on the twist angle of the bilayer. This is
exactly the momentum scale derived in Ref. [5] on symmetry
grounds, and it represents the fundamental momentum scale on
which Bloch functions (or single-layer basis functions derived
from them) interact through the interlayer interaction. The
Mi matrices in Eq. (3) take on a particularly simple form for
the G

(c)
i , and they are given in Table I for the three principal

stacking types of AA, AB, and AC stacking. It should be
noted that Eqs. (7)–(9) are valid only near the high-symmetry
K point given by K = (2/3,0); at other high-symmetry K

points, Eqs. (7)–(9) are replaced by g(c)
i = Ug(c)

i with U the
point-group operation that relates the two high-symmetry K

points.
The intralayer matrix elements have a much simpler

structure due to the fact that the equivalent of the interlayer
momentum conservation, Eq. (5), is simply k1 = k2. Such

TABLE I. The matrices Mi that appear in the formula for the
interlayer interaction, Eq. (3), in the absence of umklapp scattering
processes. Shown are the resulting matrices for three different types
of initial stacking of the bilayer prior to rotation; AA, AB, and AC

stacking.

Stacking type G(c)
1 = (0,0) G(c)

2 = (−1, + 1√
3
) G(c)

3 = (−1, − 1√
3
)

AA/SLG

(
1 1
1 1

) (
1 e−i2π/3

e+i2π/3 1

) (
1 e+i2π/3

e−i2π/3 1

)

AB

(
1 1
1 1

) (
1 e+i2π/3

e+i2π/3 e−i2π/3

) (
1 e−i2π/3

e−i2π/3 e+i2π/3

)

AC

(
1 1
1 1

) (
e−i2π/3 e+i2π/3

e+i2π/3 1

) (
e+i2π/3 e−i2π/3

e−i2π/3 1

)

matrix elements are thus given by

〈
φ

(n)
αk1

∣∣H ∣∣φ(n)
βk2

〉 = δk1k2

	

(2π )2

∑
i

t(k1 + G1i)[Mi]αβ, (10)

where the sum is now over all first-layer reciprocal-lattice
vectors G1. As before, for Bloch state momenta k1 close to
a high-symmetry K point it will be sufficient to employ the
“first star” approximation and include only those G1 that yield
t(k1 + G1) ≈ t(K). The Mi matrices are then given by the
SLG entry of Table I.

III. LOW-ENERGY THEORY AT LARGE TWIST ANGLES

As a first application of the Bloch state selection rule
described in the previous section, we consider the electronic
spectrum of twist bilayer systems with large rotation angles.
As is by now well established, the spectrum of a large-
angle twist bilayer (15◦ < θ < 45◦) is essentially that of two
degenerate single-layer graphene spectra. This degeneracy is,
however, broken at the Dirac point such that for the smallest
commensuration unit cells of 28-carbon atoms (corresponding
to rotation angles of θ = 21.79◦ and 38.21◦), the splitting at
the Dirac point is of the order of 8 meV. The magnitude of
this splitting decreases very rapidly with increasing supercell
size, and it is only for the 28-atom unit cells that it can be
considered a potentially measurable effect. The band structure
near the Dirac point is also interesting as one finds a SE even
structure for the case in which the twist bilayer possesses C3

symmetry, while an AB bilayer type band structure is found for
the higher-symmetry C6 case. In this section, we will develop
a general low-energy theory for the large-angle regime. This
will yield low-energy effective Hamiltonians that agree with
the form presented by Mele in Ref. [15], where they were
derived on general symmetry grounds, but with all parameters
of the theory clearly derived from the underlying tight-binding
formalism.

A complete basis for the solution of the twist bilayer
electronic structure at k0 [a k vector in the twist bilayer first
Brillouin zone (BZ)] is given by the union of the set of first-
layer Bloch functions with momenta k1 = k0 + i1g(c)

1 + i2g(c)
2

that fall within the first BZ of the unrotated reciprocal
space lattice, and the set of second-layer Bloch functions
with momenta k2 = k0 + i1g(c)

1 + i2g(c)
2 that fall within the
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FIG. 1. Backfolding of single-layer graphene states to the bilayer
Brillouin zone, where the k vector in the bilayer Brillouin zone to
which basis states fold back has been set to KB . Also shown are the
high-energy states that couple to K by the coupling momenta g(c)

i .
For two of these (g(c)

1 and g(c)
3 ), these high-energy states lie outside

the second-layer (rotated) Brillouin zone, and umklapp vectors are
required to backfold them. The three high-energy k vectors involved
in the scattering paths used in constructing the large-angle continuum
Hamiltonians are labeled as “H .”

second-layer BZ. Each k vector contributes two Bloch func-
tions to the basis due to the two-atom primitive cell. An
illustration of the k vectors contributing to the basis may
be seen in Fig. 1. In this basis, we write the tight-binding
Hamiltonian as

H =
(

HL Vc

V
†
c HH

)
, (11)

where a matrix element [H ]αk1n,βk2m = 〈φ(n)
αk1

|H |φ(m)
βk2

〉. We
organize the Hamiltonian such that HL consists of the basis
elements arising from the low-energy basis functions close to
the K points of each layer (these are K and RK in Fig. 1); there
will be two such basis functions from each layer and thus HL

is a 4 × 4 matrix. The HH block consists of matrix elements
involving the remaining high-energy basis functions, and it is a
2NH × 2NH matrix with NH the number of high-energy basis
functions. Finally, Vc describes the coupling of the low- and
high-energy subspace, and evidently involves matrix elements
between low-energy and high-energy basis functions. The key
approximation we now introduce is to retain a dependence
on the k0 vector (in the bilayer Brillouin zone) at which the
electronic structure is evaluated only in the low-energy block
of the Hamiltonian. We fix the high energy and coupling blocks
to the form they take when k0 = KB , the high-symmetry K

vector of the bilayer Brillouin zone. This approximation is
justified and, as we will see, it works very effectively, due
to the large energy separation between the high-energy and
low-energy blocks.

Let us consider projection operators onto the low-energy
subspace, P0 = diag(1,1,1,1,0, . . .), and high-energy sub-
space, P1 = diag(0,0,0,0,1, . . .). A standard down-folding
procedure then allows us to recast the eigenvalue equation
(E − H )|�〉 = 0 in the low-energy subspace as

[E − HL − Vc(E − HH )−1V †
c ]|�L〉 = 0 (12)

with |�L〉 = P0|�〉. This equation is exact, and the price
to be paid for this is that it is no longer linear in E but
instead involves the Green’s function GH (E) = (E − HH )−1.
Rather than following the usual approach of linearizing Eq.
(12) in E, we instead note that GH (E) may be expressed
as GH (E) = (E − H

(0)
H − VH )−1, where H

(0)
H is the intralayer

part of the high-energy block (and hence is diagonal in
k-vector indices) and VH represents the interlayer coupling
part of the high-energy block. Introducing the bare high-energy
Green’s function G

(0)
H (E) = (E − H

(0)
H )−1, which is simply the

high-energy Green’s function with the interlayer interaction
“switched off,” we may write the latter object as a Dyson
series,

GH (E) = G
(0)
H (E) + G

(0)
H (E)VH G

(0)
H (E) + · · · , (13)

and insertion of this into Eq. (12) yields[
E − H

(0)
L − Vc

(
G

(0)
H (E) + G

(0)
H (E)VHG

(0)
H (E) + · · · )Vc

†]
×P0|�〉 = 0. (14)

This is now in a convenient form in which to implement
a low-energy approximation by setting G

(0)
H (E) ≈ G

(0)
H (0) =

−[H (0)
H ]−1, which then immediately yields an eigenvalue

problem for the low-energy subspace,[
E−H

(0)
L +Vc

([
H

(0)
H

]−1 − [
H

(0)
H

]−1
VH

[
H

(0)
H

]−1 + · · · )Vc
†]

×P0|�〉 = 0, (15)

which is evidently expressed as a multiple scattering expansion
(MSE) in terms of interlayer scattering matrices VH and
low-energy propagators [H (0)

H ]−1, with the multiplication
together of these 2NH × 2NH dimension matrices generating
all possible scattering paths between the NH high-energy k
vectors. Premultiplication by the 4 × 2NH dimension Vc, and
postmultiplication by the 2NH × 4 dimension Vc

†, ensures
that these paths begin and terminate at one of the low-energy
k vectors.

For an actual calculation, we restrict the high-energy basis
to the three degenerate lowest-energy states (the three high-
energy k vectors are labeled “H” in Fig. 1) and include only
the first nonzero order in the MSE. The layer off-diagonal
block of the effective Hamiltonian is thus given by

S =
∑
i1i2

[Vc]Ki1

[[
H

(0)
H

]−1]
i1

[VH ]i1i2

[[
H

(0)
H

]−1]
i2

[Vc
†]i2RK,

(16)

where i1 and i2 label the k vectors involved in the scattering
path, and all objects are now of dimension 2 × 2 (the
pseudospin degree of freedom). Inspection of Fig. 1 reveals
that there are three scattering paths that connect K and RK
and pass through only one of the high-energy k vectors labeled
“H .” The [Vc]Ki1

and [VH ]i1i2
are scattering operators similar

to those of Table I, but differing by the inclusion of umklapp
vectors in the phases, which occur as the high-energy states that
couple to K lie outside the first Brillouin zone, and so umklapp
vectors are needed to backfold these states. The zero-energy
propagator is identical for all three high-energy states and has
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the form

Hh =
(

dh eh

e∗
h dh

)
, (17)

which describes a general high-energy block. For the case of an
initial AA stacking and a rotation of θ = 21.78 corresponding
to the (p,q) = (1,3) commensuration with 28 atoms in the unit
cell, we find for the effective Hamiltonian

H (k)

=

⎛
⎜⎜⎜⎜⎝

0 �vF keiθk w 0

�vF ke−iθk 0 0 0

w 0 0 �vF ke−i(θk−θ)

0 0 �vF kei(θk−θ) 0

⎞
⎟⎟⎟⎟⎠,

(18)

where w is an effective coupling amplitude given by

w = 3t2
Kth(|eh|2 − d2

h

)2 (Re[e−iπ/3eh] − dh)2, (19)

in which th is the Fourier transform of the interlayer hopping
evaluated at the high-energy k vector, and tK is the interlayer
hopping evaluated at the high-symmetry K point. In a similar
way for the case of a 38.21◦ rotation [corresponding to a
(p,q) = (3,5) commensuration with again 28 atoms in the
unit cell], we find

H (k)

=

⎛
⎜⎜⎜⎜⎝

0 �vF keiθk w 0

�vF ke−iθk 0 0 weiπ/3

w 0 0 �vF ke−i(θk−θ)

0 we−iπ/3
�vF kei(θk−θ) 0

⎞
⎟⎟⎟⎟⎠.

(20)

Equations (18) and (20) are just the two “SE odd” and “SE
even” low-energy Hamiltonians obtained by Mele [15] on
general symmetry grounds for the large-angle twist bilayer,
but with now all parameters fixed by the underlying electronic
structure. The band structure near the K point that results from
the effective Hamiltonians Eqs. (18) and (20) is presented
in Fig. 2 as the light dashed line, along with the full
line, which is the exact tight-binding result using the same
two-center approximation used to derive tK , th, dh, and eh.
(Numerical details of our tight-binding method can be found
in Sec. V.) As can be seen, the agreement is rather good,
with only small deviations being seen between the continuum
approximations given by Eqs. (18) and (20) and the full
tight-binding calculations.

IV. LOW-ENERGY THEORY AT SMALL TWIST ANGLES

We now consider the case for which the rotation angle
of the bilayer is small, θ < 15◦; this regime is characterized
by the emergence of a geometric moiré pattern and signif-
icant disruption of the Dirac spectrum as θ → 0. As has
been mentioned, this breaking of the fourfold degeneracy is
significant only for two specific commensuration cells, i.e.,

FIG. 2. Band structure of the two smallest commensurate twist
bilayer structures: θ = 38.21◦ (top panel) and θ = 21.79◦ (bottom
panel). For each of these twist angles, the supercell consists of 28
carbon atoms. The full dark (black) lines display the full two-center
tight-binding approximation, and the light shaded (red) broken line
displays that of the low-energy Hamiltonians Eq. (20) (top panel) and
Eq. (18) (bottom panel).

those given by the rotation angles θ = 38.21◦ and 21.79◦,
and as numerous calculations attest it is negligible for other
angles. In the small-angle limit, therefore, the existence of a
second Dirac cone that folds back to KB can be neglected as
we have a twofold degeneracy of all bands. For this reason,
we need to include only two Dirac cones in the theory, one
from each layer. This simplifies the problem considerably, i.e.,
rather than the “four-cone” problem at large angles, we have a
simpler “two-cone” problem. On the other hand, the problem
is made more complicated (and the electronic structure made
much richer) due to the fact that the momentum scale that
governs the selection rule for Bloch states g(c) is vanishing in
the small-angle limit. This entails the coupling together of a
great many more states, whereas in the large-angle limit the
electronic structure could be understood as a coupling (via
multiple scattering expansions) of a relatively small number
of states. For this reason, we require an approach that includes
all scattering paths and, hence, all matrix elements of the
interlayer interaction.

Given that the two Dirac cones that we are interested in are
now separated by �K = |RK − K| = 4

3 sin θ
2 , which becomes

small in the small-angle limit, and as we are only interested
in a low-energy theory, we may consider a basis of Bloch
functions that reside in some momentum sphere around K for
layer-1 functions and around RK for layer-2 functions. In this
case, all Bloch functions will have a momentum not too far
from K, and we may approximate the Fourier transform of
the two-center hopping in Eq. (3) by t(k1 + G̃1i) ≈ t(K). The
interlayer matrix elements given by Eq. (3) may now be written
as 〈

φ
(1)
αk1

∣∣H ∣∣φ(2)
βk2

〉 = 	tK

(2π )2

∑
i

[Mi]αβδg(c)
i =k2−k1

, (21)

where we have included in the matrix element explicitly the
selection rule for single-layer Bloch states via the Kronecker
δ function. With this approximation, we can construct a
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continuum theory that reproduces all such matrix elements
exactly as follows. We define the plane-wave spinor state from
layer n as

∣∣φ(n)
σnkn

〉 = 1√
V

|σn〉eikn·r, (22)

where the pseudospinor |σn〉 is either pure pseudospin up,
|+〉 = (1,0), or pure pseudospin down, |−〉 = (0,1), in the
layer n portion of the 4-vector (with the other components of
the 4-vector zero). Now consider the r-dependent field

O(r) = 	tK

(2π )2

∑
i

Mie
−ig(c)

i ·r, (23)

where the sum runs over the three coupling vectors of the
selection rule derived in Sec. II. Matrix elements of the spinor
plane-wave states from each layer with this field are

∫
dr

〈
φ

(1)
σ1k1

∣∣O(r)
∣∣φ(2)

σ2k2

〉
= 	tK

(2π )2

∑
i

1

V

∫
dr ei(k2−k1−g(c)

i )·r[Mi]σ1σ2
(24)

= 	tK

(2π )2

∑
i

[Mi]σ1σ2δg(c)
i =k2−k1

(25)

and thus reproduce exactly the tight-binding matrix elements
in Eq. (21). If we define the diagonal 2 × 2 blocks of a 4 × 4
Hamiltonian to be the Dirac-Weyl operators of each layer,
with the off-diagonal blocks given by O(r) and its Hermitian
conjugate, then we may write for the twist Hamiltonian

H =
(

�vF σ · p O(r)

O(r)† �vF σ · R−1(p − �K)

)
. (26)

As the corresponding eigenvectors are now 4-vectors given by
the direct product of layer space with pseudospin space, this
Hamiltonian will reproduce both the layer off-diagonal matrix
elements of tight-binding as well as layer diagonal elements (in
the low-energy Dirac-Weyl approximation). Note that the shift
�K in the rotated layer Dirac-Weyl operator is required as we
measure momentum in a global coordinate system centered on
the unrotated cone.

In contrast to the large-angle case in which the interlayer
interaction coupled together relatively few Bloch states from
each layer and led to constant layer off-diagonal matrices,
in the small-angle regime the interlayer coupling of many
Bloch states drives the emergence of the real valued field
O(r). It should be remarked that Eq. (26) differs from the
Hamiltonian derived in Ref. [8] only in the length scale g(c):
the analysis in Sec. II yielded for this g(c) = 4√

3
sin θ

2 , whereas

in derivation of Ref. [8] the coupling scale �K = 4
3 sin θ

2 is
found. As we shall demonstrate in subsequent sections, the
use of the correct coupling scale brings the low-energy theory
in the small-angle limit into complete agreement with full
tight-binding calculations.

V. COMPUTATIONAL DETAILS

A. Tight-binding method

We use a simple t(r) = A exp (−Br2) for the two-center
hopping integrals with the constants A and B depending on
whether the hopping is intra- or interlayer. For the former

case, we use A = 50 eV, B = 0.4373 Å
−2

, while for the latter
we use A = −8.4542 eV, B = 0.6649 Å

−2
. These parameters

are obtained by minimizing via a simulated annealing method
the error in eigenvalues (for selected k vectors) between the
two-center tight-binding calculation of a number of few-layer
graphene systems, and the corresponding systems calculated
ab initio with the density-functional software package VASP

[2,35–37]. We found it sufficient to use a database of single and
Bernal stacked bilayer graphene along with the two smallest
unit-cell twist bilayer commensurations with rotation angle
θ = 21.79◦ and 38.21◦.

B. Two-center tight-binding calculations

We use the method described in Ref. [5] in which a
basis of single-layer states is deployed to solve the tight-
binding problem; we refer the reader to that manuscript for
methodological details. It should be noted, however, that the
correspondence of the selection rule for Bloch states derived
in Sec. II can be found for single-layer states and leads to a
simple Diophantine problem (Bezóut’s identity) that results
in an extremely efficient construction of the sparse interlayer
blocks of the twist Hamiltonian. The use of a single-layer basis
further dramatically increases computational efficiency, as to
compute accurately the eigenvalues in some energy window
�E requires only single-layer states in an energy window of
≈ 1.4�E. For a rotation angle of 0.74◦, (p,q) = (1,89) in the
notation of Shallcross et al. [5,16], we find that to converge all
eigenvalues in an energy range from −0.4 to +0.4 eV requires
a Hamiltonian of dimension 360; the same problem using the
standard localized orbital basis of the two-center tight-binding
leads to a Hamiltonian of dimension 23 764. The resulting
speedup of the former method compared to the latter is of the
order of 105.

C. Low-energy calculations

In a similar way to the method outlined in Ref. [5], we
solve the low-energy Hamiltonian using a basis of Dirac-Weyl
states. That is, the basis consists of all eigenstates of both the
unrotated (rotated) Dirac-Weyl operators that have momenta
k that satisfy |k| < kcut, with kcut the radius of a momentum
sphere centered at the Dirac point of the unrotated (rotated)
cone. The vanishing of the momentum scale g(c) as θ → 0
obviously implies that for fixed kcut the dimension of the
resulting twist bilayer Hamiltonian in this basis will grow
without bound. We find that the dimension is of the order of
102 to converge all eigenvalues in the energy window from
−0.4 to +0.4 eV at a rotation angle of 0.90◦, but it increases to
105 for 0.03◦. Given that the matrix elements themselves can be
obtained analytically from Eq. (26), the numerical bottleneck
resides in diagonalizing the resulting Hamiltonian, and toward
that end we use the SCALAPACK [38] subroutine PZHEEVR for
the eigenvalue computations. To access the real-space wave
functions, i.e., inverse Fourier transforming back to real space,
standard fast Fourier transform (FFT) [39] is deployed.
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FIG. 3. Density of states (DOS) in the small-angle limit. Shown are calculations using the full two-center tight-binding scheme [dark shaded
(red) full lines], along with the corresponding results generated using the low-energy Hamiltonian given by Eq. (26) [light shaded (green) full
lines]. Shown are the DOS for twist angles from 0.90◦ to 0.03◦; note that below 0.10◦ computational resources allowed only for calculation
using the low-energy theory. For all cases shown, the DOS of both methods are seen to be in good agreement, particularly near the Dirac
point at E = 0 eV. The light (cyan) shaded regions indicate the energy region of the central peak from which the electron density in the first
column of Fig. 5 is constructed. Similarly, the dark shaded (red) regions illustrate the states summed over in the negative energy neighbor peak,
from which the electron density displayed in the second column of Fig. 5 is constructed. The black dashed line in the θ = 0.03◦ panel is a
superposition DOS constructed from the DOS of all possible interlayer stacking vectors, showing that at this angle the system has effectively
electronically segmented into separate stacking regions.

VI. DENSITY OF STATES AND ELECTRON DENSITY

To test the veracity of the low-energy theory derived in
Sec. IV, we first consider the density of states that results
from Eq. (26), and, for a number of twist angles, we compare
it to the DOS found using the full two-center tight-binding
approach. This is shown in Fig. 3. One finds very good
quantitative agreement between the low-energy and tight-
binding calculations for all twist angles from 0.90◦ to 0.10◦
shown in Fig. 3. While near the Dirac point the agreement is
nearly perfect, away from the Dirac point there are deviations
that result from the fact that low-energy theory possesses,
in the density of states, approximate electron-hole symmetry,
and this is not the case for the tight-binding calculation. Note,
however, that formal electron-hole symmetry does not exist
for the Hamiltonian Eq. (26). In Ref. [5] it was observed
that in the small-angle regime there appeared a region of
approximate self-similarity in which a peak at the Dirac
point persisted at the smallest angles. With the massively
parallel implementation of both the single-layer basis tight-
binding and the low-energy approaches, we can now push
the DOS calculations to significantly smaller angles than

have previously been achieved. Interestingly, we find that this
regime of approximate self-similarity does not persist, and the
Dirac point peak is continuously suppressed as θ decreases
such that by θ = 0.03◦, the smallest angle that we were capable
of calculating, it has entirely vanished.

This naturally invites the question, “what happens next?”
To answer this question, we compare the θ = 0.03◦ DOS with
a DOS that is the (normalized) sum of the DOS of all possible
stacking arrangements of a graphene bilayer. Numerically, we
consider a 20 × 20 mesh of interlayer shift vectors in the real-
space unit cell of graphene, calculate the bilayer DOS for each
shift vector, and then sum the 400 individual DOS results and
normalize. The result of this procedure is shown as the black
broken line in the θ = 0.03◦ panel of Fig. 3. The very close
agreement between the “summed DOS of all stacking vectors”
and the twist bilayer DOS suggests that by this angle the system
has effectively electronically segmented into separate stacking
regions, and no further significant changes in the DOS will
occur for θ < 0.03◦. On the other hand, it should be stressed
that this limit is somewhat academic. For a twist angle of 0.03◦,
the moiré length is already 4698 Å and it may well be that
this is greater than some of the other length scales inevitably
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FIG. 4. Band structure of the twist bilayer plotted on a standard M-K-� path through the Brillouin zone. Open circles are tight-binding
results, and full lines show the result provided by the low-energy effective Hamiltonian, Eq. (26). The pronounced set of flat “moiré bands”
seen near the Dirac point correspond to the peak in the density of states of the bilayer spectrum shown in Fig. 3.

present: scattering of Bloch states due to the electron-electron
interaction, or scattering introduced by disorder. Furthermore,
there may arise structural changes of the moiré in the small-
angle limit by the formation of domains separated by screw
dislocations. Note, however, that it is not possible to calculate
the limit for θ → 0 approaching from θ �= 0 exactly, as the
unit-cell size diverges, and regions of AA and AB as well as
all other possible shifts exist at each rotation angle. The case of
Bernal stacking (θ = 0) may be recovered from Eqs. (26) and
(23) simply by setting g(c) = 4√

3
sin θ

2 in the latter equation.
The standard zeroth order in momentum approximation to the
Bernal bilayer Hamiltonian is then immediately recovered, as
may be verified from Eq. (23) and Table I:

HBernal =

⎛
⎜⎜⎝ �vF σ .p t⊥

(
1 0
0 0

)
t⊥

(
1 0
0 0

)
�vF σ .p

⎞
⎟⎟⎠ (27)

(where the out-of-plane hopping constant is denoted by t⊥).
A more detailed comparison between the low-energy theory

and the tight-binding calculation is provided by the band
structure of the twist bilayer, as shown in Fig. 4. The full
symbols are the tight-binding results, with the continuous
lines the band structure generated by the low-energy theory,
and, as may be seen, for all angles a very good agreement is
found. This agreement is particularly good for θ = 0.8◦ and
larger angles, although for the θ = 0.3◦ case the agreement
is somewhat worse (although this could not be seen in the
Brillouin zone averaged density of states). One can note the
appearance of a detailed set of almost dispersionless “moiré
bands” in the small-angle limit; the band-structure counterpart
of the density of states peak shown in Fig. 3. For all angles,
we find an energy window within which a linear Dirac cone
can be found, although already at θ = 0.4◦ this window has
reduced to 4 meV, below the precision of current experiments.

To further test the agreement between the low-energy
approach and full tight-binding calculations, we now integrate
the electron densities over the energy intervals highlighted in

Fig. 3, that is, we consider the electron density determined by
summing |�(r)|2 over all the states in the central peak (see the
first column of Fig. 5), the satellite peak (the second column
of Fig. 5), and an energy interval in the linear DOS region not
shown in Fig. 3 (the third column of Fig. 5).

As may be seen, the electron densities integrated over the
central peak show a strong localization on the AA spots of the
moiré lattice. For a rotation angle of 0.90◦, the localization
effect is most strongly pronounced, while for 0.40◦ and 0.10◦
a weaker localization is seen, however even in these cases
the density is of the order of 10 times greater in the AA

regions than in the regions with the lowest electron density.
This localization effect is well known and has been previously
reported on a number of occasions; see Refs. [2,5,6]. Turning
to a comparison of the low-energy approach with that of
full tight binding, we see that the electron densities are in
very good quantitative agreement between the two theories.
It is noteworthy that even the fine structure of the density
modulations away from the AA spot found in the 0.10◦
case are reproduced perfectly by the low-energy approach,
demonstrating that this approach captures even details of the
tight-binding calculations.

For electron densities obtained by integrating over the
negative energy satellite peak, indicated by the dark shaded
region in Fig. 3 and presented in the central column of Fig. 5,
a similar situation may be observed. For a twist angle of 0.10◦,
the satellite peak has been suppressed into the prominent side
regions around the Dirac point, and even though the DOS
is not in perfect agreement at these energies, the intricate
“star-shaped” high-density region on the AA spots is seen
to be in remarkably good agreement between the tight-binding
and low-energy Hamiltonian result. A curious exception to this
very good agreement at low energies can be seen in the inner-
most “hexagon modulation” for the 0.40◦ case, which is rotated
by 90◦ between the tight-binding and low-energy calculations.
The reason for this curious discrepancy is not known.

Finally, we show in the third column of Fig. 5 the electron
density in an energy region at which the DOS is linear
and indistinguishable from that of single-layer graphene (we
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FIG. 5. Electron density formed by integrating |�(r)|2 over all states in the Dirac point peak indicated by the light shaded region in
Fig. 3 (first column), the dark shaded region of the negative energy satellite peak (second column), and over all states in an energy window
−0.5 < E < −0.41 eV for 0.90◦ and 0.40◦ and −0.40 < E < −0.35 eV for 0.10◦ (third column). Shown is the electron density at rotation
angles of 0.90◦ (a), 0.40◦ (b), and 0.10◦ (c) obtained both from tight-binding calculations and the low-energy Hamiltonian of Eq. (26) as
indicated.
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FIG. 6. Average band velocity as a function of twist angle of the bilayer and energy [panel (a)]. Valleys of reduced band velocity that arise
from the interlayer coupling of the two Dirac cones may be seen, with such valleys directed toward the small-angle low-energy regime in which
the average band velocity exhibits a complex (E,θ ) dependence shown in panel (b). Panel (c) displays the average band velocity as a function
of energy for two constant angles, and panel (d) shows the band velocity at the Dirac point (not averaged). In this panel, calculations using the
low-energy Hamiltonian of this work [Eq. (26)] are shown as the solid black line, the low-energy Hamiltonian of Bistritzer et al. [8] is shown
as the light dashed line, and full tight-binding calculations are shown both from this work (blue diamonds) and from Ref. [26] (black squares).
The “magic angle” structure seen in panel (d) is to some extent washed out by convolving with a Gaussian, thus it is more difficult to detect in
panel (b).

integrate states in an energy window −0.50 < E < −0.41 eV
for 0.90◦ and 0.40◦ and −0.40 < E < −0.35 eV for 0.10◦). In
the tight-binding calculations, it is apparent that there is only a
weak modulation of the density induced by the moiré, although
this modulation again features the high-density region at the
AA spots. This density modulation, however, is not well
reproduced by the low-energy Hamiltonian, indicating that
it is now operating outside its region of applicability. We can
conclude, therefore, that the fine structure of the tight-binding
calculation is not accessible by the low-energy approach
outside an energy window of ≈±0.4 eV about the Dirac point.

VII. BAND VELOCITIES AND FERMIOLOGY

Having established the excellent agreement between the
low-energy Hamiltonian, Eq. (26), and full tight-binding
calculations, we will now explore further the small-angle
physics on the basis of the low-energy approach alone. Of
crucial importance to the transport physics of the twist bilayer
(and more generally the response properties of the bilayer) is
the topology of the constant energy surfaces, and the averaged
band velocity on these surfaces. The latter property is also,
as we shall now demonstrate, very instructive for visualizing
the complex electronic structure of the twist bilayer. The
computational efficiency of the low-energy Hamiltonian,

Eq. (26), allows for easy computation of constant energy
surfaces and band velocities in the small-angle regime. We
motivate the presentation of these results both by their intrinsic
usefulness in understanding the twist bilayer, but also by the
fact that (i) it is likely possible to shift the Fermi energy
away from the Dirac point by doping without significantly
changing the electronic structure of the bilayer, and (ii) the
single-particle band structure at all energies is required for
many-body calculations of the twist bilayer.

Panel (a) of Fig. 6 shows a density plot of the band velocities
averaged by simply convolving each eigenvalue by a Gaussian
of width 26 meV and determined for energies −1 < E < 1 eV
and rotation angles 1◦ < θ < 10◦. The appearance of a series
of “valleys” of reduced average band velocity may be seen.
These result from states from the Dirac cones from each layer
that are connected by the coupling vectors g(c)

i , in particular
the vector g(c)

1 = 0, which corresponds to simple intersection
points of the two cones. At such coupling points, bands from
each layer hybridize, leading to the opening of a local gap
in the cone structure and a reduction of the average band
velocity in this energy region. The dashed lines seen in panel
(a) indicate the lowest-energy intersection between the two
cones, and, as may be seen, this corresponds very well with
the most prominent band velocity valley. The band velocity
valleys at higher energies correspond to intersections that occur
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FIG. 7. Fermi surfaces at twist angles of θ = 8.0◦, 3.0◦, and 0.9◦ for a range of Fermi energies between 10 and 200 meV at both T = 0
(left panel) and T = 300 K (right panel). The color indicates the band velocity of the bands (presented as the ratio v/v

(SLG)
F ) intersecting the

constant energy surface. For the large twist angle of 8.0◦, the fermiology is recognizably that of a Dirac cone; at smaller angles, the low-energy
fermiology differs dramatically from the cone topology.

under “backfolding” by the vectors g(c)
2,3. Panel (c) displays the

average band velocity as a function of energy for two represen-
tative angles indicated by the dashed vertical lines in panel (a).
The reduction in band velocity corresponding to the valleys in
the density plot can clearly be seen.

The band velocity valleys in panel (a) can all be seen to
run toward the origin E = 0, θ = 0. For angles at which a
well-defined valley structure exists, it is legitimate to view the
electronic spectrum as that of a Dirac cone manifold disrupted
by interlayer hybridization at a discrete set of energies.
However, in the region where these valleys converge toward the
origin, the very concept of a Dirac cone becomes inapplicable.

This can be seen in panel (b), in which an enlarged plot of
this interesting region is presented. For angles θ < 0.5◦, the
average band velocity for energies −0.25 < E < 0.25 eV is
≈0.3v

(SLG)
F , and evidently the electronic structure has nothing

to do with the Dirac cone of SLG or indeed any conical
manifold. In panel (d) we plot the band velocity evaluated at
the Dirac point, which is seen to exhibit the “magic angle”
structure in which, for certain θ , the band velocity at the
Dirac point approaches zero [8]. This structure is to a large
extent washed out by convolving with Gaussians, and so it
is not easy to see in panel (b). We should point out that
while our results for the band velocity at the Dirac point
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agree very well with the tight-binding calculations of Ref. [26]
(despite a completely different scheme for the tight-binding
parametrization), they are in disagreement with the results
of the continuum model of Ref. [8]. This was noticed in
Ref. [26], and it was shown that a simple rescaling would
bring the results into perfect agreement. In the context of the
low-energy model derived in this work, we recognize that this
“rescaling problem” simply arises from the wrong choice of
momentum scale: �K = 4

3 sin θ
2 instead of g(c) = 4√

3
sin θ

2 .
Despite the fact that we find “magic angles” in the lowest
electron band, we note that their physical relevance is very
limited, as other bands close to the Dirac energy do not
show “magic angles,” or the minima of their band velocities
are at different angles. Consequently, the smoothing over
many bands leads to the structure seen in panels (a) and (b)
in Fig. 6.

The complex behavior in the strong-coupling small-angle
low-energy limit implies significant disruption of the Dirac
cone by the backfolding hybridization mechanism. To gain
insight into the qualitative topological changes of the Dirac
manifold, we now present constant energy surfaces in the
low-energy regime. For all angles investigated, the E = 0
constant energy surface is found to be the same zero measure
Fermi surface of single-layer graphene. This is a remarkable
result, as for all E �= 0 in the small-angle regime (as may be
seen in Fig. 7), the topology of the constant energy surfaces

differs dramatically from that of single-layer graphene. In
Fig. 7 we show constant energy surfaces for energies 10 <

E < 200 meV, and for three representative angles, θ = 8◦, 3◦,
and 0.9◦. The coloring of the constant energy surface indicates
the magnitude of the band velocity |v(k)| (scaled by the Fermi
velocity of single-layer graphene).

The θ = 8◦ data are presented for comparison with the two
smaller angles that we subsequently discuss; at this angle and
for energies less than 200 meV, the constant energy surfaces
are rather simple, and they are exactly what would be expected
from a Dirac cone, albeit with a somewhat reduced Fermi
velocity as compared to single-layer graphene.

Turning to the case of a twist bilayer with θ = 3◦ one
notes that a strong trigonal warping of the cone sets in already
at 100 meV; in single-layer graphene, such trigonal warping
occurs only at very high energy. The magnitude of the band
velocity on these constant energy surfaces can be seen to be
much reduced from that of SLG, and while for the θ = 8◦
bilayer |v(k)| showed little variation over constant energy
surfaces, at θ = 3◦ significant variation is seen. This trigonally
warped cone persists up to ≈200 meV, at which point the
topology of the constant energy surface changes from a single
sheet to multiple sheets.

Finally, for the case of θ = 0.9◦ we see that this transition to
a multiple sheet topology occurs almost immediately. Already
at 10 meV we see the trigonal warping that occurred up to a

FIG. 8. Pseudospin texture of the twisted bilayer in the large- (θ = 30◦), intermediate- (θ = 3◦), and small- (θ = 0.9◦) angle regimes.
The Fermi energies of the Fermi surfaces are 0.9 eV for the large-angle case and 0.13 eV for the intermediate- and small-angle cases. The
large-angle structure resembles the double vortex of a decoupled graphene bilayer, whereas in the intermediate-angle case a trigonally warped
vortex is found. In the small-angle case, the pseudospin texture is seen to “flow” along the sixfold “arms” of the starlike Fermi surface. Note
that the definitions of pseudospin up and pseudospin down differ between the two layers due to the rotation of the basis atoms of the second
layer of the twist bilayer.
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much higher energy of 150 meV for the 3◦ twist bilayer. Above
10 meV we see a multisheet and rapidly changing topology
for all energies. The structure of these constant energy surfaces
is remarkably rich, and even more baroque than the famous
low-energy Fermi surface of graphite. Interestingly, while
capturing the detail of the Fermi surface of graphite required
very accurate ab initio methods, at these low energies the
electronic structure is to a very high degree of accuracy
described by the two-parameter Hamiltonian Eq. (26): the
complexity of these constant energy surfaces is driven by
reciprocal space geometry of the Dirac cone backfolding. One
should also note again the significant variation of |v(k)| over
the constant energy surface, ranging from close to the SLG
value to an order of magnitude less. As one would expect,
regions with high |v(k)| tend to be less susceptible to the
dramatic changes in topology than regions with lower |v(k)|;
compare, for instance, the constant energy surfaces at 125 and
150 meV. For a more complete visual representation of the
energy dependence of the Fermi surfaces, we provide video
clips as supplemental material [40].

Such rapid variations of the constant energy surface
topology call into question the very usefulness of the concept
of a Fermi surface in the small-angle regime. As an illustration
of this, we show in the T = 300 K panels of Fig. 7 the plots
in which the band velocity is averaged in an energy window
E − kBT < E < E + kBT . For the case of an 8◦ twist, at
which a Dirac cone is still well-defined, such a procedure
leads to a “broadened” Dirac cone, but one still occupying a
small portion of the Brillouin zone. However, for the case of
a 0.9◦ rotation, the result is dramatic: there is now almost no
part of the Brillouin zone in which for an interval of 2kBT

around an energy E there does not exist some single-particle
eigenstate.

Furthermore, we analyze the dependence of the pseudospin
on the rotation angle, as it has been recently reported that
this quantity may explain measurable physical effects [41].
In Fig. 8 we present the pseudospin textures for three twist
bilayers: in the large-angle (θ = 30◦), intermediate-angle (θ =
3◦), and small-angle (θ = 0.9◦) regimes. In the large-angle
case, the pseudospin texture is that of single-layer graphene.
In layer 1, a vortex of high-intensity pseudospin texture is seen
on the Fermi circle situated at the K point, while in layer 2
we find a similar situation but with the high-intensity vortex
situated now on the Fermi circle of the K∗ point. Note that
in the second layer, the pseudospin texture does not appear
to be tangential to the Fermi surface; this simply results from
the different definitions of pseudospin up and down in the two
different layers, and it follows from the rotation of the basis
vectors in layer 2.

In the intermediate-angle regime, a pronounced trigo-
nally warped Fermi surface is found at 0.13 eV, and the
pseudospin texture to some extent follows this warping to
produce a “warped vortex” structure with, however, a highly
pronounced modulation of the pseudospin texture now seen
on the Fermi surface. Finally, in the small-angle regime this
picture again holds with the pseudospin texture appearing
to “flow” on the sheets of the richly structured Fermi
surface: one notes that each “arm” of the sixfold starlike
structure situated at the � point consists of a pseudospin
vortex.

VIII. CONCLUSIONS

We have presented a unified theory of the graphene twist
bilayer based on the notion of scattering paths that connect the
K points of the two layers. In the large-angle limit, there are a
small number of these scattering paths (three for the 28-atom
commensuration cell) that may be conveniently expressed in
real space as a multiple scattering series. In contrast, the
small-angle limit presents an enormously increased number
of scattering paths, which are conveniently encoded in the
moiré field S(r) that couples together the Dirac cones from
each layer. In contrast to the small-angle limit, which involves
only two Dirac cones, in the large-angle limit the scattering
paths involve all four inequivalent Dirac cones of the twist
bilayer. For large angles, we find this formalism leads to
electronic versions of the symmetry-derived Hamiltonians
of Mele [15], whereas in the small-angle limit we recover
the Hamiltonian of Bistritzer and MacDonald [8], but with
a different momentum coupling scale: instead of �K , the
momentum transfer between the unrotated and rotated K

points, a coupling momentum scale g(c) that in real space
corresponds exactly to the moiré length D of the problem
(�K leads to a real-space scale of

√
3D). We demonstrate that

the small-angle effective Hamiltonian agrees almost perfectly
with the low-energy electronic structure calculated by a tight-
binding method, and thus that the rich electronic structure
of the small-angle limit is essentially governed by just two
parameters: the single-layer graphene Fermi velocity, v

(SLG)
F ,

and the Fourier transform of the interlayer hopping evaluated
at the high-symmetry K point, t(K). The baroque complexity
of the small-angle limit—magic angles, band velocity valleys,
electron localization patterns—is thus essentially geometric
in origin and driven by the reciprocal space juxtaposition
of mutually rotated single-layer Brillouin zones. At large
angles, the effective Hamiltonians involve three additional
electronic parameters connected to the high-energy states of
the scattering paths, however once again we find that the
agreement between the effective Hamiltonian and tight binding
is nearly perfect.

By calculating the average band velocity systematically as
a function of twist angle and energy, we are able to visualize a
series of “band velocity valleys” that run toward a θ = 0, E =
0 strong-coupling region. While for twist angles greater than
≈3◦ the electronic spectrum may legitimately be described as
that of Dirac cones hybridized (by the interlayer interaction)
at a discrete number of energies, in the small-angle region,
in particular for θ < 0.5◦, we find that the Dirac cones are
entirely destroyed by hybridization. In this small-angle regime,
by deploying massively parallel calculations we are able to
track the density of states (DOS) of the bilayer all the way
to a twist angle of 0.03◦ at which the system electronically
segments into distinct stacking regions, and thus no further
change to the DOS will occur at smaller angles.
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