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Abstract

Laser induced ultrafast demagnetization is the process whereby the magnetic moment of a
ferromagnetic material is seen to drop significantly on a timescale of 10—100 s of femtoseconds due to
the application of a strong laser pulse. If this phenomenon can be harnessed for future technology, it
offers the possibility for devices operating at speeds several orders of magnitude faster than at present.
A key component to successful transfer of such a process to technology is the controllability of the
process, i.e. that it can be tuned in order to overcome the practical and physical limitations imposed on
the system. In this paper, we demonstrate that the spin—orbit mediated form of ultrafast
demagnetization recently investigated (Krieger et al 2015 J. Chem. Theory Comput. 11 4870) by

ab initio time-dependent density functional theory (TDDFT) can be controlled. To do so we use
quantum optimal control theory (OCT) to couple our TDDFT simulations to the optimization
machinery of OCT. We show that a laser pulse can be found which maximizes the loss of moment
within a given time interval while subject to several practical and physical constraints. Furthermore we
also include a constraint on the fluence of the laser pulses and find the optimal pulse that combines
significant demagnetization with a desire for less powerful pulses. These calculations demonstrate
optimal control is possible for spin—orbit mediated ultrafast demagnetization and lays the foundation
for future optimizations/simulations which can incorporate even more constraints.

Introduction

Faster, smaller, and more efficient future technology could be achieved if we could master control over the
charge and spin dynamics of electrons on the nanoscale [ 1]. However precisely at these very short length and
time scales, quantum effects are strong, which makes it difficult to exert this control. A long standing goal of
modern physics is to address this problem using tailored laser pulse [2—10]. With the advent [11] of laser pulse
shapers that can tailor the laser field to a given shape, there was now a tool that could be used for control of
quantum dynamics. The challenge is finding the shape of the laser pulse that produces the desired dynamics.

Optimal control theory (OCT) is a method developed [12, 13] in both Mathematics and Engineering to solve
the problem of finding a particular control variable that gives a desired outcome. In general OCT works by
creating a target functional of the control field calculated from simulation of the system. Then any constraints on
the system are incorporated using penalty functionals, before extremizing the total functional to find the optimal
field. OCT can be extended to the realm of quantum mechanics by constructing the target functional using
observables given by the time-dependent schrodinger equation (TDSE).

The electron dynamics given by propagating the TDSE is, for more than a handful of electrons, a
computationally intractable problem due to the coulomb interaction between electrons and an alternative
approach must be used. Time-dependent density functional theory (TDDFT) is one such approach, which
works by mapping the problem to a non-interacting system [14], referred to as the Kohn—Sham (KS) system.
This system is defined such that propagating electrons in this system will reproduce the same time dependent
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density (the probability to find an electron at any given point) as propagating in the exact system using the TDSE.
As the KS system is non-interacting, the problem is now computationally tractable, and has been successful in
predicting absorption spectra of a large range of atoms, molecules, and solids [15—17]. Thus TDDFT is an
outstanding candidate to couple to OCT [18] for control of quantum dynamics, and has been used successfully
for control of charge transfer [ 19], HHG [22], strong-field ionization [20, 21], bond-breaking [23], among
others.

Laser-induced ultrafast demagnetization was first observed in the mid 1990s, whereby a strong femtosecond
laser pulse caused a significant loss of the magnetic moment of a thin film of Niin a time less than 1ps [24]. Since
then, this phenomena has been the subject of much experimental [25-35] and theoretical [36—40] endeavor and
several mechanisms have been proposed to explain the demagnetization. In [40], ab initio TDDFT simulations
were performed to investigate the demagnetization and found that when spin—orbit interaction was included in
the system Hamiltonian, a loss of moment was observed for very short (5 fs), very intense (1 x 10'> W ¢cm™?)
laser pulses. It is this system we wish to control by varying the intensity and frequency of the laser pulse, subject
to several practical constraints, in order to maximize the total loss of moment. To do so we utilize the framework
developedin [18, 23, 41] which combines OCT with quantum simulations of spin dynamics.

Background and methods
We begin by briefly reviewing TDDFT and OCT, a more thorough discussion can be found here [18].

TDDFT
The electronic density is defined as
n(r, t) = Nf dr,...dry U¥(x, 15 ..., 1N, 1)
X U(T, 13 ..., TN, 1), (D

where Nis the total number of electrons, r is the spacial coordinate, tis the time, and ¥ is the wavefunction of the
TDSE:

%y = v )
ot
for Hamiltonian:

A=T+ Ve + Ve 3

composed of the kinetic energy, f, the electron—electron interaction, \763, and the external potential, \78,“, which
includes both the electron-nuclear interaction and the electric fields of any laser pulses. We use atomic units
throughout unless otherwise stated. TDDFT is founded upon the Runge—Gross theorem [14] which proves a 1
—1 correspondence between the time-dependent density and the time-dependent external potential (up to a
time-dependent constant) for any electron—electron interaction. Hence all observables of the system are, in
principle, unique functionals of the density. In particular, a non-interacting KS system [42] can be defined with a
unique KS potential that reproduces the time-dependent density of the interacting system and thus predicts all
observables of the true system without requiring the costly propagation of equation (2). The TDKS equation is:

.0 Y
lafbj(r, ) = [*? + vs(x, t):|¢j (x, 1) 4

with the total density given by
N
=3 16 P 5)
i=1

The KS potential, vs (r, t), consists of three pieces:

vs(X, 1) = Vet (x, 1) + vu(x, t) + vxc(r, 1), (6)

where vy (r, t)is the usual Hartree potential of the instantaneous density, and vxc (r, t) is the exchange
correlation (XC) potential and is a functional of the density at all previous times, the interacting initial state, and
the non-interacting initial KS state. In practice, it must be approximated, with the most common approximation
being the adiabatic local density approximation (ALDA):

unif
vclnl(e, 1) = ViR n(r, 1) = 93C @)
dn n=n(x,t)
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which uses just the instantaneous density inputed into the ground-state DFT LDA XC functional and e32f (1) is
the XC energy density of the uniform electron gas. The initial KS state is typically the ground-state found from a
DFT calculation.

From this starting point, TDDFT has been extended to include non-collinear magnetism and magnetic fields
[43]. For this case, we have a non-interacting Pauli KS Hamiltonian [44] which is used to propagate two
component spinors, from which the density and magnetization density exactly replicate those of the interacting
system. This is the formulation we will use for our simulations. The magnetization density operator may be
written as:

a(r) = M ii(r), ®)
where 7 (r) is the density operator and in the two-component spinors propagated in our calculations,
M=— ghip Sand S = o/2 where {0, 0y, 0.} are the familiar Pauli spin matrices and gis the electronic
gyromagnetic ratio (g = 2 for our purposes). For periodic boundary conditions, the total moment is then
M) = [ & ma, o), ©)
Q

where (2 is a single unit cell. The KS Hamiltonian for our simulations is:

2
HAs(t) = 2( + Aext(t)) + vs(®, 1)
+ —é - Bs(t, t) + Lé - (Vs(g, 1) X P), (10)
c 2c?

where p is the momentum operator, $ is the vector spin operator, and cis the speed of light. The laser pulse
electric field is written as a vector potential, Ay () in the velocity gauge as it allows Bloch’s theorem to be
utilized. The KS magnetic field is written as Bs(¥, t) = By (t) + Bxc(F, t), where By (¢) is the magnetic field
of the applied electromagnetic field and By (#, t) is the XC magnetic field. The ALDA can be extended to By
using the LDA rotation method of Kiibler [45]. The final term of equation (10) is the spin—orbit coupling (SOC)
term, which can be thought of as the interaction between the spin of an electron and the effective magnetic field
caused by relativistic motion thought a scalar potential. In a centrosymmetric potential, this term reduces to the
wellknown L - § coupling. Propagation with Hamiltonian equation (10) is implemented in ELK [46], an all-
electron electronic structure code, which was also used for all ground state and time-dependent calculations.

Optimal control theory
The central quantity of OCT is the target functional G [u]:

Glul = G[Y[ul, u] = hlul + L[ul, €3))

where u is the control field and W[u] contains the information on how the system responds to the control field.
In quantum OCT (QOCT), W [u] is then the wavefunction, which is a functional of the control field via the TDSE
and from which any system observables to be controlled may be calculated. The target functional is generally
separated into two pieces, J; [u] which contains information on the desired dynamics and J, [u] whichisa
penalty function in order to satisfy any constraints on the system or control field. The magnitude of the penalty
functional is determined by how strongly a constraint must be satisfied.

Once arelevant target functional has been constructed, the goal of OCT is to extremize it and thus find the
optimal control field u to best satisfy the balance between desired dynamics and the constraints. There are many
choices for the algorithm to perform this optimization, some are general, such as the Nelder—Mead [47],
NEWOAU [48], or conjugate gradient [49] algorithms, while some are developed for specific types of problem,
e.g. in QOCT the ZBR scheme [50] adds a time dependent auxiliary wavefunction, which is also propagated in
time and the overlap with the true wavefunction used to construct the control field.

For our system, we wish to maximize the loss of magnetic moment in a given time interval [0, 7] while
including practical and physical constraints on the type of laser pulse. Thus € (), the electric field of the laser
pulse is the control field and

hile] = (ULl (D) ML [e](T)) = M,(T) (12)

is the target functional to be minimized, i.e. if we choose the initial magnetization M, (0) of the ferromagnet to
be along the z-axis, then minimizing M, (T') /M, (0) will maximize the loss of moment.

The constraints on the electric field are that the pulses satisfy Maxwell’s equations (details below) and only
certain frequencies are used to construct the pulse. The second constraint is of practical nature, as
experimentally, pulses containing arbitrary frequencies cannot be constructed and often access to a single
frequency (or multiples thereof) is only available. From Maxwell’s equations, the following constraints on the
electric field must be physically satisfied:
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Figure 1. Upper panels: the electric fields for initialization laser pulses. Lower panels: the dynamics of the total moment in the z-
direction for each pulse.

T
f dte (1) = 0, (13)
0

€(0) =0=¢(T). (14)

Following [23], we can satisfy all these constraints by writing the electric field

N,
ct) =Sz, sin(wnt)sinz(%t), (15)

n=1

where N, is the number of frequencies to be used and &, are the coefficients to be optimized. It can be seen that
this choice automatically satisfies the constraints from Maxwell’s equations if w,, T is a multiple of 27. A
convenient choice for the frequencies is

2mn
which will be used in the first of our optimizations. We emphasize that in a realistic control problem these
frequencies are dictated by the experimental setup and not by the optimal control formalism. In our

demonstration, they where simply chosen for convenience.

Results

In [40] TDDFT simulations for laser-induced demagnetization in bulk Ni were performed. A loss of the total
magnetic moment was observed in all cases, and the fraction of moment lost was shown to be dependent on the
field intensity and carrier frequency. Hence the system was a strong candidate for optimal control. The purpose
of this work is to demonstrate optimal control of the ultrafast demagnetization in bulk Ni by attempting to
maximize the loss of moment after T = 14.5 fs. The choice of this time is arbitrary and will be determined by the
experimental setup. For this work, the value was chosen based upon the fastest timescale for spin—flip
demagnetization seen in [40]. As one of the major experimental constraints is in the choice of available
frequencies from which to build the laser pulse, we will include this constraint by using an electric field of the
form given by equation (15) using N,, = 4 different laser frequencies, as defined by equation (16). For the
optimization we choose to use the gradient-free Nelder—Mead simplex algorithm. To initialize the Nelder—-Mead
algorithm, N,, + 1starting points are required, it is instructive to examine these before moving to the results of
the optimization.

Maximize demagnetization

To initialize our calculations’, we construct five different pulses where the coefficients of equation (15) are
chosen at random in a suitable range. These pulses may be seen in the upper panel of figure 1. The dynamics of
M(t) are shown in the lower panel and it can be seen that all pulses display demagnetization. If we look at the
final time, the average loss of moment is approximately 7%. If the optimal control is successful, then this
percentage loss should be significantly increased.

From the initial pulses, the Nelder—Mead algorithm then calculates a new set of coefficients from a simple set
of rules and then tests how this affects the target functional by performing a TDDFT simulation with the laser
field given by these coefficients. It then iterates this procedure and traverses the multidimensional parameter
space, searching for the optimal set of coefficients.

? All calculations are performed with a time step of 0.1 auand 8 x 8 X 8k-points.
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Figure 2. The fraction of magnetic moment loss for each iteration of the Nelder-Mead optimization and the trend in the optimal
control.
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Figure 3. Upper panels: the electric fields" for the optimal laser pulse found after 38 iteration of the optimal control algorithm (right)
and, for comparison, the 3rd initialization pulse (left). Lower panels: the corresponding dynamics of M, for these pulses.

In figure 2, we plot the ratio of the final moment after time T'to the initial moment for each of the iterations.
Although individual iterations can worsen the loss percentage, there is a clear downward trend as better and
better pulses are found during the search, indicating that the optimal control is not only applicable to this
problem but also is crucial from obtaining higher demagnetization.

Each set of coefficients is a point in the parameter space, at each iteration, the Nelder—Mead algorithm
reflects the worst point through the center of mass of the other points. Depending on whether this new point
improves upon the next worst point, the algorithm can expand or contract in this direction, otherwise it can
reduce all points towards the best point. This explains why individual points may worsen the
ratio M, (T) /M, (0).

If welook at the result after 38 iterations, the best pulse the optimal control procedure has found causes a
20% loss of moment. This is at least twice as much as the random initial pulses used to start the algorithm and is a
clear demonstration that the moment can be successfully controlled using OCT. In figure 3 we show the electric
field of this best pulse and also the magnetization dynamics, compared to an initial pulse. Examining the pulse
shape compared to the initial pulses of figure 1, there is no obvious reason why one leads to alarger
demagnetization. This is the power of QOCT to find such pulses. In [40], it was found that the demagnetization
process has a highly nonlinear dependence on the pulse intensity of fluence. The optimal pulse shown in figure 3
has a significantly higher fluence compared to the initial pulse which combined with the nonlinearity of the
problem leads to a larger loss of the magnetic moment. It was also found in [40] that demagnetization can occur
for a period after the laser pulse. In this case we can see in figure 3 that if we simulate for a longer time, we will
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Figure 4. The OCT target functional, G [u] = J;[u] + 0.05 x J,[u], where J; [u] = M, [u]l(T)/M,(0)and ) [u] = f dt w2 (1),
0

for the electric field u = € (¢) at each iteration of the algorithm.

likely see further demagnetization with our pulses. However, the optimal control algorithm has no knowledge of
this and simply maximizes the loss of moment at time T, regardless of what might happen after. It suggests for
future optimizations, a better target functional might be to look at a time slightly later than when the pulse
finishes or to average the moment during a period after the pulse.

Fluence constraint
For practical reasons, the fluence of the applied pulse should be constrained. The primary reason is simply
efficiency—achieving the same dynamics as a higher energy pulse but using a lower energy pulse. Other reasons
include surface damage to the material due to high fluence pulses, heating of the sample (and problems
associated with cooling it), or physical restrictions on the laser itself preventing production of high fluence
pulses. All of these present significant problems to future technological application, hence we include a fluence
constraint into our calculations.

If we add to equation (11), the constraint

blel = afOT dt €2(1) (17)

which is proportional to the laser fluence. The free parameter o determines how strong the constraint is, for this
calculation we choose o = 0.05. This parameter was based on examining the results of the previous
optimization and choosing o to favor a lower fluence while still maintaining significant demagnetization in the

set. In this example we choose a time period of T' = 16.21 fs and frequencies of w; = 0.075 au, w, = %wo,

10 11 . . . .
w3 = —wp and wy; = —wy. These also satisfy the constraints of equations (13) and (14) and approximately

span the optical frequency range.

In figure 4, we show the value of the total target functional, equation (11), for each iteration of the
optimization algorithm. Unlike the previous case, we cannot attach a physical meaning to the target functional,
so the actual value is not significant, only the trend. Furthermore, when choosing , it was clear that the
parameter space is a more complicated environment than the previous case, as a pulse could have the same value
of equation (11) by either increasing the demagnetization or decreasing the fluence. We again initialize the
search using random coefficients. As the optimization is computationally expensive’, we stopped the
optimization after 26 iterations, although this was sufficient to see the trend and demonstrate optimal control.

To see the power of this optimization, in figure 5 we plot the electric fields and the dynamics of M,(¢) for two
different pulses. These correspond to the best point of figure 4 and a reference pulse corresponding to the
G = 1.191 point. This point was chosen to demonstrate the need for optimal control as the total fluence is
significantly more (8872 mJ cm ™ 2) than the best point found (3665 mJ cm ™ 2), yet yielded a worse final moment
(33% loss compared to 50%). Thus we can use OCT to find better pulses that cost far less in terms of energy.
Even comparing to the best random initial guess, the algorithm was able to reduce the fluence by 15% while
* The initial pulse has a fluence of 4023 mJ cm™ > while the optimized pulse has a fluence of 5702 mJ cm 2.
> Bach iteration required 5000 CPU hours.
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Figure 5. The electric field ¢ (t) (upper panel) and total magnetic moment M, (lower panel) for the reference pulse (solid black line)
and the best pulse (dashed red) found during the fluence constraint optimization.

achieving the same amount of demagnetization. As was detailed in reference [40], the fluence required to see
demagnetization of this type may be decreased by several orders of magnitude when longer duration pulses are
used. So while the fluences in this demonstration are quite large, we are confident the results will be similar if
applied to longer duration pulses. Furthermore, in subsequent work [51] to [40], we have simulated a pulse
based on experimental parameters (intensity of 3.8 x 1011 W cm ™2, fluence 8.05 mJ cm ™2, and a FWHM of
40 fs) and still see a 20% loss in moment due to spin—orbit effects. The underlying physics in this case is the same
as for the short pulses. Thus we anticipate that the controllability found in this work will also be true for lower
energy laser pulses.

Conclusions

In summary we have achieved the optimal control of spin—orbit mediated ultrafast demagnetization. We
showed that the loss of moment can be at least doubled (compared to randomly chosen typical pulses) for a
system where the available laser frequencies (used to tailor the laser pulse) are constrained. Furthermore, we
extended the control problem to include a constraint on the laser fluence and demonstrated that QOCT could
successfully find a pulse that balances the fluence and demagnetization requirements. Compared to a reference
pulse, this optimal pulse produces more favorable magnetization dynamics, while reducing the fluence by over a
factor of 2. Control of the system is of upmost importance for future technological application (for example, in
spintronics), where the desired dynamics and constraints are dictated by practical concerns. Any physical
phenomenon must be robust to these concerns, and as we have demonstrated, this form of ultrafast
demagnetization meets this criteria. Simulation and QOCT of more complicated scenarios, such as longer pulse
durations or further constraints on the fluence, intensity, and robustness of the demagnetization, can be build
upon this foundation.
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