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Abstract
Laser induced ultrafast demagnetization is the process whereby themagneticmoment of a
ferromagneticmaterial is seen to drop significantly on a timescale of 10–100 s of femtoseconds due to
the application of a strong laser pulse. If this phenomenon can be harnessed for future technology, it
offers the possibility for devices operating at speeds several orders ofmagnitude faster than at present.
A key component to successful transfer of such a process to technology is the controllability of the
process, i.e. that it can be tuned in order to overcome the practical and physical limitations imposed on
the system. In this paper, we demonstrate that the spin–orbitmediated formof ultrafast
demagnetization recently investigated (Krieger et al 2015 J. Chem. Theory Comput. 11 4870) by
ab initio time-dependent density functional theory (TDDFT) can be controlled. To do sowe use
quantumoptimal control theory (OCT) to couple our TDDFT simulations to the optimization
machinery ofOCT.We show that a laser pulse can be foundwhichmaximizes the loss ofmoment
within a given time interval while subject to several practical and physical constraints. Furthermore we
also include a constraint on the fluence of the laser pulses andfind the optimal pulse that combines
significant demagnetizationwith a desire for less powerful pulses. These calculations demonstrate
optimal control is possible for spin–orbitmediated ultrafast demagnetization and lays the foundation
for future optimizations/simulations which can incorporate evenmore constraints.

Introduction

Faster, smaller, andmore efficient future technology could be achieved if we couldmaster control over the
charge and spin dynamics of electrons on the nanoscale [1]. However precisely at these very short length and
time scales, quantum effects are strong, whichmakes it difficult to exert this control. A long standing goal of
modern physics is to address this problemusing tailored laser pulse [2–10].With the advent [11] of laser pulse
shapers that can tailor the laser field to a given shape, therewas now a tool that could be used for control of
quantumdynamics. The challenge isfinding the shape of the laser pulse that produces the desired dynamics.

Optimal control theory (OCT) is amethod developed [12, 13] in bothMathematics and Engineering to solve
the problemoffinding a particular control variable that gives a desired outcome. In general OCTworks by
creating a target functional of the control field calculated from simulation of the system. Then any constraints on
the system are incorporated using penalty functionals, before extremizing the total functional tofind the optimal
field. OCT can be extended to the realmof quantummechanics by constructing the target functional using
observables given by the time-dependent schrödinger equation (TDSE).

The electron dynamics given by propagating the TDSE is, formore than a handful of electrons, a
computationally intractable problemdue to the coulomb interaction between electrons and an alternative
approachmust be used. Time-dependent density functional theory (TDDFT) is one such approach, which
works bymapping the problem to a non-interacting system [14], referred to as theKohn–Sham (KS) system.
This system is defined such that propagating electrons in this systemwill reproduce the same time dependent
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density (the probability tofind an electron at any given point) as propagating in the exact systemusing the TDSE.
As theKS system is non-interacting, the problem is now computationally tractable, and has been successful in
predicting absorption spectra of a large range of atoms,molecules, and solids [15–17]. Thus TDDFT is an
outstanding candidate to couple toOCT [18] for control of quantumdynamics, and has been used successfully
for control of charge transfer [19], HHG [22], strong-field ionization [20, 21], bond-breaking [23], among
others.

Laser-induced ultrafast demagnetizationwas first observed in themid 1990s, whereby a strong femtosecond
laser pulse caused a significant loss of themagneticmoment of a thinfilm ofNi in a time less than 1ps [24]. Since
then, this phenomena has been the subject ofmuch experimental [25–35] and theoretical [36–40] endeavor and
severalmechanisms have been proposed to explain the demagnetization. In [40], ab initioTDDFT simulations
were performed to investigate the demagnetization and found that when spin–orbit interactionwas included in
the systemHamiltonian, a loss ofmomentwas observed for very short (5 fs), very intense (1 1015´ Wcm−2)
laser pulses. It is this systemwewish to control by varying the intensity and frequency of the laser pulse, subject
to several practical constraints, in order tomaximize the total loss ofmoment. To do sowe utilize the framework
developed in [18, 23, 41]which combinesOCTwith quantum simulations of spin dynamics.

Background andmethods

Webegin by briefly reviewing TDDFT andOCT, amore thorough discussion can be found here [18].

TDDFT
The electronic density is defined as
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whereN is the total number of electrons, r is the spacial coordinate, t is the time, andΨ is thewavefunction of the
TDSE:
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forHamiltonian:
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composed of the kinetic energy, T̂ , the electron–electron interaction,Vee
ˆ , and the external potential,Vext

ˆ , which
includes both the electron-nuclear interaction and the electric fields of any laser pulses.We use atomic units
throughout unless otherwise stated. TDDFT is founded upon theRunge–Gross theorem [14]which proves a 1
−1 correspondence between the time-dependent density and the time-dependent external potential (up to a
time-dependent constant) for any electron–electron interaction. Hence all observables of the system are, in
principle, unique functionals of the density. In particular, a non-interacting KS system [42] can be definedwith a
uniqueKS potential that reproduces the time-dependent density of the interacting system and thus predicts all
observables of the true systemwithout requiring the costly propagation of equation (2). TheTDKS equation is:
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TheKS potential, v tr,S ( ), consists of three pieces:
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where v tr,H ( ) is the usualHartree potential of the instantaneous density, and v tr,XC ( ) is the exchange
correlation (XC) potential and is a functional of the density at all previous times, the interacting initial state, and
the non-interacting initial KS state. In practice, itmust be approximated, with themost common approximation
being the adiabatic local density approximation (ALDA):
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which uses just the instantaneous density inputed into the ground-stateDFT LDAXC functional and e nXC
unif ( ) is

the XC energy density of the uniform electron gas. The initial KS state is typically the ground-state found froma
DFT calculation.

From this starting point, TDDFThas been extended to include non-collinearmagnetism andmagnetic fields
[43]. For this case, we have a non-interacting Pauli KSHamiltonian [44]which is used to propagate two
component spinors, fromwhich the density andmagnetization density exactly replicate those of the interacting
system. This is the formulationwewill use for our simulations. Themagnetization density operatormay be
written as:

nm r M r , 8=ˆ ( ) ˆ ˆ ( ) ( )

where n rˆ ( ) is the density operator and in the two-component spinors propagated in our calculations,
gM SBm= -ˆ ˆ and S 2s= where , ,x y zs s s{ }are the familiar Pauli spinmatrices and g is the electronic

gyromagnetic ratio (g= 2 for our purposes). For periodic boundary conditions, the totalmoment is then

t r tM m rd , , 93ò=
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whereΩ is a single unit cell. TheKSHamiltonian for our simulations is:
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where p̂ is themomentumoperator, Ŝ is the vector spin operator, and c is the speed of light. The laser pulse
electric field is written as a vector potential, tAext( ) in the velocity gauge as it allows Bloch’s theorem to be
utilized. TheKSmagnetic field is written as t t tB r B B r, ,S ext XC= +(ˆ ) ( ) (ˆ ), where tBext ( ) is themagnetic field
of the applied electromagnetic field and tB r,XC(ˆ ) is theXCmagnetic field. TheALDA can be extended to BXC

using the LDA rotationmethod of Kübler [45]. Thefinal termof equation (10) is the spin–orbit coupling (SOC)
term,which can be thought of as the interaction between the spin of an electron and the effectivemagnetic field
caused by relativisticmotion thought a scalar potential. In a centrosymmetric potential, this term reduces to the
well known L Sˆ · ˆ coupling. PropagationwithHamiltonian equation (10) is implemented in ELK [46], an all-
electron electronic structure code, whichwas also used for all ground state and time-dependent calculations.

Optimal control theory
The central quantity ofOCT is the target functional G u[ ]:

G u G u u J u J u, , 111 2= Y = +[ ] [ [ ] ] [ ] [ ] ( )

where u is the control field and uY[ ]contains the information on how the system responds to the control field.
In quantumOCT (QOCT), uY[ ] is then thewavefunction, which is a functional of the control field via the TDSE
and fromwhich any systemobservables to be controlledmay be calculated. The target functional is generally
separated into two pieces, J u1[ ]which contains information on the desired dynamics and J u2 [ ]which is a
penalty function in order to satisfy any constraints on the systemor control field. Themagnitude of the penalty
functional is determined by how strongly a constraintmust be satisfied.

Once a relevant target functional has been constructed, the goal ofOCT is to extremize it and thusfind the
optimal control field u to best satisfy the balance between desired dynamics and the constraints. There aremany
choices for the algorithm to perform this optimization, some are general, such as theNelder–Mead [47],
NEWOAU [48], or conjugate gradient [49] algorithms, while some are developed for specific types of problem,
e.g. inQOCT theZBR scheme [50] adds a time dependent auxiliarywavefunction, which is also propagated in
time and the overlapwith the truewavefunction used to construct the control field.

For our system, wewish tomaximize the loss ofmagneticmoment in a given time interval [0,T]while
including practical and physical constraints on the type of laser pulse. Thus t ( ), the electric field of the laser
pulse is the control field and

J T T M TM 12z z1   = áY Y ñ =[ ] [ ]( )∣ ˆ ∣ [ ]( ) ( ) ( )

is the target functional to beminimized, i.e. if we choose the initialmagnetization M 0z ( ) of the ferromagnet to
be along the z-axis, thenminimizing M T M 0z z( ) ( )willmaximize the loss ofmoment.

The constraints on the electric field are that the pulses satisfyMaxwell’s equations (details below) and only
certain frequencies are used to construct the pulse. The second constraint is of practical nature, as
experimentally, pulses containing arbitrary frequencies cannot be constructed and often access to a single
frequency (ormultiples thereof) is only available. FromMaxwell’s equations, the following constraints on the
electric fieldmust be physically satisfied:

3
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Following [23], we can satisfy all these constraints bywriting the electric field
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whereNω is the number of frequencies to be used and n̃ are the coefficients to be optimized. It can be seen that
this choice automatically satisfies the constraints fromMaxwell’s equations if Tnw is amultiple of 2p. A
convenient choice for the frequencies is

n

T

2
16nw

p
= ( )

whichwill be used in thefirst of our optimizations.We emphasize that in a realistic control problem these
frequencies are dictated by the experimental setup and not by the optimal control formalism. In our
demonstration, theywhere simply chosen for convenience.

Results

In [40]TDDFT simulations for laser-induced demagnetization in bulkNiwere performed. A loss of the total
magneticmomentwas observed in all cases, and the fraction ofmoment lost was shown to be dependent on the
field intensity and carrier frequency.Hence the systemwas a strong candidate for optimal control. The purpose
of this work is to demonstrate optimal control of the ultrafast demagnetization in bulkNi by attempting to
maximize the loss ofmoment afterT=14.5 fs. The choice of this time is arbitrary andwill be determined by the
experimental setup. For this work, the valuewas chosen based upon the fastest timescale for spin–flip
demagnetization seen in [40]. As one of themajor experimental constraints is in the choice of available
frequencies fromwhich to build the laser pulse, wewill include this constraint by using an electric field of the
formgiven by equation (15) using N 4=w different laser frequencies, as defined by equation (16). For the
optimizationwe choose to use the gradient-freeNelder–Mead simplex algorithm. To initialize theNelder–Mead
algorithm, N 1+w starting points are required, it is instructive to examine these beforemoving to the results of
the optimization.

Maximize demagnetization
To initialize our calculations3, we construct five different pulses where the coefficients of equation (15) are
chosen at random in a suitable range. These pulsesmay be seen in the upper panel offigure 1. The dynamics of
Mz(t) are shown in the lower panel and it can be seen that all pulses display demagnetization. If we look at the
final time, the average loss ofmoment is approximately 7%. If the optimal control is successful, then this
percentage loss should be significantly increased.

From the initial pulses, theNelder–Mead algorithm then calculates a new set of coefficients from a simple set
of rules and then tests how this affects the target functional by performing a TDDFT simulationwith the laser
field given by these coefficients. It then iterates this procedure and traverses themultidimensional parameter
space, searching for the optimal set of coefficients.

Figure 1.Upper panels: the electric fields for initialization laser pulses. Lower panels: the dynamics of the totalmoment in the z-
direction for each pulse.

3
All calculations are performedwith a time step of 0.1 au and 8 8 8´ ´ k-points.

4
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Infigure 2, we plot the ratio of thefinalmoment after timeT to the initialmoment for each of the iterations.
Although individual iterations canworsen the loss percentage, there is a clear downward trend as better and
better pulses are found during the search, indicating that the optimal control is not only applicable to this
problembut also is crucial fromobtaining higher demagnetization.

Each set of coefficients is a point in the parameter space, at each iteration, theNelder–Mead algorithm
reflects theworst point through the center ofmass of the other points. Depending onwhether this new point
improves upon the next worst point, the algorithm can expand or contract in this direction, otherwise it can
reduce all points towards the best point. This explains why individual pointsmayworsen the
ratio M T M 0z z( ) ( ).

If we look at the result after 38 iterations, the best pulse the optimal control procedure has found causes a
20% loss ofmoment. This is at least twice asmuch as the random initial pulses used to start the algorithm and is a
clear demonstration that themoment can be successfully controlled usingOCT. Infigure 3we show the electric
field of this best pulse and also themagnetization dynamics, compared to an initial pulse. Examining the pulse
shape compared to the initial pulses offigure 1, there is no obvious reasonwhy one leads to a larger
demagnetization. This is the power ofQOCT tofind such pulses. In [40], it was found that the demagnetization
process has a highly nonlinear dependence on the pulse intensity offluence. The optimal pulse shown infigure 3
has a significantly higher fluence compared to the initial pulse which combinedwith the nonlinearity of the
problem leads to a larger loss of themagneticmoment. It was also found in [40] that demagnetization can occur
for a period after the laser pulse. In this case we can see infigure 3 that if we simulate for a longer time, wewill

Figure 2.The fraction ofmagneticmoment loss for each iteration of theNelder–Mead optimization and the trend in the optimal
control.

Figure 3.Upper panels: the electric fields4 for the optimal laser pulse found after 38 iteration of the optimal control algorithm (right)
and, for comparison, the 3rd initialization pulse (left). Lower panels: the corresponding dynamics ofMz for these pulses.

5
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likely see further demagnetizationwith our pulses. However, the optimal control algorithmhas no knowledge of
this and simplymaximizes the loss ofmoment at timeT, regardless of whatmight happen after. It suggests for
future optimizations, a better target functionalmight be to look at a time slightly later thanwhen the pulse
finishes or to average themoment during a period after the pulse.

Fluence constraint
For practical reasons, the fluence of the applied pulse should be constrained. The primary reason is simply
efficiency—achieving the same dynamics as a higher energy pulse but using a lower energy pulse. Other reasons
include surface damage to thematerial due to highfluence pulses, heating of the sample (and problems
associatedwith cooling it), or physical restrictions on the laser itself preventing production of highfluence
pulses. All of these present significant problems to future technological application, hence we include afluence
constraint into our calculations.

If we add to equation (11), the constraint

J t td 17
T

2
0

2 òa=[ ] ( ) ( )

which is proportional to the laserfluence. The free parameterαdetermines how strong the constraint is, for this
calculationwe choose 0.05a = . This parameter was based on examining the results of the previous
optimization and choosingα to favor a lowerfluencewhile stillmaintaining significant demagnetization in the

set. In this example we choose a time period ofT=16.21 fs and frequencies of 0.075 au1w = ,
9

8
2 0w w= ,

10

8
3 0w w= and

11

8
4 0w w= . These also satisfy the constraints of equations (13) and (14) and approximately

span the optical frequency range.
Infigure 4, we show the value of the total target functional, equation (11), for each iteration of the

optimization algorithm.Unlike the previous case, we cannot attach a physicalmeaning to the target functional,
so the actual value is not significant, only the trend. Furthermore, when choosingα, it was clear that the
parameter space is amore complicated environment than the previous case, as a pulse could have the same value
of equation (11) by either increasing the demagnetization or decreasing thefluence.We again initialize the
search using random coefficients. As the optimization is computationally expensive5, we stopped the
optimization after 26 iterations, although this was sufficient to see the trend and demonstrate optimal control.

To see the power of this optimization, infigure 5we plot the electric fields and the dynamics ofMz(t) for two
different pulses. These correspond to the best point offigure 4 and a reference pulse corresponding to the
G=1.191 point. This point was chosen to demonstrate the need for optimal control as the totalfluence is
significantlymore (8872 mJ cm−2) than the best point found (3665 mJ cm−2), yet yielded aworse finalmoment
(33% loss compared to 50%). Thuswe can useOCT tofind better pulses that cost far less in terms of energy.
Even comparing to the best random initial guess, the algorithmwas able to reduce the fluence by 15%while

Figure 4.TheOCT target functional, G u J u J u0.051 2= + ´[ ] [ ] [ ], where J u M u T M 0z z1 =[ ] [ ]( ) ( ) and J u t u td
T

2
0

2ò=[ ] ( ),
for the electricfield u t= ( ) at each iteration of the algorithm.

4
The initial pulse has a fluence of 4023 mJ cm−2 while the optimized pulse has a fluence of 5702 mJ cm−2.

5
Each iteration required 5000CPUhours.
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achieving the same amount of demagnetization. Aswas detailed in reference [40], thefluence required to see
demagnetization of this typemay be decreased by several orders ofmagnitudewhen longer duration pulses are
used. Sowhile thefluences in this demonstration are quite large, we are confident the results will be similar if
applied to longer duration pulses. Furthermore, in subsequentwork [51] to [40], we have simulated a pulse
based on experimental parameters (intensity of 3.8×1011W cm−2, fluence 8.05 mJ cm−2, and a FWHMof
40 fs) and still see a 20% loss inmoment due to spin–orbit effects. The underlying physics in this case is the same
as for the short pulses. Thuswe anticipate that the controllability found in this workwill also be true for lower
energy laser pulses.

Conclusions

In summarywe have achieved the optimal control of spin–orbitmediated ultrafast demagnetization.We
showed that the loss ofmoment can be at least doubled (compared to randomly chosen typical pulses) for a
systemwhere the available laser frequencies (used to tailor the laser pulse) are constrained. Furthermore, we
extended the control problem to include a constraint on the laserfluence and demonstrated thatQOCT could
successfully find a pulse that balances the fluence and demagnetization requirements. Compared to a reference
pulse, this optimal pulse producesmore favorablemagnetization dynamics, while reducing thefluence by over a
factor of 2. Control of the system is of upmost importance for future technological application (for example, in
spintronics), where the desired dynamics and constraints are dictated by practical concerns. Any physical
phenomenonmust be robust to these concerns, and aswe have demonstrated, this formof ultrafast
demagnetizationmeets this criteria. Simulation andQOCTofmore complicated scenarios, such as longer pulse
durations or further constraints on thefluence, intensity, and robustness of the demagnetization, can be build
upon this foundation.
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