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Reduced-density-matrix-functional theory at finite temperature: Theoretical foundations
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We present an ab initio approach for grand-canonical ensembles in thermal equilibrium (eq) with local
or nonlocal external potentials based on the one-reduced density matrix (1RDM). We show that equilibrium
properties of a grand-canonical ensemble are determined uniquely by the eq-1RDM and establish a variational
principle for the grand potential with respect to its 1RDM. We further prove the existence of a Kohn-Sham
system capable of reproducing the 1RDM of an interacting system at finite temperature. Utilizing this Kohn-Sham
system as an unperturbed system, we deduce a many-body approach to iteratively construct approximations to
the correlation contribution of the grand potential.
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I. INTRODUCTION

Based on the celebrated theorems of Hohenberg and Kohn
[1], Kohn-Sham density-functional theory (KS-DFT) [2] is
currently the method of choice for calculating ground-state
(gs) properties of quantum systems.

There are, however, cases in which KS-DFT performs rather
poorly. A prominent example is its failure in predicting the fun-
damental gap, in particular, of so-called Mott insulators [3,4].
KS-DFT with standard exchange-correlation approximations
fails for this kind of strongly correlated system and typically
yields a metallic ground state, while the true experimental low-
temperature phase is that of an antiferromagnetic insulator.
At finite temperature the description of strongly correlated
systems is even more challenging. Genuine Mott insulators
exhibit a characteristic feature: when heated up from their
antiferromagnetic insulating gs, they stay insulating above the
Néel temperature, i.e., in the absence of long-range magnetic
order. Contrarily, weakly correlated insulators, so-called Slater
insulators, become metallic at the Néel temperature.

A possible approach to tackle this challenge is to search
for more accurate functionals in the framework of KS-DFT.
Alternatively, one may look for other theoretical frameworks in
which the treatment of strong correlation might be simpler. One
candidate for such a framework is reduced-density-matrix-
functional theory (RDMFT). Through its more direct treatment
of many-particle correlations it has promising potential for
calculations of finite [5–10] as well as infinite systems
[11–13]. In particular, it was possible to predict insulating
ground states for transition-metal oxides without breaking the
spin symmetry [13].

Motivated by the success of RDMFT at zero temperature,
the purpose of the present work is to lay the theoretical
foundations for the finite-temperature version of RDMFT
(FT-RDMFT). As a general ab initio theory its applicability
is not restricted to Mott insulators. There is a variety of
physical phenomena, in particular in the warm dense-matter
regime [14], which requires an accurate description of quan-
tum effects at finite temperature [15]. These phenomena
include temperature-driven magnetic [16,17] or supercon-
ducting [18,19] phase transitions in solids, femtochemistry
at surfaces of solids [20], properties of shock-compressed
noble gases [21,22], the properties of plasmas [23–25], thermal

conductivities of inertial confinement fusion capsules [26], and
planetary interiors and their formation processes [27–31].

This paper is divided as follows: In Sec. II we derive
and present the formalism of FT-RDMFT. First, in Sec. II A
we introduce our notation. Note that we work in atomic
units throughout, where e2 = � = me = 1, so that lengths are
expressed in Bohr radii and energies are in hartrees. Then, in
Sec. II B we lay the foundations of FT-RDMFT by showing that
the grand potential of systems with generally nonlocal external
potentials can be written as a functional of the one-reduced
density matrix (1RDM). Next, in Sec. II C we show the
existence of a KS system in FT-RDMFT and demonstrate how
the KS Hamiltonian is explicitly constructed. Subsequently, in
Sec. II D we derive the adiabatic connection formula which
forms the basis for the construction of approximations to
the correlation functional in FT-RDMFT. Finally, in Sec. II E
the existence of a KS system and the adiabatic connection
formula enable us to derive a methodology for iteratively con-
structing correlation functionals based on finite-temperature
many-body perturbation theory (FT-MBPT). Furthermore,
in Appendix A we give a detailed analysis of occupation
numbers in interacting systems, in Appendix B we investigate
the one-to-one mapping between the external potential and
the wave function at zero temperature, in Appendix C we
show that our iterative procedure for constructing functionals
from FT-MBPT yields the finite-temperature Hartree-Fock
functional as the first-order contribution, and in Appendix D
we present the formulation of FT-RDMFT for a canonical
ensemble.

II. FINITE-TEMPERATURE
REDUCED-DENSITY-MATRIX-FUNCTIONAL THEORY

A. Background

The main thermodynamic variable in a grand-canonical
ensemble is the grand potential

�[D̂] = tr{D̂�̂} (1)

given as a statistical average over the grand-canonical operator

�̂ = Ĥ − μN̂ − Ŝ/β , (2)
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where Ĥ , N̂ , and Ŝ are the Hamiltonian, particle number,
and entropy operators. In electronic structure theory the
Hamiltonian is typically given by Ĥ = T̂ + Ŵ + V̂ , where
T̂ denotes the kinetic-energy operator, Ŵ is the interelectronic
repulsion in a Coulombic system, and V̂ represents a scalar
external potential. The coupling to particle and heat baths
is achieved via the Lagrangian multipliers μ, denoting the
chemical potential, and 1/β, denoting the temperature.

Statistical averages as in Eq. (1) are computed via the
statistical density operator (SDO) D̂, which is defined as a
weighted sum of projection operators on the underlying Hilbert
space. The appropriate Hilbert space for grand-canonical
ensembles, where a change of particle number is allowed, is a
direct sum of symmetrized tensor products of the one-particle
Hilbert space, called the Fock space. Assuming that the system
does not allow for mixing of states with different particle
numbers, the set of all possible SDOs can be expressed just by
projection operators on states with defined particle number N :

D̂ =
∑

α

wα|�α〉〈�α|,

wα � 0,
∑

α

wα = 1 , (3)

where |�α〉 and wα are orthonormal N -particle states and their
corresponding weights.

The thermal equilibrium (eq) of a grand-canonical ensem-
ble is then defined as that SDO for which the grand potential
�[D̂] is minimal. This definition leads to the finite-temperature
Rayleigh-Ritz variational principle [32], which states that

�[D̂] > �[D̂eq], D̂ �= D̂eq, (4)

with

D̂eq = e−β(Ĥ−μN̂)/tr{e−β(Ĥ−μN̂)}. (5)

The 1RDM is defined by the SDO and the help of the
common fermionic field operators ψ̂ as

γ (x,x ′) = tr{D̂ψ̂+(x ′)ψ̂(x)}
=

∑
α

wα〈�α|ψ̂+(x ′)ψ̂(x)|�α〉 ,
(6)

where the variable x denotes a combination of spin index
σ and spatial coordinate r, where x = (r,σ ). An integration
over x is therefore to be interpreted as an integration over r
and a summation over σ . Since the 1RDM is Hermitian by
construction, it is commonly written in spectral representation
as

γ (x,x ′) =
∑

i

niφ
∗
i (x ′)φi(x), (7)

with real-valued eigenvalues {ni} and eigenfunctions {φi(x)},
which are called occupation numbers and natural orbitals [33].
The necessary and sufficient conditions for N -representability
[34] of γ (x,x ′) are that {φi} is a complete set and

0 � ni � 1,
∑

i

ni = N. (8)

In Appendix A the relationship between the 1RDM expressed
as in Eq. (6) and in terms of its spectral representation in Eq. (7)
is further discussed.

It is sometimes desirable to treat spin and spatial variables
separately. To this end we introduce a two-component (Pauli)
spinor notation:


i(r) =
(

φi1(r)
φi2(r)

)
, (9)

where φiσ (r) = φi(x) = φi(σ,r) (σ = 1,2) are the orbitals of
Eq. (7). The 1RDM can then be written as a matrix in spin
space as

γ (r,r′) =
∑

i

ni

†
i (r

′) ⊗ 
i(r) (10)

=
∑

i

ni

(
φ∗

i1(r′)φi1(r) φ∗
i2(r′)φi1(r)

φ∗
i1(r′)φi2(r) φ∗

i2(r′)φi2(r)

)
. (11)

In the special case of collinear spin configuration different
spin channels can be treated separately. For these systems,
the natural orbitals are so-called spin orbitals, i.e., spinors
containing only one spin component, where


i1(r) =
(

φi1(r)
0

)
, 
i2(r) =

(
0

φi2(r)

)
. (12)

This leads to a 1RDM which has only one nonvanishing entry
in every 2 × 2 matrix of Eq. (11), either the 11 or the 22
element. Hence the complete 1RDM is diagonal with respect
to the spin coordinate

γσσ ′(r,r′) = δσσ ′
∑

i

niσ φ∗
iσ (r′)φiσ (r), (13)

where niσ are the occupation numbers of the special spinors

iσ (r) in Eq. (12). Spin-spiral states are another special case
where this separation also applies [35].

B. Hohenberg-Kohn theorems for finite-temperature
reduced-density-matrix-functional theory

We lay the foundations of FT-RDMFT by formulating its
Hohenberg-Kohn (HK) theorems. We divide this up into three
steps, namely, showing (i) that the map between the eq-SDO
and the eq-1RDM is invertible, i.e.,

D̂eq
1−1←→ μ(x,x ′)

1−1←→ γeq(x,x ′) , (14)

implying the existence of a grand potential functional �[γ ],
(ii) the existence of a universal functional F [γ ], and (iii) that
the minimization of �[γ ] leads to the eq-1RDM. Note that we
consider only eq-1RDMs for the proof in step (i). However,
we can relax this restriction in step (ii).

(i) Proof of D̂eq
1−1←→ γeq(x,x ′) (one-to-one mapping be-

tween eq-SDO and eq-1RDM). Note that Mermin’s extension
of the HK theorems to finite temperature [36] immediately
implies the one-to-one mappings

γ (r,r′) −→ ρ(r)
HK←→ v(r), (15a)

v(r) −→ �(D̂) −→ γ (r,r′), (15b)

i.e., between the 1RDM, the density, the eq-SDO, and the local
external potential [37]. However, in FT-RDMFT we need to go
further than this and consider nonlocal external potentials, in
which case the ground state is not uniquely determined by the
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density anymore but by the 1RDM [38]. Going beyond local
external potentials is necessary because the KS potentials in
FT-RDMFT are nonlocal in general, as we show in Sec. II C.

We divide proving the existence of a one-to-one mapping
in Eq. (14) into two parts. We prove first (i.i) the one-to-one
mapping between D̂eq and the nonlocal chemical potential
μ(x,x ′) = v(x,x ′) − μ and then (i.ii) the one-to-one mapping
between μ(x,x ′) and γeq(x,x ′).

(i.i) Proof of D̂eq
1−1←→ μ(x,x ′) (one-to-one mapping be-

tween eq-SDO and nonlocal chemical potential). We show
this with a proof by contradiction. Let Ĥ and Ĥ ′ be two
different Hamiltonians with corresponding eq-SDOs D̂eq and
D̂′

eq. Ĥ ′ shall differ from Ĥ only by a one-particle potential

contribution 
V̂ . Now assume that both Hamiltonians lead to
the same SDO, i.e., D̂eq = D̂′

eq. With Eq. (5) this reads

e−β(Ĥ−μN̂)/Z = e−β(Ĥ+
V̂ −μN̂)/Z′ , (16)

where Z and Z′ are the partition functions, e.g., Z =
tr{e−β(Ĥ−μN̂)}. Solving Eq. (16) for 
V̂ yields


V̂ =
∫

dxdx ′
v(x ′,x)ψ̂+(x ′)ψ̂(x) = 1

β
ln

Z

Z′ . (17)

We now need to show that a one-particle potential 
v(x,x ′) �=
0 fulfilling this equality cannot exist, thereby contradicting our
initial assumption. To proceed we calculate the expectation
value 
V of Eq. (17) using both D̂eq and D̂′

eq:


V = 1

β
ln

Z

Z′ = tr{D̂eq
V̂ }

= tr{D̂′
eq
V̂ }. (18)

We evaluate the trace by expanding the N -particle states �α

in terms of Slater determinants χj , which form a basis of the
Hilbert space and are constructed from the natural orbitals φi

introduced in Eq. (7):

|�α〉 =
∑

j

cjα|χj 〉 , cjα = 〈χj |�α〉. (19)

We also express the fermionic field operators in the basis of
the natural orbitals:

�̂(x) =
∑

i

ĉiφi(x), �̂†(x) =
∑

i

ĉ
†
i φi(x) , (20)

where ĉ
†
i and ĉi are the common creation and annihilation

operators defining the particle number operator N̂ = ∑
i n̂i ,

with n̂i = ĉ
†
i ĉi . Using these expansions in Eq. (18) for D̂eq

yields

1

β
ln

Z

Z′ =
∑
αij


vjj

Z
|cjα|2〈χj |e−β(Ĥ−μN̂)n̂j |χj 〉 , (21)

whereas for D̂′
eq it yields

1

β
ln

Z

Z′ =
∑
αij


vjj

Z′ |cjα|2〈χj |e−β(Ĥ−μN̂+
̂V )n̂j |χj 〉 , (22)

where 
vjj = ∫
dx dx ′ 
v(x ′,x)φ∗

j (x ′)φj (x). Equations (21)
and (22) imply that Eq. (18) can be simultaneously fulfilled by

D̂eq and D̂′
eq only if 
V̂ = 0. This in turn proves the one-to-

one correspondence between D̂eq and v(x,x ′) and hence the
one-to-one correspondence between D̂eq and μ(x,x ′).

This proof is valid for any finite temperature. It is based
on the bijectivity of the exponential function, which allows us
to invert Eq. (16), leading to Eq. (18). At zero temperature,
however, this bijectivity breaks down. Further elaborations on
zero-temperature mappings between external potentials and
wave functions are given in Appendix B.

(i.ii) Proof of μ(x,x ′)
1−1←→ γeq(x,x ′) (one-to-one mapping

between nonlocal chemical potential and eq-1RDM). In order
to prove the one-to-one correspondence between μ(x,x ′) and
γeq(x,x ′) we use a proof by contradiction again. Consider two
Hamiltonians Ĥ and Ĥ ′ differing only in their external and
chemical potentials. The corresponding grand potentials are
given by

�[D̂eq] = tr{D̂eq(Ĥ − μN̂ + 1/β ln D̂eq)}, (23)

�′[D̂′
eq] = tr{D̂′

eq(Ĥ ′ − μ′N̂ + 1/β ln D̂′
eq)}, (24)

where D̂eq and D̂′
eq are defined by Eq. (5). Using D̂eq �= D̂′

eq
as we have proven in (i.i), the variational principle in Eq. (4)
then leads to

�[D̂eq] < �[D̂′
eq] (25)

= tr{D̂′
eq(Ĥ − μN̂ + 1/β ln D̂′

eq)} (26)

= �′[D̂′
eq] + tr{D̂′

eq[(Ĥ − μN̂ ) − (Ĥ ′ − μ′N̂ )]}.
(27)

By exchanging primed and unprimed quantities we obtain

�[D̂eq] < �′[D̂′
eq] +

∫
dxdx ′[μ(x ′,x) − μ′(x ′,x)]γ ′(x,x ′),

(28)

�′[D̂′
eq] < �[D̂eq] +

∫
dxdx ′[μ′(x ′,x) − μ(x ′,x)]γ (x,x ′) .

(29)

Adding these two equations leads to∫
dxdx ′[μ′(x ′,x) − μ(x ′,x)][γ (x,x ′) − γ ′(x,x ′)] > 0.

(30)

The existence of two different sets of external and chemical
potentials yielding the same eq-1RDM lets the integral in
Eq. (30) vanish, which leads to a contradiction. Hence the
initial assumption is falsified. This concludes our proof of
Eq. (14).

Having established the existence of a one-to-one mapping
between D̂eq and γeq, we can now proceed and properly define
the grand potential as a functional of the 1RDM as

�[γeq] = tr{D̂[γeq][Ĥ − μN̂ + 1/β ln(D̂[γeq])]} . (31)

(ii) Existence of a universal functional F [γeq]. In anal-
ogy to DFT, we define a universal functional by separat-
ing the external and chemical potential contributions from
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Eq. (31):

F [γeq] = tr{D̂[γeq](T̂ + Ŵ + 1/β ln D̂[γeq])}, (32)

such that

�[γeq] =
∫

dxdx ′μ(x,x ′)γeq(x,x ′) + F[γeq]. (33)

Notice a subtlety involved with defining the universal func-
tional in Eq. (32). In our proof we considered a restricted set
of 1RDMs, namely, those coming from eq-SDOs given by
Eq. (5). However, the conditions to ensure that an arbitrary
1RDM comes from such a SDO are unknown. Nevertheless,
following ideas of Valone [39] and Lieb [40], we can resolve
this subtle point and extend the domain of �[γ ] to the whole set
of ensemble-N -representable 1RDMs. Accordingly, we can
now define the universal functional as

F[γ ] = inf
D̂→γ

tr{D̂(T̂ + Ŵ + 1/β ln D̂)}, (34)

such that

�[γ ] =
∫

dxdx ′μ(x,x ′)γ (x,x ′) + F[γ ]. (35)

(iii) Minimization of �[γ ]. The variational principle in
Eq. (4) now allows us to determine the equilibrium grand
potential by

�eq = min
γ∈�N

�[γ ] , (36)

a minimization over �N which is the set of all ensemble-N -
representable 1RDMs. Additionally, we postulate

δF[γ ]

δγ (x,x ′)

∣∣∣∣
γeq

+ v(x,x ′) = μ , (37)

the Euler-Lagrange equation for the eq-1RDM in FT-RDMFT
[41].

C. Kohn-Sham system for finite-temperature
reduced-density-matrix-functional theory

We have established the theoretical framework of FT-
RDMFT by proving Hohenberg-Kohn-like theorems. The
central problem for turning this theory into a practical scheme
is finding approximations as a functional of the 1RDM. In
analogy to DFT, one possible route for constructing such
approximations requires us to introduce the KS scheme. Then
we can exploit the existence of a KS system to derive a
methodology for the iterative construction of functionals using
methods from FT-MBPT.

Our starting point is an auxiliary system of noninteracting
fermions described by the Hamiltonian

Ĥ
(1)
S = T̂ + V̂S , Ĥ

(1)
S =

∑
i

εi |φi〉〈φi |, (38)

with eigenvalues {εi} and eigenfunctions {φi(x)} and V̂S

denoting the operator of the KS potential. Then we assume the
existence of a nonlocal potential, the KS potential vS(x,x ′),
which yields a ground-state or eq-1RDM that equals the true

ground state or eq-1RDM,

γeq(x,x ′) = γS,eq(x,x ′). (39)

Note that a KS system does not exist in RDMFT for
Coulombic matter at zero temperature. The reason behind
this is the presence of the electron-electron cusp emerging
from the interelectronic repulsion [42]. Capturing this cusp
requires a superposition of infinitely many Slater determinants
[43]. Hence, the gs 1RDM for Coulombic systems has an
infinite number of occupied orbitals, i.e., natural orbitals with
occupation numbers ni > 0.

In the following we show that in FT-RDMFT, however,
such a KS system does indeed exist. From the spectral
decomposition of the eq-1RDM in Eq. (39) it follows that

γS,eq(x,x ′) =
∑

i

ni φ∗
i (x ′) φi(x), (40)

with {ni} and {φi(x)} being the same occupation numbers
and natural orbitals as those of the interacting 1RDM given
in Eq. (7). The eigenvalues {εi} and the chemical potential
μ completely determine the occupation numbers {ni} by the
relation

ni = 1

1 + eβ(εi−μ)
, (41)

which can be inverted to yield

εi − μ = 1

β
ln

(
1 − ni

ni

)
. (42)

In contrast to the zero-temperature case, it is now possible
to construct the KS Hamiltonian in the following way: The
KS Hamiltonian is obtained via its spectral representation in
Eq. (38), where its eigenvalues are determined from Eq. (42),
while its eigenfunctions are given by the natural orbitals of
the given 1RDM in Eq. (40). The occupation numbers of a KS
system in thermal equilibrium at finite temperature cannot be
0 or 1, as can be seen from Eq. (41). This is also true for the
interacting 1RDM of a grand-canonical ensemble, as we show
in Appendix A. Hence, it is ensured that the domain of the KS
system includes the interacting system.

Furthermore, due to the variational principle the KS
potential is generally nonlocal [38]. Its uniqueness follows
from the Hohenberg-Kohn-like theorems shown in Sec. II B.
It can be expressed explicitly as

vS(x,x ′) =
∑
i,j

(δij εi − tij )φ∗
i (x ′)φj (x) , (43)

where tij = 〈φi |T̂ |φj 〉 is the kinetic operator in the basis of
natural orbitals. The requirement of locality can be imposed
on the KS potential. This is computationally advantageous but
leaves the domain of an exact theory because this requirement
results in approximate natural orbitals that cannot be equal to
the true natural orbitals [44].

Having established the KS scheme, we can express the
grand potential of the interacting system as

�[γ ] = F [γ ] + V [γ ] − μN [γ ] , (44)
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where we express the universal functional in terms of common
KS quantities as

F [γ ] = �k[γ ] − S0[γ ]

β
+ �H[γ ] + �X[γ ] + �C[γ ]. (45)

Here,

�k[γ ] =
∫

dx ′ lim
x→x ′

(
−∇2

2

)
γ (x,x ′) , (46)

V [γ ] =
∫

dxdx ′v(x,x ′)γ (x ′,x) , (47)

N [γ ] =
∫

dxγ (x,x) , (48)

SS[γ ] = −
∑

i

[ni ln ni + (1 − ni) ln(1 − ni)] , (49)

�H[γ ] = 1

2

∫
dxdx ′w(x,x ′)γ (x,x)γ (x ′,x ′) , (50)

�X[γ ] = −1

2

∫
dxdx ′w(x,x ′)γ (x,x ′)γ (x ′,x) (51)

denote the functionals of kinetic energy, external potential,
particle number, KS entropy, Hartree energy, and exchange
energy, which are known explicitly [45]. The remaining term,
�C[γ ], is the correlation contribution, but its exact form is not
known explicitly.

D. Adiabatic connection formula in finite-temperature
reduced-density-matrix-functional theory

We derive the adiabatic connection formula in FT-RDMFT,
which allows us to connect the interacting system to the
KS system with the same eq-1RDM and forms the basis for
systematically constructing approximations to the correlation
functional �C[γ ] via FT-MBPT.

Closely following the standard zero-temperature DFT
approach [46,47], we begin by introducing a coupling constant
λ into the electronic Hamiltonian

Ĥ λ = T̂ + λŴ + V̂ λ , (52)

where 0 � λ � 1. The potential V̂ λ is chosen such that for
any λ there is an associated eq-SDO D̂λ[γ ] that leaves the
eq-1RDM invariant under a change of λ. Along with that we
define an auxiliary Hamiltonian

Ĥ λ
a = T̂ + λŴ + V̂ , (53)

such that it agrees with Eq. (52) at full coupling strength
when λ = 1, i.e., Ĥ 1

a = Ĥ 1. Additionally, we also introduce an
auxiliary potential V̂ λ

a = V̂ λ − V̂ such that Ĥ λ
a + V̂ λ

a = Ĥ λ.
The grand potential for the auxiliary Hamiltonian becomes

�λ
a[γ ] = min

D̂→γ

Tr
{
D̂

(
Ĥ λ

a − μN̂ + ln D̂/β
)}

. (54)

With the aid of the auxiliary potential we obtain

�λ
a[γ ] = min

D̂→γ

(
Tr

{
D̂

(
Ĥ λ

a + V̂ λ
a − μN̂ + ln D̂/β

)}
− Tr

{
D̂V̂ λ

a

})
. (55)

Since V̂ λ
a is a one-particle operator, we can take the last term

out of the minimization and replace D̂ in this term by any

D̂ → γ . Then, the minimization in Eq. (55) yields the eq-
SDO D̂λ = exp Ĥ λ − μN̂/Tr{exp Ĥ λ} that is associated with
Ĥ λ, yielding the eq-1RDM of the true interacting system that
is invariant under a change of λ. Hence the grand potential
becomes

�λ
a[γ ] = Tr

{
D̂λ

(
Ĥ λ

a + V̂ λ
a − μN̂ + ln D̂λβ

)} − Tr
{
D̂V̂ λ

a

}
.

(56)

By definition �1
a[γ ] = �[γ ], i.e., the auxiliary grand

potential at full coupling strength is identical to the true
interacting grand potential; therefore

�[γ ] = �0
a +

∫ 1

0
dλ

d�λ
a[γ ]

dλ
. (57)

Taking the derivative with respect to the coupling constant is
simplified by the fact that we consider a system in thermal
equilibrium. Hence, only λŴ and V̂ λ

a contribute to the
coupling-constant derivative in Eq. (57), yielding

�[γ ] = �0
a +

∫ 1

0
dλTr

{
D̂λŴ

}
. (58)

Consider the grand potentials

�[γ ] = Tr{D̂(T̂ + V̂ + Ŵ − μN̂ + ln D̂/β)} , (59)

�0
a[γ ] = Tr{D̂0(T̂ + V̂ − μN̂ + ln D̂0/β)} (60)

and take into account that D̂ and D̂0 yield the same eq-
1RDM, hence the same expectation values of one-particle
operators, such as Tr{D̂T̂ } = Tr{D̂0T̂ }, Tr{D̂V̂ } = Tr{D̂0V̂ },
and Tr{D̂N̂} = Tr{D̂0N̂}.

Then, we can further reduce Eq. (58) and obtain the
adiabatic connection formula for the entire interaction as

�W[γ ] =
∫ 1

0
dλWλ[γ ] , (61)

where we define �W = W − SC/β, Wλ = Tr{D̂λŴ }, W =
Tr{D̂Ŵ }, and SC = Tr{D̂0 ln D̂0} − Tr{D̂ − ln D̂} as the en-
tropic correlation contribution.

Finally, by subtracting the Hartree and exchange contri-
butions defined as WHX = Tr{D̂0Ŵ } we obtain the adiabatic
connection formula for the correlation contribution

�C[γ ] =
∫ 1

0

dλ

λ
Wλ

C[γ ] , (62)

where we define �C = WC − SC/β, WC = W − WHX, and
Wλ

C = Tr{λ(D̂λ − D̂0)Ŵ }.
In analogy to DFT, Eq. (62) allows us to express the

correlation contribution to the KS system in FT-RDMFT as
a contribution coming solely from the interaction potential.
It is interesting to note another similarity between DFT
and FT-RDMFT. In DFT, the adiabatic connection formula
includes the kinetic correlation contribution, i.e., the difference
between the kinetic energy of the interacting system and the KS
system via the coupling constant integration. In FT-RDMFT,
where there is no kinetic correlation contribution, the coupling-
constant integral instead incorporates the entropic correlation
contribution SC.
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The adiabatic connection formulas derived in Eqs. (61)
and (62) are central results because they are our key for
developing systematic approximations to �W[γ ] and its
correlation contribution �C[γ ] based on FT-MBPT.

E. Constructing correlation functionals

With the aid of the adiabatic connection we can use
methods from FT-MBPT [48] to systematically construct
approximations to the functionals �W[γ ] and �C[γ ], where
the KS system, defined by the Hamiltonian Ĥ 0, serves as
our reference system in a perturbative expansion. Our starting
point from the perspective of FT-MBPT is to relate the
temperature Green’s function Gλ(x,τ,x ′,τ ′) to the adiabatic
connection in Eq. (61). This relation is expressed as

λWλ = 1

2

∫
dxdx ′ lim

τ ′→τ+

{
−δ(x − x ′)

∂

∂τ

−
[
−δ(x − x ′)

∇2

2
+ vS(x ′,x)

]}
Gλ(x,τ,x ′,τ ′)

+ 1

2

∫
dxdx ′[vS(x ′,x) − vλ(x ′,x)]γ (x,x ′), (63)

where τ = it denotes imaginary time and τ+ = limη→0+ (τ +
η). The use of FT-MBPT in Eq. (63) is facilitated by the
existence of the adiabatic connection which connects the true
interacting system with the KS system and hence allows us to
express the resulting Feynman diagrams in terms of occupation
numbers and natural orbitals of the 1RDM.

Well-known methods of FT-MBPT can now be applied.
The unperturbed Hamiltonian is Ĥ 0, whereas the perturbation
consists of a two-particle interaction λŴ and a nonlocal one-
particle potential uλ(x,x ′) = vλ(x,x ′) − vS(x,x ′). The proof of
Wicks theorem is still applicable for this kind of perturbation,
and the same Feynman rules apply. We show our notation
conventions in Table I.

TABLE I. Notation conventions for Feynman diagrams in FT-
RDMFT, where w(x,x ′) denotes the interelectronic interaction,
uλ(x,x ′) = vλ(x,x ′) − vS(x,x ′) is the nonlocal one-particle potential,
G0(x,τ,x ′,τ ′) is the Green’s function of the unperturbed system, and
Gλ(x,τ,x ′,τ ′) are the temperature Green’s functions.

λw(x, x )

uλ(x, x )

G0(x, τ, x , τ )

Gλ(x, τ, x , τ )

In particular, if the Hamiltonian is temperature independent
and the system is uniform, Eq. (58) can be written entirely in
terms of Feynman diagrams as

λWλ
unif =

1
2

− , (64)

where �∗ denotes the irreducible self-energy. However, in
general, the irreducible self-energy �∗ for the first-order
contribution becomes

Σ∗ = + + . (65)

Combining Eqs. (61), (58), and (65), we arrive at the first-
order contribution to the interaction-induced grand potential
functional in FT-RDMFT, which is

�
(1)
W [γ ] = �H[γ ] + �X[γ ] , (66)

�H[γ ] = 1

2

∫
dxdx ′w(x,x ′)γ (x,x)γ (x ′,x ′), (67)

�X[γ ] = −1

2

∫
dxdx ′w(x,x ′)γ (x,x ′)γ (x ′,x). (68)

This justifies the definitions of the Hartree and exchange
energies which we postulated in Eqs. (50) and (51). Note
that the functional form of the first-order contributions are
equivalent to the Hartree and exchange functionals in zero-
temperature RDMFT [49].

Approximations for the correlation functional �C = �W −
�

(1)
W can now be derived by expanding the Green’s function to

higher orders and then solving Eqs. (61) and (63).

III. SUMMARY AND CONCLUSIONS

In this work, we have derived and presented the founda-
tions of FT-RDMFT. We have proven Hohenberg-Kohn-like
theorems and shown that the equilibrium properties of a
grand-canonical ensemble with nonlocal external potential
are determined uniquely by the eq-1RDM. This allows us to
establish a functional theory for the grand potential in terms
of the 1RDM and, in analogy to DFT, to define a universal
functional. A minimization of that grand potential functional
then yields the eq-1RDM.

Furthermore, we have shown that there exists a KS system
in FT-RDMFT, in contrast to the zero-temperature case, and
derived the adiabatic connection formula. Based on this,
we have established an iterative procedure for constructing
approximations to the correlation functional in FT-RDMFT
by utilizing methods from FT-MBPT. We have further demon-
strated that the minimization of the first-order functional in
this perturbative scheme is equivalent to the solution of the
finite-temperature Hartree-Fock equations.

The present work sparks the hope that FT-RDMFT might
become the method of choice for quantum problems at finite
temperature where the standard DFT approach fails and the
thermal DFT approach has not been developed to satisfaction
[50].
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The main task for the future is the development of
correlation functionals for the grand potential and free energy
in FT-RDMFT and the application to real systems. Some
further developments, such as an exchange-only functional
for collinear and noncollinear spins, as well as correlation
functionals, momentum distributions, and phase diagrams in
the framework of FT-RDMFT, will be presented in Ref. [35].

APPENDIX A: EQUILIBRIUM OCCUPATION
NUMBERS IN GENERAL SYSTEMS

As we have pointed out in Sec. II C, the eq-1RDM
of a noninteracting system has occupation numbers strictly
between 0 and 1. We now show that this is also true for
the occupation numbers of eq-1RDMs of arbitrary systems,
including interacting ones.

We start from the spectral representation of the eq-1RDM
given by

γ (x,x ′) =
∑

i

niφ
∗
i (x ′)φi(x) . (A1)

The occupation number operator n̂i is now defined as

n̂i = ĉ+
i ĉi , (A2)

where c+
i creates and ci annihilates the natural orbital φi .

An arbitrary occupation number of the eq-1RDM in grand
canonical equilibrium can then be written as

ni = tr{D̂n̂i} =
∑

e

we〈�e|n̂i |�e〉. (A3)

{�e} are eigenfunctions of the Hamiltonian and form a basis of
the underlying Hilbert space. Another basis is formed by the
Slater determinants {χα}, which are constructed by the natural
orbitals {φi} of the eq-1RDM. The transformation between
these bases is governed by the expansion coefficients ceα via

�e =
∑

α

ceαχα. (A4)

Due to completeness and normalization of the {�e} and {χα},
the coefficients fulfill∑

e

|ceα|2 =
∑

α

|ceα|2 = 1. (A5)

Expanding {�e} in Eq. (A3) in terms of {χα} then leads to

ni =
∑

e

we

∑
αβ

c∗
eαceβ〈χα|n̂i |χβ〉 . (A6)

Since the Slater determinants {χα} are, by definition, eigen-
functions of the occupation number operator n̂i , this reduces to

ni =
∑

α

(∑
e

we|ceα|2
)

︸ ︷︷ ︸
fα

〈χα|n̂i |χα〉︸ ︷︷ ︸
giα

. (A7)

Using Eq. (A5) and the properties of the thermal weights,
we > 0 and

∑
e we = 1, we see that

fα > 0, (A8)∑
α

fα = 1. (A9)

The factors giα are equal to 1 if the natural orbital φi appears
in the Slater determinant χα . Otherwise, giα vanishes. The
summation over α corresponds to a summation over a basis
of the Hilbert space, which is the Fock space in the case of
a grand-canonical ensemble. Therefore, for a fixed i, there
will be at least one α, such that giα = 1 and at least one α for
which giα = 0. Combining this fact with Eqs. (A8) and (A9),
we can rewrite Eq. (A7) to yield the desired inequality

0 < ni < 1. (A10)

APPENDIX B: ZERO-TEMPERATURE MAPPING
BETWEEN POTENTIALS AND WAVE FUNCTIONS

Due to Gilbert’s theorem [38], the wave function can be
written as a functional of the 1RDM allowing us to define an
energy functional

E[γ ] = 〈�[γ ]|Ĥ |�[γ ]〉 , (B1)

with a generic Hamiltonian Ĥ = T̂ + V̂ + Ŵ in electronic
structure theory already given in Eq. (2). Due to the variational
principle this energy functional is minimized by a gs-1RDM,

γgs(x,x ′) =
∑

i

ni φ
∗
i (x ′)φi(x), (B2)

analogous to the eq-1RDM in Eq. (7). The minimization
of Eq. (B1) is performed under the constraints ensuring
N -representability of the 1RDM; that is, (i) the natural orbitals
{φi} form a complete set, (ii) the occupation numbers sum up
the correct particle number (

∑
i ni = N ), and (iii) 0 � ni � 1.

These constraints are taken into account by defining the
auxiliary functional

A[γ ] = E[γ ] −
∞∑
ij

∫
dxφ∗

i (x)φj (x ′) − μ

∞∑
i

cos2 θi,

(B3)

where the last constraint is accommodated by the substitution
ni = cos2 θi . Minimizing with respect to variations in the
natural orbitals φ∗

k (x) and φk(x) while keeping the occupation
numbers fixed and variations in θk while keeping the natural
orbitals fixed leads to the following well-known set of
equations [38]:

δA

δφ∗
k (x)

= nk h φk(x) −
∞∑
j

λkj φj (x) = 0, (B4)

δA

δφk(x)
= nk h φ∗

k (x) −
∞∑
i

λik φ∗
i (x) = 0, (B5)

∂A

∂θk

= sin(2θk)

(
∂E[γ ]

∂nk

∣∣∣∣
γgs

− μ

)
= 0 , (B6)

where h = δE[γ ]/δγ (x,x ′). Equation (B6) implies that

∂E[γ ]

∂nk

∣∣∣∣
γgs

=
⎧⎨
⎩

ak > μ and θk = π/2 ⇔ nk = 0,

μ and any θk ⇔ 0 < nk < 1,

bk < μ and θk = 0 ⇔ nk = 1.

(B7)

If there are only unpinned states, i.e., 0 < nk < 1, then
Eq. (B7) equals the chemical potential μ. If there are pinned
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states, i.e., nk = 0 or nk = 1, Eq. (B7) is either greater or less
than μ, where ak,bk ∈ R.

In the following we show that there is a one-to-one mapping
between potential and gs-1RDM if and only if there are
unpinned occupation numbers (0 < nk < 1). Contrarily, there
is no one-to-one mapping between potential and gs-1RDM if
there are pinned occupation numbers (nk = 0 or nk = 1). This
is done in two steps: (i) For unpinned occupation numbers
we show that the external potential is uniquely determined
up to a constant; (ii) for gs-1RDMs with pinned occupation
numbers we show explicitly that one can construct infinitely
many potentials differing by more than a constant that lead to
the same gs-1RDM.

(i) Unpinned states. For unpinned states Eqs. (B4), (B5),
and (B6) imply that any 1RDM must fulfill

δE[γ ]

δγ (x,x ′)

∣∣∣∣
γgs

= μ
δN [γ ]

δγ (x,x ′)

∣∣∣∣
γgs

= μδ(x,x ′) , (B8)

where δ(x,x ′) denotes the Dirac delta function. Now assume
an arbitrary potential contribution U [γ ] = ∫

dxdx ′γ (x,x ′)
u(x,x ′), which we add to the total energy by defining an energy
functional Eu[γ ] = E[γ ] + U [γ ]. Then Eq. (B8) yields

δEu[γ ]

δγ (x,x ′)

∣∣∣∣
γgs

= μδ(x,x ′) + u(x,x ′). (B9)

Due to Eq. (B8) the only choice for u(x,x ′) that leaves the
gs-1RDM invariant is

u(x,x ′) = cδ(x,x ′), (B10)

with c being an arbitrary constant. Thus we have shown that
the external potential is uniquely determined up to a constant.

(ii) Pinned states. For pinned occupation numbers the
minimum of E[γ ] is at the boundary of the domain, and hence
Eqs. (B4), (B5), and (B6) do not imply Eq. (B8).

It is possible to adjust the Euler-Lagrange equation by
incorporating Kuhn-Tucker multipliers [51], but there is a
simpler way, as described in the following.

We exploit the fact that the derivatives in Eq. (B8) can be
different from μ for pinned states and construct a one-particle
potential which leaves the gs-1RDM invariant. This potential
shall be governed by the generally nonlocal kernel u(x,x ′). By
making it diagonal in the natural orbital basis of the gs-1RDM
we ensure that the orbitals do not change upon addition of the
potential. For simplicity, we choose only one component to be
nonvanishing, namely,

u(x,x ′) = uφ∗
α(x ′)φα(x), (B11)

and define an energy functional

Eα[γ ] = E[γ ] +
∫

dxdx ′u(x,x ′)γ (x ′,x). (B12)

In analogy to Eq. (B7) the derivative with respect to the
occupation numbers becomes

∂Eα[γ ]

∂nk

∣∣∣∣
γgs

=
⎧⎨
⎩

ak + uδkα and θk = π/2 ⇔ nk = 0,

μ + uδkα and any θk ⇔ 0<nk<1,

bk + uδkα and θk = 0 ⇔ nk = 1,

(B13)

where δij denotes the Kronecker symbol.

These considerations can now be employed to show the
ambiguity of the external potential in RDMFT for ground
states with pinned occupation numbers. For simplicity we
assume that there is exactly one pinned occupation number,
e.g., nβ = 0. We then construct an external potential as in
Eq. (B11) with α = β. We deduce from Eq. (B13) that every
choice of u > μ − aβ leads to a situation where the β orbital
exhibits a derivative greater than μ, but all choices yield the
same gs-1RDM. Then we consider one pinned occupation
number nβ = 1. Here we can choose u < μ − bβ for which
the derivative of the β orbital is always less than μ but again
leads to the same gs-1RDM as in the previous consideration.
We can readily generalize these arguments to a gs-1RDM
with several pinned states. Following this procedure, we can
construct infinitely many external potentials in the form of
Eq. (B11) that differ by more than a constant that all yield the
same gs-1RDM. This proves the ambiguity of the one-particle
potential for gs-1RDM with pinned occupation numbers.

APPENDIX C: FINITE-TEMPERATURE
HARTREE-FOCK THEORY

Consider Eq. (44) without the correlation contribution,

�HF [γ ] = �k[γ ] + V [γ ] − μN [γ ] − SS[γ ]/β

+�H[γ ] + �x[γ ]. (C1)

In the following we show that Eq. (C1) is the Hartree-Fock
functional and implies the finite-temperature Hartree-Fock
equations given in Eq. (C4).

The derivative of the KS entropy SS[γ ] with respect to
the occupation numbers diverges for ni → {0,1}, whereas all
other contributions are finite. Therefore, there are no pinned
states at the minimum of �HF [γ ]. Furthermore, Eq. (C1) is an
explicit functional of the 1RDM. Therefore we conclude that
the functional derivative with respect to the 1RDM exists and
that �HF [γ ] fulfills the Euler-Lagrange equation

δ�HF [γ ]

δγ (x ′,x)
= 0 (C2)

at the minimum. Applying this condition on �HF [γ ] and
projecting the result on the ith natural orbital of the 1RDM
leads to the FT-HF equations

0 =
∫

dx ′φi(x
′)

δ�HF [γ ]

δγ (x ′,x)
(C3)

=
(

−∇2

2

)
φi(x) +

∫
dx ′v(x,x ′)φi(x

′)

−
∫

dx ′w(x,x ′)γ (x,x ′)φi(x
′)

+
∫

dx ′w(x,x ′)γ (x ′,x ′)φi(x) − εiφi, (C4)

where we used Eq. (42) in the last term.

APPENDIX D: CANONICAL ENSEMBLES

Minimizing the grand potential implies coupling to a
particle bath. There are, however, important physical problems
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in which the particle number is intrinsically conserved and
therefore the equilibrium is defined by the state which
minimizes the free energy instead. An important example is a
molecule in solution where the solvent is described by a bath
of harmonic oscillators at finite temperature. In the following
we present a concise formulation of FT-RDMFT for canonical
ensembles and point out the most important differences from
the grand-canonical formulation.

The appropriate Hilbert space for canonical ensembles of
particle number N is given by the N -particle subspace

HN = Ŝh⊗N (D1)

of the Fock space

H =
∞⊕

n=0

Ŝh⊗n. (D2)

The associated SDOs are weighted sums of projection opera-
tors on HN :

D̂c =
∑

α

wα|�α〉〈�α|,

wα � 0,
∑

α

wα = 1. (D3)

The variational principle now involves the free energy
F = Tr{D̂(Ĥ + 1/β ln D̂)} rather than the grand potential,
and the eq-SDO is given by

D̂c
eq = e−βĤ

tr{e−βĤ } , (D4)

where Ĥ is now the N -particle Hamiltonian of the system. The
one-to-one mapping between the eq-SDO and the eq-1RDM
stays valid also in the case of canonical ensembles with the only
difference being that the external potential is now determined
only up to an additional constant. Following the construction
by Lieb [40], we define a canonical universal functional Fc[γ ]
on the whole domain of ensemble-N -representable 1RDMs as

Fc[γ ] = inf
D̂∈HN →γ

tr{D̂(T̂ + Ŵ + 1/β ln D̂)}. (D5)

The equilibrium of the system is then found by a minimization
of the free-energy functional F[γ ] = Fc[γ ] + V [γ ].

The main difference from the grand-canonical framework
of FT-RDMFT lies in the canonical KS system. In the canonical
ensemble a simple analytical relation between the eigenvalues
of the KS Hamiltonian and the occupation numbers as in
Eq. (41) for the canonical ensemble does not exist. Therefore
we do not know if every 1RDM with 0 < ni < 1 is a
canonical eq-1RDM. Nevertheless, we can reconstruct the KS
Hamiltonian by iterative methods [52] once we know that a
given 1RDM corresponds to a canonical equilibrium.

Furthermore, the finite-temperature version of Wick’s theo-
rem [53] breaks down for canonical ensembles because it relies
on the interplay of states of different particle numbers. Hence
our perturbative approach for constructing approximations to
the correlation functional cannot be applied to the canonical
ensemble in general. However, there is a loophole. When
we consider the system in the thermodynamic limit, the
thermodynamic variables of grand-canonical and canonical
ensembles coincide. In this case, we can still use functionals
derived by our perturbative methodology in Sec. II E for the
grand potential �[γ ] and calculate the free energy via

F[γ ] = �[γ ] + μN [γ ]. (D6)
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