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ABSTRACT: We demonstrate that reduced density matrix func-
tional theory (RDMFT), in conjunction with the power functional,
can successfully treat the nonmagnetic insulating state of the
transition metal oxides NiO and MnO, finding for both a gapped
single particle spectrum. While long-range spin order is thus not
necessary for qualitative agreement with experiment, we find that it
is required for good agreement with the X-ray photoemission
spectroscopy and Bremsstrahlung isochromat spectroscopy data. We
further examine the nature of the natural orbitals in the materials,
finding that they display significant Hubbard localization and are, as
a consequence, very far from the corresponding Kohn−Sham
orbitals. This contrasts with the case of the band insulator Si, in
which the Kohn−Sham orbitals are found to be very close to the
RDMFT natural orbitals.

1. INTRODUCTION

A fully first-principles theory capable of treating strongly
correlated solids remains the outstanding challenge of modern
day materials science. This is exemplified by the failure of
ground-state density function theory (DFT) to capture, in the
absence of long-range magnetic order, the insulating state of the
transition metals oxides (TMOs). This failure is particularly
acute from the point of view of spectral information derived
from DFT. Despite the absence of a rigorous theoretical link to
the true single particle excitations of an interacting system, the
Kohn−Sham (KS) eigenvalues are frequently of great practical
utility and in many cases agree well with the X-ray
photoemission spectroscopy (XPS) and Bremsstrahlung
isochromat spectroscopy (BIS) experiments.1−4 However, as
the KS eigenvalues are derived from a noninteracting auxiliary
system, for the TMOs such as MnO with an odd number of
electrons per unit-cell it is in principle impossible for the KS
spectrum to yield a gap for this material in the nonmagnetic
state. The imposition of long-range magnetic order alleviates
the problem to some extent; however, as the TMOs remain in
experiment insulating in nature well above the Neél temper-
ature, magnetic order is merely a co-occurring phenomena and
cannot be the driving mechanism of the insulating state. In fact,
not only ground-state DFT but also modern many-body
techniques such as the GW method fail to capture the
insulating behavior in TMOs without explicit long-range spin
ordering.5−7

In this regard, the two many-body techniques that are able to
capture the correct physics of strong correlations are dynamical
mean field theory (DMFT)8−10 and reduced density matrix
functional theory (RDMFT);11 these two methods predicts
TMOs as insulators, even in the absence of long-range spin-
order. This clearly points toward the ability of these techniques
to capture physics well beyond the reach of most modern day
ground-state methods.
Despite this success the effectiveness of RDMFT as a

ground-state theory has been seriously hampered due to the
absence of a technique for the determination of the spectral
information. Recently, this final hurdle has also been removed,
and the spectral information thus obtained for TMOs was
shown to be in good agreement with experiments.12 However,
these spectra were calculated in the presence of antiferromag-
netic order. The question then arises as to how effective
RDMFT is in describing the insulating state of Mott insulators
in the absence of long-range spin order. In order to answer this
question, in the present work, we study the spectral properties
of nonmagnetic NiO and MnO. Here the former is insulating
due to the interplay of Mott localization and charge transfer
effects, while the latter is insulating purely due to strong Mott
localization. A detailed analysis of RDMFT and KS orbitals is
performed which shows that, unlike in the case of band
insulators, for Mott insulators the nature of two sets of orbitals
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are very different, and this difference is indeed crucial for the
success of RDMFT in describing Mott physics.

2. THEORY
Within RDMFT the one-body reduced density matrix (1-
RDM) is the basic variable13,14

∫γ ′ = Φ* ′ ΦN d dr r r r r r r r r r( , ) ... ( , ... ) ( , ... )N N N2 2 2 (1)

where Φ denotes the many-body wave function. Diagonaliza-
tion of this matrix produces a set of natural orbitals,13 ϕjk, and
occupation numbers, njk, leading to the spectral representation

∑γ ϕ ϕ′ = * ′nr r r r( , ) ( ) ( )
j
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where the necessary and sufficient conditions for ensemble N-
representability15 of γ require 0 ≤ njk ≤ 1 for all j,k, and 2∑j,knjk
= N. Here j represents the band index, and k represents the
crystal momentum.
In terms of γ, the total ground-state energy14 of the

interacting system is (atomic units are used throughout)
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where ρ(r) = γ(r, r), Vext is a given external potential, and Exc
we call the xc energy functional. In principle, Gilbert’s14

generalization of the Hohenberg−Kohn theorem to the 1-RDM
guarantees the existence of a functional E[γ] whose minimum
yields the exact γ and the exact ground-state energy of systems
characterized by the external potential Vext(r). In practice,
however, the correlation energy is an unknown functional of
the 1-RDM and must be approximated. Although there are
several known approximations for the xc energy func-
tional,16−31 the most promising for extended systems is the
power functional11,12 where the xc energy reads

∫ ∫γ ϕ γ= = − ′ | ′ |
| − ′|
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here γα indicates the power used in the operator sense i.e.

∑γ ϕ ϕ′ = * ′α αnr r r r( , ) ( ) ( )
i

i i i
(5)

for α = 1/2 this is the Müller functional,32 which is known to
severely overestimate electron correlation33−36 while for α = 1
this functional is equivalent to the Hartree−Fock method,
which includes no correlations. If α is chosen to be 1/2 < α < 1,
the power functional interpolates between the uncorrelated
Hartree−Fock limit and the overcorrelating Müller functional.
All calculations are performed using the full-potential

linearized augmented plane wave code Elk,37 with practical
details of the calculations following the schemes described in
refs 11 and 12. The calculations are performed using a shifted
grid (by 0.01 0.01 0.03) of 125 k-points in the irreducible
Brillouin zone and a total of 2750 natural orbitals. A small
smearing width of 27 meV was used for all calculations.

3. RESULTS
Presented in Figure 1 are the spectra for the Mott insulators
under consideration. It is immediately apparent that RDMFT

captures the essence of Mott−Hubbard physics: both NiO and
MnO present substantial gaps at the Fermi energy and are thus
insulating in the absence of spin order. This fact was already
noticed in a previous work11 in which the presence of gap
without any spin-order was deduced via very different
techniques, namely the discontinuity in the chemical potential
as a function of the particle number. A comparison of the
nonmagnetic spectra with the experimental data shows that the
shape of the conduction band is well reproduced for NiO. For
MnO the position and width of the conduction band are well
reproduced. Several peaks rather than one broad feature is
present in RDMFT results due to the use of a very small
smearing width (27 meV). The shape of the valence band is not
in very good agreement with experiments for both NiO and
MnO. This agreement improves on inclusion of the spin order,
indicating that even though the insulating nature of TMO’s is
not driven by spin order, spin polarization significantly effects
the spectra of these materials. This is hardly surprising given
that NiO and MnO have very large local moments of 1.9 μB and
4.7 μB, respectively.
Correct treatment of correlations is crucial for TMOs, the

prototypical strongly correlated materials. As mentioned above
the power functional interpolates between two limits−the
highly over correlated Müller (α = 0.5) and totally uncorrelated
Hartree−Fock (α = 1). We now look at the effect of
correlations, by varying α, on the spectra of Mott insulators
(NiO and MnO) and band insulator (Si), see Figure 2. The
behavior of the spectra as a function of α is rather trivial for the
band insulator, Si; the valence bands rigidly shift lower in
energy leading to increase in the band gap. The behavior for
Mott insulators is different in that the shape of the bands
change as a function of α. Both for NiO and MnO over
correlated Müller functional incorrectly gives a metallic ground-
state. This leads to highly non-trivial behaviour as a function of
α, which must lie within a small range (between 0.65 and 0.7)
in which the correct insulating ground-state is obtained.
Reassuringly, the range of α in which correct ground state
behaviour is similar for both NiO and MnO. It is worth noting

Figure 1. Density of states as a function of energy (in eV) for NiO
(left panel) and MnO (right panel). Results are obtained with (black)
and without (red) long-range (antiferromagnetic) spin order and with
a value of α = 0.68. For comparison experimental data taken from refs
2 and 4 is also shown (gray shaded area). Chemical potential is shown
with a dotted vertical line.
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that the RDMFT also gives the correct symmetry of the gap
(i.e. between transition metal-d states).

To understand this interesting behavior it is instructive to
look at the correlation entropy,38 S, as a function of α

=
−∑

∑
S

n n

n

ln( )i i i

i i (6)

S can be regarded as measure of correlations, being maximum
for highly correlated systems and 0 in the totally uncorrelated
case. Correlation entropy as a function of α is plotted for NiO
and MnO in Figure 3. Hartree−Fock, being a single particle

theory, leads to pinned occupation numbers (i.e., ni = 1 or ni =
0) and hence S = 0. For RDMFT with α > 0.8 similar behavior
is observed (i.e., most of the occupation numbers are pinned)
leading again to almost uncorrelated results. It is interesting to
note that small values of α, which lead to over correlation, also
results in a metallic ground state. That over correlation39,40

leads to incorrect ground state which is well-known from
previous studies.36,39 Present results further highlight the
importance of the right amount of correlation required to get
the correct ground state of the material. From Figure 3 we can
also infer that, within RDMFT, MnO is more strongly
correlated than NiO, which has already been noted before in
the literature.8,9,41

Within RDMFT there are no Kohn−Sham-like equations to
solve, and a direct minimization over natural orbitals and
occupation numbers is required while maintaining the
ensemble N-representability conditions. The minimization
over occupation numbers is computationally very efficient
(for details see ref 11), but the same cannot be said about the
minimization over the natural orbitals. In practical terms, the
natural orbitals (see eq 2) are expanded in a set of previously
converged KS states, and optimization of the natural orbitals is
performed by varying the expansion coefficients. This
procedure allows us to examine how different KS states are
from fully optimized natural orbitals. In the present work these
KS states were obtained using local density approximation
(LDA).42

In Figure 4 three set of results are shown: (i) KS density of
states, (ii) RDMFT density of states obtained without
optimizing the natural orbitals i.e. by using KS orbitals as
natural orbitals but fully optimizing the occupation numbers,
and (iii) the fully optimized RDMFT results i.e. full

Figure 2. Density of states (DOS) as a function of energy (in eV) for
NiO (upper panels), MnO (middle panels), and Si (lower panels).
The transition metal-d (dotted blue line) and O-p (thin pink line)
projected DOS are also presented for NiO and MnO. The results are
obtained using different values of α in eq 4. Chemical potential is
shown with a dotted vertical line.

Figure 3. S (eq 6) as a function of α for NiO (black squares) and
MnO (red circles). The optimal value of α lies between 0.65 and 0.7,
and this region is indicated by dotted vertical lines.
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optimization over the natural orbitals and occupation numbers.
From these results it is clear that for the band insulator Si it is
sufficient to optimize the occupation numbers to increase the
band gap in line with experiment; the KS states are evidently
already a very good representation of the natural orbitals. As
may be seen in Figure 4 the opposite situation holds for the
case of the Mott insulators NiO and MnO: clearly the KS states
differ profoundly from the natural orbitals. In this case it is
crucial to optimize the natural orbitals. The reason for this is
that in the case of Mott insulators it is the localization of
electrons which leads to formation of the gap and KS orbitals
are not sufficiently localized, thus optimization over the natural
orbitals is required.
A confirmation of this charge localization may be seen in the

charge density. In Figure 5 we plot the difference ρ(r) −
ρLDA(r), for (i) RDMFT (lower panel) and (ii) the LSDA+U
functional43 (upper panel) within DFT for NiO. The LSDA+U
method is chosen because, like RDMFT, it also finds the
correct insulating ground state for NiO.5,44 However, the LSDA
+U method achieves this by both spin order and on-site
Hubbard U and, in contrast to RDMFT, cannot treat the
nonmagnetic insulating state of this material. The impact of this
on the charge density is clear in Figure 5: significant charge
localization is seen only in the RDMFT density. Interestingly,
one observes an almost spherical charge accumulation at the
oxygen site, a result in agreement with experiment45 but
different from that found in the corresponding LSDA+U result.

4. SUMMARY
To summarize, in this work we demonstrate that RDMFT in
conjunction with the power functional is able to capture the
insulating state of NiO and MnO in the absence of long-range
spin order. However, while spin order does not drive the
insulating ground state, the large local moments in these
materials require spin be explicitly taken into account for
excellent agreement with experimental spectra to be obtained.
The power, α, in the power functional is an indicator of the
amount of correlation, and a detailed analysis shows a highly
nontrivial behavior of the spectra for Mott insulators as a

function of α, which must lie within a small range (between
0.65 and 0.7) for the correct insulating ground state to be
obtained.
We have also examined the nature of the natural orbitals in

these materials, as well as in classic band insulator Si. For Si the
Kohn−Sham orbitals provide a very good approximation to the
RDMFT natural orbitals, and minimization over the RDMFT
occupation numbers alone already yields spectral information in
very good agreement with experiments. This is not the case for
NiO and MnO as strong Hubbard correlation drives a
significant charge localization, absent in the corresponding
DFT calculation, which renders the KS orbitals significantly
different from the RDMFT natural orbitals. This serves to
highlight the fundamental difference in the way that a many-
body theory such as RDMFT treats strong correlation, as
compared to DFT based band theory methods such as LSDA
+U. While the latter theory is capable of capturing the ground-
state spectrum, the LDSA+U orbitals are not sufficiently
localized. For the case of NiO a consequence of this is that
while the RDMFT density shows a significant charge
accumulation at the oxygen site in agreement with experiment,
this is absent in the LSDA+U charge density.
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Figure 4. Density of states as a function of energy (in eV) for NiO
(top panel), MnO (middle panel), and Si (lower panel). Results are
obtained with (red) and without (blue) optimization of the natural
orbitals with in RDMFT. KS results (green) are obtained using local
density approximation.42 Chemical potential is shown with a dotted
vertical line.

Figure 5. Difference between the LSDA charge density and charge
density calculated using LSDA+U and RDMFT, (ρ(r) − ρLSDA(r)) for
NiO. Positive values indicate localization of charge as compared to
LSDA.
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