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Laser-induced electron localization in H2
+: mixed

quantum-classical dynamics based on the exact
time-dependent potential energy surface

Yasumitsu Suzuki,†a Ali Abedi,‡ab Neepa T. Maitrab and E. K. U. Grossac

We study the exact nuclear time-dependent potential energy surface (TDPES) for laser-induced electron

localization with a view to eventually developing a mixed quantum-classical dynamics method for strong-

field processes. The TDPES is defined within the framework of the exact factorization [A. Abedi, N. T. Maitra,

and E. K. U. Gross, Phys. Rev. Lett., 2010, 105, 123002] and contains the exact effect of the couplings to the

electronic subsystem and to any external fields within a scalar potential. We compare its features with those

of the quasistatic potential energy surfaces (QSPES) often used to analyse strong-field processes. We show

that the gauge-independent component of the TDPES has a mean-field-like character very close to the

density-weighted average of the QSPESs. Oscillations in this component are smoothened out by the gauge-

dependent component, and both components are needed to yield the correct force on the nuclei. Once the

localization begins to set in, the gradient of the exact TDPES tracks one QSPES and then switches to the

other, similar to the description provided by surface-hopping between QSPESs. We show that evolving an

ensemble of classical nuclear trajectories on the exact TDPES accurately reproduces the exact dynamics. This

study suggests that the mixed quantum-classical dynamics scheme based on evolving multiple classical

nuclear trajectories on the exact TDPES will be a novel and useful method to simulate strong field processes.

1 Introduction

With the advent of attosecond technology,1–6 the experimentally
accessible time-scale has shifted to that of electronic motion. It
allows the observation of electronic motion in real-time, and even
offers the control of electron motion and localization via lasers.
Several groups7–26 have demonstrated that it is possible to control
electronic motion in a dissociating molecule and localize it
selectively on one of the products of dissociation, with several
different strategies. One technique employs the carrier envelope
phase (CEP) of a single few-cycle laser pulse,18–25 and another
employs the time-delay between two coherent ultrashort pulses.7–17

These experiments so far treat small systems (such as H2

and D2), with the aim of understanding the mechanisms of
localization, before applying the techniques to the control of
larger systems.27,28 Theoretical studies have a dual role:7–26

(i) to help understand the complex correlation between the
electron dynamics and nuclear dynamics, and (ii) to establish
methods, generally extendable to larger systems, that accurately
simulate the coupled electron–nuclear dynamics. For systems
with more than two or three degrees of freedom, we must rely
on approximate methods, and usually some kind of mixed
quantum-classical approach is appropriate, where the electrons
are treated quantum-mechanically, coupled to nuclei described
via classical trajectories.29–32 Different mixed quantum-classical
schemes such as Ehrenfest and surface-hopping,33–35 differ in
their treatment of the classical nuclear motion, but use the same
form for the potential acting on the electrons. For dynamics in
strong fields, a surface-hopping scheme between quasi-static
potential energy surfaces (QSPES) was introduced,36–38 and in
fact applied to the electron-localization problem.13 Surface-
hopping is known to suffer from over-coherence,39–46 but it
was shown to reproduce experimental asymmetries reasonably
well for this problem.

In this paper, we will study the possibility of using a potential
derived from first-principles, the time-dependent potential
energy surface (TDPES),47,48 in a mixed quantum-classical
description of the coupled dynamics. This potential arises out
of the exact factorization framework where a time-dependent
Schrödinger equation (TDSE) for the nuclei alone can be
formulated and applications of the approach to real systems
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are emerging.49 The potentials appearing in this equation
capture exactly all coupling to the electronic system as well
as any external fields, and the resulting nuclear wavefunction
reproduces the exact nuclear dynamics. The scalar potential is
denoted the TDPES, and in many situations, including all one-
dimensional problems, the TDPES is the only potential acting
on the nuclear subsystem;50,51 its gradient therefore yields the
exact force on the nuclei. For this reason, it is important to
gain an understanding of its structure, to address both points
(i) and (ii) above. Therefore, our aim in this paper is to find
the exact TDPES for the problem of laser-induced electron
localization in a one-dimensional model of H2

+, compare its
structure with potential surfaces more traditionally used for
strong-field dynamics, and study classical nuclear dynamics
on the exact TDPES with a view to developing mixed quantum-
classical schemes based on the exact factorization.

Previous work52–54 has analysed the structure of the exact
TDPES for a case of field-free dynamics, non-adiabatic charge-
transfer in the Shin–Metiu model,55 finding that much intuition is
gained by analysing it in term of the Born–Oppenheimer (BO)
potential energy surfaces (BOPESs), and that such an analysis
enables connections to be made with traditional approximate
methods for coupled electron-ion dynamics, such as surface-
hopping. Further, it was found that evolving an ensemble of
classical nuclear trajectories on the exact TDPES accurately
reproduces the exact nuclear dynamics.54

We will show here that analogous conclusions can be drawn
for the laser-induced electron localization problem: an ensem-
ble of classical nuclear trajectories evolving on the exact TDPES
accurately reproduces the exact nuclear dynamics, and analysis
in terms of the QSPESs, which play the role of the BOPESs when
strong fields are present, is helpful. The TDPES naturally
separates into a gauge-independent part and a gauge-dependent
part. We show that the density-weighted average of the QSPESs
approximates the gauge-independent component, which is rather
oscillatory and the force on the nuclei resulting from its gradient
is incorrect. Once the gauge-dependent component of the TDPES
is included, the oscillations smoothen out: together, they yield the
correct force on the nuclei. Further, we find that, once localization
begins to set in, the gradient of the exact TDPES at the location of
the mean nuclear position, tracks that of one QSPES and then
switches to the other, resembling the picture provided by the
semiclassical surface-hopping approach.13,37,38

A multiple trajectory Ehrenfest dynamics simulation shows
that although the nuclear dynamics is reasonably reproduced, an
incorrect electron localization asymmetry is obtained. The error
can be related to the incorrect BO projections of the electronic
wavefunction. The fact that the Ehrenfest dynamics yields inac-
curate electron dynamics can be anticipated from our recent work
on the exact electronic-TDPES:56 in this complementary picture,
instead of asking what is the exact potential acting on nuclei in an
exact TDSE for nuclei, one asks what is the exact potential acting
on electrons in an exact TDSE for the electronic subsystem. We
found56 that the exact electronic-TDPES is significantly different
from the potential acting on electrons in the usual mixed
quantum-classical schemes – including Ehrenfest as well as

surface-hopping schemes – yielding significant errors in the
prediction of the electron localization asymmetry. The results
of the present paper suggest that, instead, mixed quantum-
classical schemes based on evolving multiple classical trajec-
tories on the exact TDPES (or good approximations to it) will be
a useful method to simulate strong field processes.

This paper is organized as follows. In Section 2, we review
two different concepts of potential energy surfaces for TD
processes in laser fields: the QSPES and the exact TDPES. In
Section 3 we compare the features of these potentials for
electron localization dynamics in the dissociation of a model
H2

+ molecule induced by time-delayed coherent ultra shortlaser
pulses. We show the exact TDPES gives the correct force acting
on nuclei, so evolving multiple classical trajectories on it
reproduces the correct nuclear wavepacket dynamics. The force
obtained from surface-hopping between QSPESs can approxi-
mately reproduce such an exact force once localization begins
to set in. We also compute multiple trajectory Ehrenfest
dynamics and reveal how it fails to reproduce electron localiza-
tion dynamics while it reasonably reproduces the nuclear
dynamics. In section 4 we summarize the results and remark
on the future directions.

2 Theory
2.1 Quasi-static potential energy surface

In this section we first review the concept of the QSPES intro-
duced for the description of molecules in strong-fields. The QSPES
has been thoroughly discussed in earlier works,13,36–38,57–63 but we
here give a discussion particularly relevant for the electron locali-
zation dynamics problem in the dissociation of H2

+.
For this problem, the essential physics is contained in the

two lowest field-free electronic states of the BO Hamiltonian,
i.e., the 1ssg and 2psu states, and the full molecular wavefunc-
tion C(R,r,t) of the system can be expressed as

C(R,r,t) = wg(R,t)fg
R(r) + wu(R,t)fu

R(r). (1)

Here wg(R,t) and wu(R,t) describe nuclear wavefunctions that
exist in the 1ssg and 2psu states respectively, functions of the
internuclear distance R and time t, and fg

R(r) and fu
R(r) describe

the 1ssg and 2psu electronic wavefunction respectively, which
parametrically depend on R. Since fg

R(r) and fu
R(r) are bonding

and anti-bonding combination of 1s atomic orbitals, a coherent
superposition of them provides the localized electronic states

fleft;right
R ðrÞ ¼ 1ffiffiffi

2
p fg

RðrÞ � fu
RðrÞ

� �
that have the electron on either

the left or the right proton. These states form a convenient
basis in which to monitor the electron localization asymmetry.
In the experiment, interactions of the molecule with the time-
delayed infra-red laser field in the course of the dissociation
provides a coupling of fg

R(r) and fu
R(r), creating a coherent

superposition state, and, instead of eqn (1), it is instructive
to write:

C(R,r,t) = wleft(R,t)fleft
R (r) + wright(R,t)fright

R (r) (2)
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where wleft(R,t) and wright(R,t) are defined as the nuclear wave-
functions that exist in connection with fleft

R (r) and fright
R (r).

Measurements of ion fragment asymmetries left or right along
the polarization axis directly relate to wleft(R,t) and wright(R,t).

While the field-free states above are useful to analyse the
asymmetry, to understand the time-development of the locali-
zation it is helpful to consider a third, time-dependent, basis,
the TD quasistatic states, fQS(i)

R (r,t), also known as phase-
adiabatic states. These states are defined as instantaneous
eigenstates of the instantaneous electronic Hamiltonian Ĥint

R

(r,t), defined by

Ĥint
R (r,t) = ĤBO

R (r) + v̂laser(r,t), (3)

i.e.,

Ĥint
R (r,t)fQS(i)

R (r,t) = eQS(i)(R,t)fQS(i)
R (r,t) (4)

where eQS(i)(R,t) are the quasistatic potential energy surfaces
(QSPESs). Within our two-state model we may write

fQS(i)
R (r,t) = c(i)

g (R,t)fg
R(r) + c(i)

u (R,t)fu
R(r), (5)

so that the eQS(i)(R,t) of eqn (4) are given by the eigenvalue
equation:

fg
R Ĥ

int

R

��� ���fg
R

D E
fg
R Ĥ

int

R

��� ���fu
R

D E

fu
R Ĥ

int

R

��� ���fg
R

D E
fu
R Ĥ

int

R

��� ���fu
R

D E
0
BB@

1
CCA c

ðiÞ
g

c
ðiÞ
u

0
@

1
A ¼ eQSðiÞ

c
ðiÞ
g

c
ðiÞ
u

0
@

1
A:
(6)

Therefore we can express the QSPESs in terms of the BOPESs
eBO(i)(R) as

eQS(1,2)(R,t) = eBO(1,2)(R)cos2 y(R,t) + eBO(2,1)(R)sin2 y(R,t)

� hfg
R|v̂laser|f

u
Risin 2y(R,t) (7)

and the electronic quasi-static eigenstates in terms of the BO
states,

fQS(1)
R (r,t) = cos y(R,t)fg

R(r) + sin y(R,t)fu
R(r)

fQS(2)
R (r,t) = sin y(R,t)fg

R(r) � cos y(R,t)fu
R(r), (8)

where the TD mixing parameter y(R,t) is given by

tan 2yðR; tÞ ¼
2 fg

R v̂laserj jfu
R

� �
eBOð1ÞðRÞ � eBOð2ÞðRÞ: (9)

The molecular wavefunction expressed in terms of quasi-static
states is

C(R,r,t) = wQS
1 (R,t)fQS(1)

R (r,t) + wQS
2 (R,t)fQS(2)

R (r,t). (10)

Note that the nuclear wavefunctions wQS
1 (R,t) and wQS

2 (R,t) that
are connected to the quasi-static states fQS(1)

R (r,t) and fQS(2)
R (r,t)

can be expressed in terms of wleft(R,t) and wright(R,t) as

wQS
1 ðR; tÞ ¼

1ffiffiffi
2
p wleftðR; tÞðcos yþ sin yÞ½

þwrightðR; tÞðcos y� sin yÞ
�

wQS
2 ðR; tÞ ¼

1ffiffiffi
2
p wleftðR; tÞð� cos yþ sin yÞ½

þwrightðR; tÞðcos yþ sin yÞ
�
:

(11)

which can be used to extract the electron localization from
wQS

1 (R,t) and wQS
2 (R,t).

A semi-classical surface-hopping model based on QSPESs
has recently been utilized to understand and reproduce the
electron localization dynamics and asymmetry13,37,38 in H2

+. In
this approach, an ensemble of classical nuclear trajectories
evolve on one QSPES or the other QSPES, making instantaneous
hops between them as determined by a Landau–Zener formula.
It was shown that the electron localization sets in a region
where the dynamics is intermediate between adiabatic and
diabatic: the ensemble of nuclear trajectories traverses several
laser-induced avoided crossings between the QSPESs. This
semi-classical method gives asymmetry parameters in reason-
ably good overall agreement with that obtained from the full
TDSE although the details differ. The agreement lends some
hope to the use of this semiclassical scheme to simulate
coupled electron–ion dynamics in control problems of more
complicated systems; however, at the same time a further
understanding of the errors in the details is desirable. We will
analyse this approach by comparing the QSPESs with the exact
TDPES, which we will review in the next section.

2.2 Exact time-dependent potential energy surface

In ref. 47 and 48, it was shown that the full molecular

wavefunction C r;R; t
	 


which solves the TDSE

ĤC r;R; t
	 


¼ i@tC r;R; t
	 


(12)

can be exactly factorized to the single product

C r;R; t
	 


¼ w R; t
	 


FR r; t
	 


(13)

of the nuclear wavefunction w R; t
	 


and the electronic wave-

function FR r; t
	 


that parametrically depends on the nuclear

positions and satisfies the partial normalization condition (PNC)ð
dr FR r; t

	 
��� ���2¼ 1 8R; t: (14)

Here, the complete molecular Hamiltonian is

Ĥ ¼ T̂n R
	 


þ V̂
n

ext R; t
	 


þ ĤBO r;R
	 


þ v̂eext r; t
	 


; (15)

and ĤBO r;R
	 


is the BO electronic Hamiltonian,

ĤBO ¼ T̂ e r

	 

þ Ŵ ee r

	 

þ Ŵ en r;R

	 

þ Ŵnn R

	 

: (16)
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Note that T̂n ¼ �
PNn

a¼1

ra
2

2Ma
and T̂ e ¼ �

PNe

j¼1

rj
2

2m
are the nuclear and

electronic kinetic energy operators, Ŵee, Ŵen and Ŵnn are the
electron–electron, electron–nuclear and nuclear–nuclear inter-

action, and V̂
n

ext R; t
	 


and v̂eext r; t
	 


are time-dependent (TD)

external potentials acting on the nuclei and electrons, respectively.
Throughout this paper R and r collectively represent the nuclear

and electronic coordinates respectively and �h = 1.
Returning to eqn (13), the stationary variations of the

quantum mechanical action with respect to FR r; t
	 


and w R; t
	 


under the condition (14) lead to the following equations of motion

for w R; t
	 


and FR r; t
	 


:

ĤBO r;R
	 


þ v̂eext r; t
	 


þ Û
coup

en FR; w
h i

� e R; t
	 
	 


FR r; t
	 


¼ i@tFR r; t
	 


(17)

XNn

a¼1

�ira þ Aa R; t
	 
h i2

2Ma
þ V̂

n

ext R; t
	 


þ e R; t
	 
2

64
3
75w R; t
	 


¼ i@tw R; t
	 


:

(18)

Here, e R; t
	 


is the exact nuclear TDPES

e R; t
	 


¼ FRðtÞ
D ���ĤBO þ v̂eext r; t

	 

þ Û

coup

en � i@t FRðtÞ
��� E

r
;

(19)

Û
coup

en FR; w
h i

is the ‘‘electron–nuclear coupling operator’’,

Û
coup

en FR; w
h i

¼
XNn

a¼1

1

Ma

�ira � Aa R; t
	 
h i2

2

2
64

þ �iraw
w
þ Aa R; t

	 
� �
�ira � Aa R; t

	 
	 

;

(20)

and Aa R; t
	 


is the TD vector potential,

Aa R; t
	 


¼ FRðtÞ
D ���� iraFRðtÞ

E
r
: (21)

The symbol �h ir indicates an integration over electronic coordinates

only. Note that the PNC makes the factorization (13) unique up to

within a R; t
	 


-dependent gauge transformation,

w R; t
	 


! ~w R; t
	 


¼ e
�iy R;t

	 

w R; t
	 


FR r; t
	 


! ~FR r; t
	 


¼ e
iy R;t

	 

FR r; t
	 
 (22)

and eqn (17) and (18) are form invariant under this transformation
while the scalar potential and the vector potential transform as

~e R; t
	 


¼ e R; t
	 


þ @ty R; t
	 


(23)

~Aa R; t
	 


¼ Aa R; t
	 


þray R; t
	 


: (24)

The equation for the exact nuclear wavefunction, eqn (18), is
Schrödinger-like, and the TD vector potential (21) and TD scalar
potential (19) that appear in it, exactly govern the nuclear dynamics.

It is important to note that w R; t
	 


can be interpreted as the exact

nuclear wave-function since it leads to an N-body nuclear density,

G R; t
	 


¼ w R; t
	 
��� ���2, and an N-body current density, Ja R; t

	 

¼

1

Ma
Im w� R; t

	 

raw R; t

	 
	 

þ G R; t

	 

Aa R; t
	 
h i

; which repro-

duce the true nuclear N-body density and current density48

obtained from the full wave-function C r;R; t
	 


.

In our previous work the shape of this exact TDPES has been
useful to interpret dynamics for both a strong field process
(strong-field dissociation of H2

+)47,48 as well as for field-free
dynamics of non-adiabatic charge-transfer.52–54 In particular, in
the field-free case, a detailed study of the form of its gauge-
dependent and gauge-independent parts proved instructive to
understand its effect on the nuclear dynamics, and the struc-
ture to be expected for general field-free problems. Importantly,
in a mixed quantum-classical description, the gradient of this
exact TDPES gives uniquely the correct force on the nuclei, and
it was shown, in the field-free case, that an ensemble of
classical trajectories evolving on the exact TDPES accurately
reproduces the exact nuclear wavepacket dynamics. We now
consider a detailed study of the form of the exact TDPES for the
present case of dynamics in external fields, with the aims of
addressing three questions. First, does running classical
nuclear dynamics on the exact TDPES reproduce the dynamics
of laser-induced electron localization? Second, how are the
QSPESs related to the exact TDPES? Third, can we see hints
of the semiclassical surface-hopping method in the exact
TDPES similar to the case of field-free non-adiabatic charge
transfer dynamics?

3 Results and discussion
3.1 Theoretical model

We employ a one-dimensional model of the H2
+ molecule to

study electron localization dynamics achieved by time-delayed
coherent ultra short laser pulses.7,8,13 In the experiment, first
an ultraviolet (UV) pulse excites H2

+ to the dissociative 2psu

state while a second, time-delayed, infrared (IR) pulse induces
electron transfer between the dissociating atoms. In our model,
we start the dynamics after the excitation by the UV pulse: the
wavepacket starts at t = 0 on the first excited state (2psu state) of
H2

+ as a Frank–Condon projection of the wavefunction of the
ground state, and then is exposed to the IR laser pulse. The full
Hamiltonian of the system is given by
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Ĥ(R,z,t) = T̂n(R) + Ĥint
R (z,t) = T̂n(R) + T̂e(z) + Ŵnn(R)

+ Ŵen(z,R) + v̂laser(z,t) (25)

where R is the internuclear distance and z is the electronic
coordinate as measured from the nuclear center of mass.

The kinetic energy terms are T̂nðRÞ ¼ �
1

2mn

@2

@R2
and, T̂ eðzÞ ¼

� 1

2me

@2

@z2
, respectively, where the reduced mass of the nuclei is

given by mn = MH/2, and reduced electronic mass is given by

me ¼
2MH

2MH þ 1
(MH is the proton mass). The interactions are

soft-Coulomb: ŴnnðRÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:03þ R2
p , and Ŵ enðz;RÞ ¼

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0þ z� R

2

� �2
s � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:0þ zþ R

2

� �2
s (and Ŵee = 0). The IR

pulse is described within the dipole approximation and
length gauge, as v̂e

ext(z,t) = E(t)qez, where EðtÞ ¼

E0 exp �
t� Dt

t

� �2
" #

cosðoðt� DtÞÞ, and the reduced charge

qe ¼
2MH þ 2

2MH þ 1
. The wavelength is 800 nm and the peak intensity

I0 = E0
2 = 3.0 � 1012 W cm�2. The pulse duration is t = 4.8 fs and

Dt is the time delay between the UV and IR pulses. Here we
show the results of Dt = 7 fs.

We propagate the full TDSE

Ĥ(z,R,t)C(z,R,t) = iqtC(z,R,t) (26)

numerically exactly to obtain the full molecular wavefunction
C(z,R,t), and from it we calculate the probabilities of directional
localization of the electron, P�, which are defined as Pþð�Þ ¼Ð
z4 ðo Þ0dz

Ð
dRjCðz;R; tÞj2. These are shown as the green solid

(P�) and red dashed (P+) lines in Fig. 1b. It is evident from this figure
that considerable electron localization occurs, with the electron
density predominantly localized on the left (negative z-axis).

Furthermore, we calculate the population dynamics of the
BO states fg

R(z) (green solid) and fu
R(z) (red dashed) (Fig. 1c)

during dissociation, as well as the population dynamics on the
1st quasi-static state fQS(1)

R (z,t) (green solid) and 2nd quasi-
static state fQS(2)

R (z,t) (red dashed) (Fig. 1d); the relative simpli-
city of the latter demonstrate the usefulness of the QS basis for
laser-induced processes. We then plot the QSPESs eQS(1)(hR(t)i,t)
(green solid) and eQS(2)(hR(t)i,t) (red dashed) evaluated at a
nuclear trajectory hR(t)i that tracks the expectation value of
the internuclear distance. These results coincide qualitatively
with the previous results reported by Kelkensberg et al.13 Panels
(b, d and e), suggest that the electron localization is determined
by the passage of the dissociating molecule through a regime
where the laser-molecule interaction is neither diabatic nor
adiabatic. As discussed in the previous section, the semiclassi-
cal scheme, with the avoided crossings between the QSPES
inducing the trajectories to hop between them, reproduces the
general behavior. Next, we will compare the exact TDPES with

the QSPES to understand the relation between the two, shed
some light on the surface-hopping scheme, and find the exact
force on classical nuclei.

3.2 Exact TDPES vs. QSPES

First we show the exact TDPES for this process in Fig. 2. We
calculate the TDPES in the gauge where the vector potential
A(R,t) is zero,48 so the TDPES e(R,t) is the only potential acting
on the nuclear subsystem. It is instructive to express the TDPES
as the sum of the gauge-independent term egi(R,t) and the
gauge-dependent term egd(R,t) as done in previous studies:48,52

e(R,t) = egi(R,t) + egd(R,t) (27)

where

egi(R,t) = hFR(t)|ĤBO + v̂laser + Ûcoup
en |FR(t)iz (28)

and

egd(R,t) = hFR(t)| � iqt|FR(t)iz. (29)

In Fig. 2, e(R,t) (black solid), egi(R,t) (blue solid) and egd(R,t)
(orange solid) are plotted at nine different times, along with the two
lowest BOPESs, eBO(1)(R) and eBO(2)(R). (Note that the TDPES e(R,t)

Fig. 1 (a) 4.8 fs FWHM 800 nm laser pulse. (b) Electron localization
probabilities along the negative (green solid line) and the positive z-axis
(red dashed line) as a function of time. (c) Population dynamics during
dissociation on the BO state fg

R(z) (green solid) and fu
R(z) (red dashed).

(d) Population dynamics during dissociation on the 1st quasi-static state
fQS(1)

R (z,t) (green solid) and 2nd quasi-static state fQS(2)
R (z,t) (red dashed).

(e) Quasi-static potential energy surfaces eQS(1)(R,t) (green solid) and
eQS(2)(R,t) (red dashed) for a nuclear trajectory hRi(t) that tracks the
expectation value of the internuclear distance. The blue curve shows the
transition probability given by a Landau–Zener formula (eqn (18) of ref. 13).
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(black solid) and its GD component egd(R,t) (orange solid) have
been rigidly shifted along the energy axis.)

We also plot the exact nuclear density |w(R,t)|2 (green solid) and
the nuclear density reconstructed from evolving an ensemble of
800 classical trajectories on the exact TDPES (red dashed)54 at each
time. The closeness of these last two curves shows that a mixed
quantum-classical scheme for the electron localization process is
appropriate and that the exact TDPES e(R,t) gives the correct force
acting on classical nuclei in such a scheme.

In previous work,52–54 step-like features of egi(R,t) and egd(R,t) in
the field-free non-adiabatic process in the vicinity of the avoided
crossing have been shown. In particular, after passage through the
avoided crossing, where the nuclear wavepacket had spatially
separated on two BOPESs, the GI component tracked one BO
surface or the other, with a step between them, while the GD
component was piecewise flat, but with a step in the same region
with opposite sign. The net TDPES was overall more smooth than
either of the components. Here, we find again very interesting
features of egi(R,t) and egd(R,t). First note that both egi(R,t) and
egd(R,t) shows many small hills and valleys after the laser-induced
nonadiabatic transitions begin, but with opposite slopes to each
other, so that these structures largely cancel each other when the
exact TDPES e(R,t) is constructed (much like the near-cancellation
of the steps in the field-free case). Like the field-free case, both the
GI and GD terms are important to consider to predict the correct
nuclear dynamics. Second, in the present strong-field case, unlike
the field-free examples studied in ref. 52–54, egi(R,t) does not
piecewise track one BOPES or the other. However, it does track a
density-weighted QSPES, as we will show next.

In Fig. 3, we show e(R,t) (black solid) (which is again rigidly
shifted along the energy axis) and the gauge-invariant part egi(R,t)
(blue solid) together with the QSPESs eQS(1)(R,t) (green solid) and
eQS(2)(R,t) (red solid). We find that the oscillations in the gauge-
invariant part of exact TDPES egi(R,t) (blue solid) tend to step
between the two QSPESs: |w1

QS(R,t)|2 and |w2
QS(R,t)|2 are also plotted

in Fig. 3, and we see that egi(R,t) tends towards the QSPES whose
population is dominant, i.e. when |wQS

1 (R,t)|2 is larger than |wQS
2 (R,t)|2

egi(R,t) approaches to eQS(1)(R,t) and when |wQS
2 (R,t)|2 is larger than

|wQS
1 (R,t)|2 egi(R,t) approaches to eQS(2)(R,t). In fact, egi(R,t) lies practically

on top of the weighted average of the quasi-static surfaces eQS
ave(R,t):

eQSaveðR; tÞ ¼
wQS1 ðR; tÞ
��� ���2

wQS1 ðR; tÞ
��� ���2þ wQS2 ðR; tÞ

��� ���2e
QSð1ÞðR; tÞ

þ
wQS2 ðR; tÞ
��� ���2

wQS1 ðR; tÞ
��� ���2þ wQS2 ðR; tÞ

��� ���2e
QSð2ÞðR; tÞ

(30)

This is plotted with light blue line in Fig. 3. Therefore the weighted-
average of the QSPESs approximates the gauge-invariant part of exact
TDPES egi(R,t), but not the full exact TDPES e(R,t). In fact, this is quite

Fig. 2 Snapshot of the exact TDPES e(R,t) (black solid), its gauge-invariant
part egi(R,t) (blue solid) and gauge-dependent part egd(R,t) (orange solid) at
indicated times along with two lowest BOPESs (black dashed). Further-
more, the exact nuclear density |w(R,t)|2 (green solid) and the nuclear
density reconstructed from the multiple trajectory dynamics on the exact
TDPES (red dashed) for each time are also plotted.

Fig. 3 Snapshots of the exact TDPES e(R,t) (black solid), the gauge-
invariant part of the exact TDPES egi(R,t) (blue solid), QSPESs eQS(1)(R,t)
(green solid) and eQS(2)(R,t) (red solid), and the weighted average of the
QSPESs eQS

ave(R,t) (light blue solid) at indicated times. |wQS
1 (R,t)|2 (green),

|wQS
2 (R,t)|2 (red) and |w(R,t)|2 (orange) are also plotted.

Paper PCCP

Pu
bl

is
he

d 
on

 2
5 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
on

 0
9/

11
/2

01
5 

07
:3

2:
12

. 
View Article Online

http://dx.doi.org/10.1039/c5cp03418c


This journal is© the Owner Societies 2015 Phys. Chem. Chem. Phys., 2015, 17, 29271--29280 | 29277

analogous to the previous results on the field-free passage through
an avoided crossing:52–54 there, at the times considered, the density-
weighted average collapsed to one BO surface or the other except in
the intermediate (step) region, because the spatial separation of the
parts of the density projected onto different BO surfaces meant that
in the field-free analog to eqn (30), the prefactors of each term was
either one or zero. Here it is evident that the density does not spatially
separate (Fig. 3), i.e. the projections on to the QSPESs overlap. One
can make entirely analogous statements in both cases: the density-
weighted average of the BOPES approximates the gauge-invariant
part of exact TDPES egi(R,t) in the field-free case, and the density-
weighted average of the QSPES approximates the gauge-invariant
part of exact TDPES egi(R,t) in the presence of strong fields.

To confirm the relationship between egi(R,t) and eQS
ave(R,t),

we consider the expansion of the complete wavefunction with
the two lowest quasi-static states (eqn (10)). Then the exact
electronic conditional wavefunction FR(z,t) is expressed as:

FRðz; tÞ ¼
wQS
1 ðR; tÞ
wðR; tÞ fQSð1Þ

R ðz; tÞ þ wQS
2 ðR; tÞ
wðR; tÞ fQSð2Þ

R ðz; tÞ: (31)

Then we realize:

FRðz; tÞ ĤBO þ v̂laser
�� ��FRðz; tÞ

� �
z

¼
wQS
1 ðR; tÞ

��� ���2
jwðR; tÞj2 eQSð1Þ þ jw

QS
2 ðR; tÞj2
jwðR; tÞj2 eQSð2Þ ¼ eQS

aveðR; tÞ:
(32)

Since egiðR; tÞ ¼ FRðz; tÞ ĤBO þ v̂laser
�� ��FRðz; tÞ

� �
z
þ 1

2M

*
FRðz; tÞ

�����
�i @
@R
� AðR; tÞ

� �2
�����FRðz; tÞ

+
z

, we can conclude

egi(R,t) E eQS
ave(R,t), (33)

because the O(M�1) term gives a much smaller contribution.
To reproduce the correct dynamics, however the effect of

egd(R,t) is crucial to include, as in the field-free case studied
before.54 In the gauge we have chosen A(R,t) = 0, but we note that
if instead we choose the gauge where egd(R,t) = 0 then the vector
potential A(R,t) will be non-zero, and will be responsible for the
role of effectively reducing the oscillatory structure in the GI term.

In Fig. 4, we plot the gradient of the different potentials
computed on the trajectory of mean nuclear distance hRi(t), as a
more direct probe of the force on the nuclei.

The black line, which is the gradient of the exact TDPES
@

@R
eðhRðtÞiÞ, gives the exact force on the nuclei. First we

immediately notice that the gradient of the weighted average

of the two QSPES
@

@R
eQS
aveðhRðtÞiÞ (light blue line) (equivalently,

the GI component (blue line)) is completely different from the
exact force. A semi-classical simulation on the weighted average
of the two QSPES would not give the correct nuclear dynamics.
We observe instead that, as the localization sets in, the exact

force
@

@R
eðhRðtÞiÞ coincides with the gradient of one or the other

QSPES (red or green). This supports the idea of semiclassical

surface-hopping between QSPES13,37,38 at least after the localiza-
tion begins to set in (time B6 fs): the exact force on the nuclei is
given by the gradient of the exact TDPES, and, when evaluated at
the mean nuclear position, coincides with the force from one
QSPES or the other, making transitions between them at their
avoided crossings. This explains why the semiclassical simulations
of ref. 13 had a reasonable agreement with the exact results.
Furthermore the figure shows the important role of the gauge-
dependent part egd(R,t); without this term, the force on the nuclei
would be more oscillatory and quite different (blue line in the
figure). We note that if instead we choose the gauge where egd(R,t)
= 0 then the vector potential A(R,t) will be responsible for the role
of effectively reducing the oscillatory structure in the GI term. As
stated above, when we choose the gauge where egd(R,t) = 0, then the
vector potential A(R,t) plays the role of it according to their

relationship: ~AðR; tÞ ¼
Ð t
0dt
0 �@Regd R; t 0ð Þ
� �

.54

3.3 Multiple trajectory Ehrenfest dynamics

Given that there are several avoided crossings during the
localization dynamics, one might ask how well a mean-field
surface to propagate the electrons would work. To this end, we
run a multiple-trajectory Ehrenfest calculation,§ and compare
the electron and nuclear densities with the exact ones.

In the upper panel of Fig. 5, we plot the conditional electron
density |FR(z,t)|2 obtained from the exact calculation at

Fig. 4 Time evolution of the gradient of each TDPES at position hR(t)i.
Green line:

@

@R
eQSð1ÞðhRðtÞiÞ; red line:

@

@R
eQSð2ÞðhRðtÞiÞ; blue line:

@

@R
egiðhRðtÞiÞ;

light blue line:
@

@R
eQSaveðhRðtÞiÞ; black line:

@

@R
eðhRðtÞiÞ.

§ A set of 800 trajectories is propagated according to

mn
d

dt
vclðtÞ ¼ �

ð
dzF z; t RclðtÞj jð Þ d

dR
Ĥ

int

R

� �
F z; t Rclj ðtÞð Þ (34)

and

i
@

@t
F z; t RclðtÞjð Þ ¼ Ĥ

int

R ðz; tÞF z; t RclðtÞjð Þ; (35)

where the initial conditions are sampled from the phase-space distribu-
tion corresponding to |w(R,t = 0)|2.
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indicated times. In the lower panel, we plot its squared expansion
coefficients in the Born-Oppenheimer expansion |Cg(R,t)|2 (green)
and |Cu(R,t)|2 (red) (FR(z,t) = Cg(R,t)Fg

R(z) + Cu(R,t)Fu
R(z)), along with

the nuclear density (black). In Fig. 6, we plot the electron density
|F(z,t|Rcl(t))|

2 obtained from the 800-trajectory Ehrenfest dynamics
calculation at the indicated times. The lower panel shows the
squared expansion coefficients in the Born–Oppenheimer expan-
sion |Cg(Rcl(t))|

2 (green) and |Cu(Rcl(t))|
2 (red) of the electronic wave

function F(z,t|Rcl(t)) obtained from multiple trajectory Ehrenfest
dynamics calculation (F(z,t|Rcl(t)) = Cg(Rcl(t))F

g
R(z) + Cu(Rcl(t))F

u
R(z)).

We also show the nuclear densities reconstructed from the
distribution of classical trajectories obtained from multiple
trajectory Ehrenfest dynamics calculation (black circle line). Note
that the 800 Ehrenfest trajectories cover the configuration space
only partially. Hence, the reconstructed quantities equivalent
to the fully quantum mechanical quantities can only be repre-
sented in a certain range in the configuration space that the
trajectories cover at each instance of time. In Fig. 6, at t = 4.8 fs
only 4.9 a.u. o R o 6.6 a.u. is covered while at t = 12.0 fs, the
covered range is 7.5 a.u. o R o 15 a.u.

Comparison of the top panels of Fig. 5 and 6 shows that
the multiple-trajectory Ehrenfest dynamics captures the overall
structure of the conditional electronic density, however the
projections onto the BO states shown in the lower panels reveal
there are substantial differences between them after several non-
adiabatic transitions occur (at t = 12.0 fs). The difference is large
especially for the regions where the nuclear density is small
(R o 10 a.u. and R 4 12 a.u.), but there are also noticeable
differences where the nuclear density is peaked. For example, at
t = 12.0 fs at R E 11 a.u., |Cg(Rcl(t))|

2 and |Cu(Rcl(t))|
2 shown in the

lower panel of Fig. 6, are each close to 0.5, while the exact
|Cg(R,t)|2 and |Cu(R,t)|2 shown in the lower panel of Fig. 5 are
closer to 0.6 and 0.4, respectively. From the expressions of the BO
g and u states in terms of the left and right basis (Section 2.1), we
can see that the localization asymmetry predicted by Ehrenfest is
close to 1 : 0 while the full quantum calculation predicts 0.8 : 0.2.
Indeed this is verified by the calculation of the asymmetry of
ref. 56. Further, throughout the width of the nuclear wavepacket,
the Ehrenfest projections remain close to 0.5, while the exact
projections fall away. The differences in the conditional wavefunc-
tion and the BO projections are even greater where the nuclear
density is small (R = 7.5 B 10 a.u. and R = 12 B 15 a.u.).

In recent work, a new coupled-trajectory mixed quantum-
classical approach based on the exactly factorized TDSE
(eqn (17) and (18)), has been presented,64 in which the equations
take an Ehrenfest-like form but with important corrections that
overcome limitations of Ehrenfest. In the field-free problem of
non-adiabatic charge-transfer studied in that work,52–54,64–67

failure of multiple-trajectory Ehrenfest dynamics is expected
given the fact that the nuclear density bifurcates spatially, and
the corrections terms of ref. 64 accurately captured the branching
of the nuclear wavepacket as well as electronic decoherence.
In the present case, however, the nuclear density does not split
and is rather localized in space and the nuclear dynamics is
overall well described by the Ehrenfest method. The nuclear
density is very small where the difference in the conditional
electron density is large (R = 7.5 B 10 a.u. and R = 12 B 15 a.u.),
thus, these differences do not affect the dynamics very much.
But, still the errors in the electronic dynamics are noticeable, as
discussed above in the BO projections and their implied
localization asymmetry. This is consistent with the difference
between the electronic potential in the Ehrenfest method and
the exact potential (e-TDPES) acting on the electronic system, as
defined within the inverse factorization.56,68

Fig. 5 Upper panel: Conditional electron density |FR(z,t)|2 obtained from
the exact calculation at the indicated times. Lower panel: Squared expan-
sion coefficients of the Born–Oppenheimer expansion |Cg(R,t)|2 (green)
and |Cu(R,t)|2 (red) of the exact conditional electronic wave function FR(z,t)
(FR(z,t) = Cg(R,t)Fg

R(z) + Cu(R,t)Fu
R(z)) at the indicated times. The exact

nuclear density is also plotted (black).

Fig. 6 Upper panel: Electron density |F(z,t|Rcl(t))|
2 obtained from multiple

trajectory Ehrenfest dynamics calculation at the indicated times (plotted
for all trajectories Rcl(t))). Lower panel: Squared expansion coefficients of
the Born–Oppenheimer expansion |Cg(Rcl(t))|

2 (green) and |Cu(Rcl(t))|
2 (red)

of the electronic wave function F(z,t|Rcl(t)) obtained from multiple trajec-
tory Ehrenfest dynamics calculation (F(z,t|Rcl(t)) = Cg(Rcl(t))F

g
R(z) +

Cu(Rcl(t))F
u
R(z)) at the indicated times. Nuclear density reconstructed from

the distribution of classical trajectories are also plotted (black circle line).
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4 Conclusions and outlook

The TDPES and vector potential arising from the exact factor-
ization of the molecular wavefunction exactly account for the
coupling to the electronic subsystem as well as coupling to
external fields and so it is important to understand their
structure, and to relate this to the QSPES which is traditionally
used, in order to be able to develop accurate practical mixed
quantum-classical methods for strong-field dynamics. In this
paper, we have studied the topical phenomenon of laser-
induced electron localization in the dissociation of H2

+, choosing
a gauge where the TDPES is only potential acting on the nuclear
system. We found that the gauge-independent component of the
TDPES has a mean-field-like character very close to the density-
weighted average of the QSPESs and yields an oscillatory force on
the nuclei. The gauge-dependent component of the TDPES
smoothens the oscillations of the gauge-independent component
and together they lead to the correct force.

We demonstrated that running an ensemble of classical
nuclear trajectories on this exact TDPES accurately reproduces
the exact nuclear dynamics. We found that the force obtained
by considering surface-hopping transitions between QSPESs at
the laser-induced avoided crossing approximates this exact
force, after the localization begins to set in. We showed that
errors in multiple-trajectory Ehrenfest dynamics are less signi-
ficant for the nuclear dynamics than for the electronic dynamics
explored in ref. 56, where it was shown that Ehrenfest yields an
incorrect electron localization asymmetry. It is worth noting that
the potential acting on the electrons in Ehrenfest dynamics and in
surface-hopping schemes lack important step and peak features
that the exact potential acting on the electronic system (the
e-TDPES) has. Therefore the results of this study show that to
reproduce the laser-induced electron localization dynamics accu-
rately by means of a mixed quantum-classical dynamics scheme,
we have to go beyond the traditional methods such as surface-
hopping or Ehrenfest methods. Our results here encourage the
development of mixed quantum-classical schemes based on
eqn (17) and (18)64 to simulate strong-field processes.
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3 F. Lépine, M. Y. Ivanov and M. J. J. Vrakking, Nat. Photonics,

2014, 8, 195.
4 S. Haessler, et al., Nat. Phys., 2010, 6, 200.
5 P. B. Corkum and F. Krausz, Nat. Phys., 2007, 3, 381.
6 F. Calegari, et al., Science, 2014, 346, 336.

7 G. Sansone, et al., Nature, 2010, 465, 763.
8 F. He, C. Ruiz and A. Becker, Phys. Rev. Lett., 2007, 99,

083002.
9 D. Ray, et al., Phys. Rev. Lett., 2009, 103, 223201.

10 K. P. Singh, et al., Phys. Rev. Lett., 2010, 104, 023001.
11 B. Fischer, et al., Phys. Rev. Lett., 2010, 105, 223001.
12 C. R. Calvert, et al., J. Phys. B: At., Mol. Opt. Phys., 2010,

43, 011001.
13 F. Kelkensberg, G. Sansone, M. Y. Ivanov and M. Vrakking,

Phys. Chem. Chem. Phys., 2011, 13, 8647.
14 F. He, Phys. Rev. A: At., Mol., Opt. Phys., 2012, 86, 063415.
15 K. Liu, Q. Zhang and P. Lu, Phys. Rev. A: At., Mol., Opt. Phys.,

2012, 86, 033410.
16 Z. Jia, Z. Zeng, R. Li, Z. Xu and Y. Deng, Phys. Rev. A: At.,

Mol., Opt. Phys., 2014, 89, 023419.
17 Z. Wang, K. Liu, P. Lan and P. Lu, Phys. Rev. A: At., Mol., Opt.

Phys., 2015, 91, 043419.
18 M. F. Kling, et al., Science, 2006, 312, 246.
19 M. Kremer, et al., Phys. Rev. Lett., 2009, 103, 213003.
20 V. Roudnev, B. D. Esry and I. Ben-Itzahk, Phys. Rev. Lett.,

2004, 93, 163601.
21 X. M. Tong and C. D. Lin, Phys. Rev. Lett., 2007, 98, 123002.
22 S. Graefe and M. Y. Ivanov, Phys. Rev. Lett., 2007, 99, 163603.
23 T. Rathje, et al., Phys. Rev. Lett., 2013, 111, 093002.
24 N. G. Kling, et al., Phys. Rev. Lett., 2013, 111, 163004.
25 H. Li, et al., J. Phys. B: At., Mol. Opt. Phys., 2014, 47, 124020.
26 P. Lan, E. J. Takahashi and K. Midorikawa, Phys. Rev. A: At.,

Mol., Opt. Phys., 2012, 86, 013418.
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