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Multiplicity of solutions to GW -type approximations
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We show that the equations underlying the GW approximation have a large number of solutions. This raises
the question, how can we find the physical solution? We provide two theorems which explain why the methods
currently in use usually find the correct solution. These theorems are general enough to cover a large class
of similar methods. An efficient algorithm for including self-consistent vertex corrections well beyond GW is
described and used in a numerical validation of the two theorems. The effect of a simple mixing scheme on
solutions obtained iteratively is also investigated.
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I. INTRODUCTION

The GW approximation [1,2] is a state-of-the-art many-
body technique for accurate determination of the spectral
density function. This may be directly compared with experi-
mental data such as that from photoemission experiments. Its
success in predicting the band gaps of insulators, as well as its
parameter-free nature, makes it a crucial scheme in condensed
matter physics, especially for predicting material properties.

The self-consistent GW approximation is a fixed point
method involving multidimensional objects like the Green’s
function and the self-energy. It was demonstrated recently,
for an artificial one-point-model [3–6], that this fixed point is
not unique and that a different way of iterating the equations
can lead to a different solution [3]. It was further argued that
including vertex corrections [1,7–10] could exacerbate this
nonuniqueness problem. This would of course have serious
consequences for condensed matter physics, which relies on
GW method for being predictive.

However, so far as we can ascertain, extra solutions for
practical GW calculations have never been reported in the liter-
ature. It is therefore of considerable importance to understand
why these methods appear to provide unique solutions and
how one can go beyond GW without encountering unphysical
solutions. In order to do this, we first present a new algorithm
for computing the self-energy. We then investigate the nature
of the additional solutions numerically and provide general
theorems which explain why the methods currently in use do
indeed lead to a unique solution, independent of the starting
point [11]. Since we cover a large class of approximations,
these results not only validate GW calculations but also
provide conditions on any future developments which would
go beyond the GW approximation.

II. HEDIN’S EQUATIONS

The starting point are the Hedin equations, which appear as
Eqs. (A22)–(A25) in the appendix of the 1965 article of Hedin
[1]. We rewrite them here in modern notation:

�(1,2; 3) = �0(1,2; 3) + δ�(1,2)

δV (3)
, (1)

�(1,2) = iλ

∫
G(1,4)W (1+,3)�(4,2; 3)d(3)d(4), (2)

�(1,2) = −iλ

∫
G(2,3)G(4,2+)�(3,4; 1)d(3)d(4), (3)

δG(1,2)

δV (3)
=

∫
G(1,4)G(5,2)�(4,5; 3)d(4)d(5), (4)

δW (1,2)

δV (3)
=

∫
W (1,4)W (5,2)

δ�(4,5)

δV (3)
d(4)d(5). (5)

In these equations G is the Green’s function, W is the
renormalized Coulomb propagator [12], � is the self-energy,
� is the polarization, �0(1,2; 3) = λδ(1,2)δ(1,3) is the bare
vertex, � is the renormalized vertex, λ is the coupling constant,
and the potential differential δV is the sum of the external and
Hartree contributions. The notation (1) ≡ x1 ≡ (r1,σ1,t1) is
used throughout [13].

Also note that we introduced the coupling constant λ such
that in the noninteracting case the vertex function vanishes
[13]. One could also have defined it in such a way that the
Coulomb propagator vanishes. It is more traditional to do the
latter, i.e., to multiply the bare Coulomb propagator with λ.
However, in order to stay consistent with the quantum field
theory (QFT) roots of the problem, the correct approach is
to multiply the bare vertex with λ. This is equivalent to the
prefactor of the gauge coupling term in QFT. Using simple
transformations [introduced later in Eq. (10): use a = 1, b =
λ2, c = λ−1] one can show that these definitions are actually
equivalent. The physical meaning of this is that it does not
matter whether we define the noninteracting limit by switching
off the interaction of the electrons with the photons, or by
setting the photon propagator to zero.

Hedin showed how one can obtain an expansion of the
vertex, and hence of � and �, in terms of the renormalized
quantities G and W using these equations [1]. This way one
gets � and � as functionals �[G,W ] and �[G,W ]. In addition
to the five Hedin equations, there are two coupled Dyson
equations:

G(1,2) = G0(1,2) +
∫

G0(1,3)�(3,4)G(4,2)d(3)d(4),

(6)

W (1,2) = v(1,2) +
∫

v(1,3)�(3,4)W (4,2)d(3)d(4),

where G0 is the Green’s function of the noninteract-
ing system (which includes the Hartree potential) and
v(1,2) = δ(t1 − t2)/|r1 − r2| is the bare Coulomb propagator.
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Solving the Dyson equations in conjunction with the Hedin
equations yields the functionals G[G0,v] and W [G0,v].

The separation of the problem into equations for � and �

as functionals of G and W , as well as G and W as functionals
of G0 and v is an important conceptual step. In a later article by
Hedin and Lundqvist [14], the equations are combined and the
functional derivative δ�/δG is introduced. We should stress
that this vertex equation together with Eqs. (2), (3), and the
Dyson equations are not immediately useful. One also needs
Eqs. (4) and (5) in order to obtain an expansion of the vertex
beyond �0 (alternatively one can work with a different vertex
equation, that was derived in Ref. [9]).

A. Algorithms for Hedin’s equations (GW approximation
and beyond)

The first aim of this work is propose a useful algorithm
to go well beyond the GW approximation. This algorithm
has to be feasible in terms of memory and computer time.
Almost all practical calculations of Hedin’s equations use
the GW approximation. This amounts to approximating the
full vertex � by the bare vertex, and thus the self-energy
takes on the simple form �(1,2) = iλ2G(1,2)W (1,2). In the
present work we describe a new algorithm for solving Hedin’s
equations which includes not only the GW approximation but
also corrections far beyond the GW approximation.

In order that an algorithm be feasible, we need to consider
the computational resources needed. The storage requirements
of first order perturbation theory for the vertex scales as N3

and the corresponding number of operations scales as N4,
where N is the number of basis functions as detailed in the
next paragraph. Algorithm I presented below for calculating
�[G,W ] and �[G,W ] is considerably more sophisticated than
the GW approximation but without worsening this scaling.
Note that all the relations in the algorithm are exact apart
from the two which have the derivatives of � removed; these
would require N4 storage. Solving Algorithm I together with
the Dyson equations we refer to as the “Starfish” algorithm.
It is interesting to work out which diagrams this algorithm
corresponds to: finding the self-consistent solution to Starfish

Algorithm 1 Hedin equations solver for �[G,W ] and �[G,W ].
Here the shorthand G′(1,2; 3) = δG(12)/δV (3), etc., is used
and the function arguments are omitted.

Require: G and W

Set � = �0

repeat
G′ = ∫

G G �

�′ = −iλ
∫

(G′ G � + G G′ � + /////////G G �′)
W ′ = ∫

W W �′

�′ = iλ
∫

(G′ W � + G W ′ � + /////////G W �′)
� = �0 + �′

until � converged
� = iλ

∫
G W �

� = −iλ
∫

G G �

is equivalent to solving

Γ = Γ0 + G

W

+ +

(7)

self-consistently with the equations for �, �, G, and W

[Eqs. (2), (3), and (6)].

III. NUMBER AND STABILITY OF SOLUTIONS

Before exploring the above algorithm numerically, we
turn our attention towards the second aim of this paper, i.e.,
the number and nature of solutions of the Hedin equations
within GW -type approximations. This question is of central
importance because the predictive power of this method relies
crucially on the assumption that there is a single unique
solution to which the iterative process leads. If this assumption
is not true then one needs to know under which conditions
correct convergence can be achieved.

In order to closely examine the solutions to these equations,
discretization of space-time is required. Such a discretization
is done for all practical calculations; however, its impact on the
equations is largely ignored; upon discretization one loses the
physical meaning of these equations. As in the past, the present
work assumes that there are N space-time points in total, and
that limits in the time variable such as G(4,2+) are taken to
mean G(4,2). It will be assumed that the true physical solution
can be recovered in the continuum limit when N → ∞. The
Dirac delta function in Eq. (1) now becomes a Kronecker delta
function. One could just as well imagine using a basis other
than (x,σ,t), for instance an orbital-frequency basis in order
to perform such a discretization. In this discrete space, all
eigenstates and eigenvalues of the Hamiltonian are analytic
functions of λ on the whole real axis [15]. Consequently
phenomena like phase transitions can be described only in
the N → ∞ limit.

The equations to be solved now form a closed system
of polynomial equations. This enables us to state and prove
several general theorems. To do so we define a concise
notation. Let

F ≡ (G,W,�,�,�) ∈ Cn

be the vector of all dependent (or unknown) variables. Here
n = 4N2 + N3 is the number of unknowns. We regard the
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matrices G0 and v (and the bare vertex) as known and fixed.
Equations (2), (3), and (6), and a vertex equation like Eq. (7),
can now be written in a compact form as F = g(F ) or h(F ) =
0 with h(F ) ≡ g(F ) − F , where g = (g1, . . . ,gn) is a set of
polynomials in several variables.

It is important to point out that most of the following
considerations do not depend on the precise form of the vertex
equation. For example the trivial vertex equation � = �0

corresponding to the GW approximation is also allowed here.
In this case one can eliminate the vertex from the equations
and redefine F,g and h in order to include only the smaller
set of quantities and equations. Similarly, if one were to fix W

in the Starfish algorithm then F would be (G,�,�) and the
equations for W and � could be eliminated.

As we are interested in the dependence of these equations
and their solutions on the coupling strength λ, the equations to
be solved are

F = gλ(F ) or hλ(F ) = 0. (8)

The solution is unique for the noninteracting case and we call
this F 0.

We now want to establish the number of solutions to
Eq. (8) for the interacting case. An upper bound is provided
by Bézout’s theorem [16], which states that the maximum
number of solutions to a system of polynomial equations
(if finite) is equal to the product of the total degree of each
equation. Thus the GW approximation with fixed W has at
most 2N2

solutions, and the Starfish algorithm, also for fixed
W , has at most 7N3

22N2
solutions. A similar observation for the

number of solutions of the equations underlying Hartree-Fock
calculations was made in Ref. [17]. There a lower bound
for the number of solutions was also provided, which grew
exponentially with the number of electrons in the system.
For the case of Hartree-Fock and density functional theory
calculations it has already been shown numerically that one
can obtain more than one solution [18–20].

Buchberger’s algorithm is a systematic method for deter-
mining the exact number of roots by decomposing the equa-
tions into a Gröbner basis [21]. This procedure is, however,
computationally very demanding and can be performed only
for small (and therefore nonphysical) N . If, for example,
N = 2 then the GW approximation with fixed W turns out to
have precisely 6 solutions for generic G0 and W . Likewise, for
N = 1 the Starfish algorithm yields 3 solutions. From these
considerations, it seems quite surprising that self-consistent
GW works at all for realistic values of N . We will now provide
two theorems that may explain this apparent success.

Theorem 1. For all choices of Eq. (8) (e.g., GW ), the
solutions have the following properties:

(i) Equation(8) has one solution Fλ
phys that tends to F 0 in

the noninteracting limit:

Fλ
phys −→

λ→0
F 0.

(ii) All other solutions tend to infinity:

inf
{‖F‖ : hλ(F ) = 0, F �= Fλ

phys

} −→
λ→0

∞,

where ‖ · ‖ is, say, the Euclidean vector norm.
(iii) Fλ

phys is an analytic function w.r.t. λ in a vicinity of
λ = 0.

FIG. 1. (Color online) Schematic of the reasoning used in Theo-
rem 1. Polynomial functions h

0 and h
λ are drawn in red and blue on

the domain � ⊂ Cn. The arrow at a represents the largest pointwise
separation between h

λ and h
0 on � \ U ′′. The arrow at b represents

infF∈�\U ′′ ‖h0(F )‖.

This behavior suggests that at least in some low coupling
regime Fphys is indeed the physical solution while all others
are far away from the correct result.

Proof. In the noninteracting case the Jacobian ∂h/∂F is
a triangular matrix having −1’s on the diagonal. Hence its
determinant is not zero. In this situation the implicit function
theorem [22] implies that one can solve for F as a function of
λ in a neighborhood U = U ′ × U ′′ ⊂ Cn+1 of (0,F 0) ∈ U . It
also implies that this function is analytic and that there is no
other solution in U . This proves (i) and (iii).

Now for any compact set � where � ⊂ Cn one can restrict λ
such that hλ and h0 are pointwise closer to each other in � \ U ′′
than infF∈�\U ′′ ‖h0(F )‖ �= 0. This is schematically illustrated
in Fig. 1. Then hλ has no zero in � \ U ′′ and by the previous
paragraph only Fλ

phys in U ′′. Since this can be done for any �

this proves (ii). �
Even though the above theorem suggests that a single well

defined solution for GW (and beyond) exists in small coupling
limit, it does not indicate how one can get to this solution
and if converging to this solution is guaranteed. In practice,
Eq. (8) is solved iteratively. That is, one starts with some
initial guess F0 which is inserted into the right hand side of
F = g(F ), obtaining a new guess. Iterating this procedure
defines a sequence

Fi+1 = g(Fi). (9)

A natural starting point for this is the non-interacting solution
F0 = F 0, but this is by no means necessary. For GW and
similar schemes to work in any situation this sequence must
converge to a fixed point, that is a solution to the equations.
However, a priori it is unknown if the calculation will actually
converge, and if a fixed point obtained this way actually
corresponds to the physical solution. We now show that
for weak coupling convergence to the unique solution is
guaranteed.

Theorem 2. For small λ the physical solution Fphys is an
attractive fixed point of Eq. (9). The size of the attracting
region goes to infinity as λ → 0.

Here size can be understood as the diameter of the largest
ball that is contained in the attracting region.
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Proof. It is sufficient to show that for any starting point we
can restrict λ such that convergence to Fphys is guaranteed. For
a,b,c ∈ R we define the following transformation:

G′
0 = aG0, v′ = bv, �′

0 = c�0,

G′ = aG, W ′ = bW, �′ = c�,

�′ = a−1�, �′ = b−1�, λ′ = cλ,

(10)

with a2bc2 = 1. (We will use these transformations in this
section only to avoid confusion of the meaning of the primes
with the derivatives as used earlier.) This transformation leaves
Eq. (9) invariant:

F ′
i+1 = g′(F ′

i ).

We now apply the transformation with, say, a = λ1/4, b = λ1/2,
c = λ−1/2. This way g′ depends on λ explicitly and implicitly
through a, b, and c. Observe that all coefficients appearing in
g′ tend to zero as λ → 0. This is not true for the transformed
starting values since the self-energy becomes larger due to
the transformation. This is repaired by the first iteration:
the quantities F1

′ = g′(F0
′) tend to zero as λ → 0. In this

situation Banach’s fixed point theorem can be applied, with
the map g′ defined in an appropriate neighborhood of zero that
contains F1

′. We can conclude that for small λ the transformed
quantities tend to a fixed point. Since the transformation can
be inverted, this remains true for the original quantities. By
Theorem 1 for small λ the solution Fphys is the solution nearest
to the noninteracting one. Hence the fixed point obtained is
indeed Fphys. �

Both theorems apply not only to the mentioned examples
but to a large class of algorithms: it has already been
demonstrated that they apply to different vertex equations.
Another example would be the Dyson equations in solved
form, e.g., G = (1 − G0�)−1G0. This does not change the
proof of Theorem 1 at all. For Theorem 2 one would need the
additional assumption that in the first step the matrix inverse

0 0.5 1 1.5 2
λ

0.01

0.1

1

10

100

|G
(1

,1
) -

 G
0(1

,1
)|

GW (N = 2)
Starfish (N = 1)

FIG. 2. (Color online) Plot of the distance of a matrix element of
the Green’s function to the non-interacting one versus the coupling
strength λ for all possible solutions of GW with N = 2 and Starfish
with N = 1, for random G0 and W . W is kept fixed in both cases. Only
one solution tends to the non-interacting one for the weak coupling
limit.

FIG. 3. (Color online) Domain of convergence of GW (green)
and Starfish (purple) with N = 1 for input values of G0 in the complex
plane, when using the noninteracting solution as starting point. Here
v = 1 and λ = 1. The crosses mark the chosen G0 for investigating
the starting point dependence while fixing G0; see Fig. 4.

exists. Then it will also exist in subsequent steps provided λ is
small enough and, owing to the same arguments as before, Fi

would converge to the physical solution.

IV. NUMERICAL INVESTIGATION

Numerical checks of the above theorems were performed
for both self-consistent GW and the Starfish algorithm. In

FIG. 4. (Color online) Domain of convergence of GW (green)
and Starfish (purple) with N = 1 for different starting points of the
fixed point cycle. The values of G0 are fixed to 1 + i for GW and
1/4 + i/4 for Starfish, as indicated by the crosses in Fig. 3.
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order to demonstrate the multiplicity of solutions we need to
obtain all of them, which is possible only for a very small N .
For GW we set N = 2 and for Starfish we use N = 1. Plotted
in Fig. 2 are all the solutions for these algorithms as a function
of λ. The numerical input, in this case G0 and W , were chosen
to be random complex numbers, and W was kept fixed (which
is common practice for real GW calculations). As mentioned
earlier, there are 6 solutions in the GW case. Of these, 5 tend
to infinity and the remaining solution tends to G0 as λ → 0.
This is a visualization of Theorem 1. For Starfish 2 of the 3
solutions tend to a constant. This may appear to be in violation
of the theorem but in this case the vertex � (and therefore F )
diverges.

We can also examine the domains of convergence for both
of these algorithms. For N = 1 we fix v = 1 and λ = 1
and plot the region of convergence of G0 for the fully
self-consistent GW and Starfish algorithm (for which W is

also computed self-consistently) in Fig. 3. It can be observed
that the region of stability shrinks for the higher-order method.
Also noteworthy is that the region has a fractal boundary (this
may be unsurprising since for case G0W = 1 the domain is
the Mandelbrot set). Perhaps more interesting is the region
of starting points for which the algorithms converge. These
are plotted in Fig. 4 for the same v and λ but this time with
G0 = 1 + i for GW and G0 = 1/4 + i/4 for Starfish, and
with a variable starting point for G. These points are indicated
by crosses in Fig. 3. Once again the region of convergence
is smaller for Starfish, but in both cases only one solution is
found, irrespective of the starting point. This is a numerical
confirmation of Theorem 2. Note that for GW a situation was
picked where the noninteracting starting point does not lead
to convergence. Hence this can be considered a large coupling
situation. But still there seems to be only one stable fixed point.
The boundary of the region is also fractal (this corresponds to

FIG. 5. (Color online) Domain of convergence of GW as a function of the mixing parameter β. Three different solutions are plotted with
different colors: blue, yellow, and red. Black indicates nonconvergence.
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the Julia set). Given the complexity of this boundary, even
for the simple case of the GW approximation with N = 1,
it appears impossible that in the general case one can find
conditions on the starting point that will ensure convergence.

A. Mixing

In most realistic calculations of the self-consistent GW

approximation, the previous and current quantities are mixed
with one another using various mixing schemes [23]. This can
both ensure convergence to the fixed point as well as accelerate
it. In our notation, this is equivalent to modifying Eq. (9) as
follows:

Fi+1 = βg(Fi) + (1 − β)(Fi), (11)

where, in general, β is a matrix. The modified map g̃ ≡ βg +
(1 − β)I yields h̃(F ) = β(g(F ) − F ) = βh. Thus if β is an
invertible matrix then the fixed points of g are preserved. We
also note that a fixed point is asymptotically stable if all the
eigenvalues of its Jacobian J̃ = ∂h̃/∂F = βJ have negative
real parts. If any eigenvalue has a positive real part, then the
fixed point is unstable. One may therefore choose the matrix
β such that the eigenvalues of J̃ have arbitrary real parts. In
this way particular fixed points can be made either stable or
unstable as desired.

To illustrate the utility of mixing we recalculate the stability
regions in Fig. 4 for the GW approximation by mixing the
Green’s function alone,

Gi+1 = βGi + (1 − β)Gi,

with β taken to be a positive real number. The effect of this is
plotted in Fig. 5.

Two interesting aspects are observed: first, the domain of
convergence increases dramatically with decreasing mixing
parameter β; and second, different solutions emerge as a
function of β (these are indicated by three different colors

in the plot). Note that for β = 1 only one solution was found.
These observations may have consequences for realistic GW

calculations, namely that adjusting the mixing parameter can
fundamentally change the obtained solution. In our simple
example, we chose β to be a positive real number but it
could also have been negative, complex, a diagonal matrix
with nonzero entries, or a general invertible matrix.

V. CONCLUSION

We have argued that truncating Hedin’s equations to some
order yields systems of polynomial equations which have a
large number of solutions. As an example of this, the Starfish
algorithm was introduced which includes vertex corrections
beyond GW and consequently has even more fixed point
solutions. Two theorems were presented that shed some light
on the general behavior of these fixed points. In particular we
have shown that there is exactly one solution that tends to the
noninteracting case for small coupling, while all others are
divergent in this limit. Numerical tests of self-consistent GW

and the Starfish algorithm for small N demonstrated that the
system also converges uniquely to one fixed point even for
fairly large coupling. Furthermore, the region of stability may
be fractal in nature, indicating that finding simple necessary
and sufficient conditions for ensuring convergence of GW

calculations a priori may be impossible. Last, we found that
mixing current and previous solutions with a certain mixing
parameter not only increases the radius of convergence but also
allows different solutions to be obtained. This observation may
be of use in realistic GW calculations to assist in finding these
other solutions and investigate their properties.
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