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For spin-polarized low-energy electrons impinging on a crystalline surface, an important reaction channel is
the collision with a bound valence electron of opposite spin, followed by the emission of a correlated electron
pair with antiparallel spins. While primary and valence electrons are not entangled, the screened Coulomb
interaction generates spin entanglement between the two outgoing electrons. As a quantitative measure of this
entanglement, we calculated a modified von Neumann entropy in terms of direct and exchange transition matrix
elements. For coplanar symmetric setups with equal energies of antiparallel-spin electrons, maximal entanglement
is analytically shown to occur quite universally, irrespective of the choice of the primary electron energy, the
outgoing electron energy, and polar emission angle, and even of the choice of the surface system. Numerical
results for Fe(110) and Cu(111) demonstrate first that strong entanglement can persist for unequal energies and
second that an overall entanglement reduction due to nonentangled parallel-spin electrons can be avoided for
ferromagnetic and even for nonmagnetic surfaces.
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I. INTRODUCTION

For systems involving two or more particles, entanglement
of the wave function is a fundamental feature of quantum
mechanics with counterintuitive consequences, which was
seminally highlighted by the Einstein-Podolsky-Rosen (EPR)
Gedanken experiment [1] and its discussion by Schrödinger
[2]. Formally, entanglement means that the few- or many-
particle wave function cannot be expressed as an appropriate
product of single-particle wave functions (simple product
in the case of distinguishable particles, antisymmetrized or
symmetrized for identical fermions or bosons). The physical
implication is that it is not possible to attribute a complete
set of properties to each of the particles (cf., e.g., [3] and
references therein). Entanglement and its central role in a
variety of current research areas (like quantum cryptography,
teleportation, and quantum computing) have since been the
subject of a vast number of theoretical and experimental
studies, for which it must suffice here to refer to a selection of
review articles [4–8].

As regards the actual creation of entangled states, interac-
tion between the particles, especially scattering, is a widely
usable mechanism. Let two particles, which are initially
far apart and not entangled, move towards each other and
interact. After the collision, the two-particle wave function
will in general be entangled. Such entanglement creation
by interaction has been theoretically explored for pairs of
distinguishable particles and for identical fermions within
one-, two-, and three-dimensional models for various types
of interaction (see, e.g., [9–16] and references therein).

A particularly transparent and instructive representative of
entangled two-particle states is the spin-entangled state of two
identical fermions, which was proposed in Bohm’s version
of the EPR paradox [17] and considered by Bell [18] as one
of the paradigmatic states, which violate Bell’s inequalities
and exhibit nonlocal quantum correlations. This singlet state
is hence also referred to as the first Bell state.

In principle, this state as well as less strongly spin-entangled
two-fermion states can be created in the scattering of two
free identical spin-one-half fermions via Coulomb interaction

(cf. [19] and references therein). A detailed analysis of the
post-collision two-fermion state and its spin entanglement as
a function of the scattering angle has been given in [20].
Maximal spin entanglement is obtained if—in the laboratory
system, with one fermion initially at rest—the scattering angle
is 45◦, for which the energy of each fermion is half the energy
of the initially propagating fermion.

In the present paper we predict that electron pairs with
maximal spin entanglement can be produced for a wider
range of scattering angles and post-collision energies if a low-
energy electron (with energy below about 100 eV) impinges
on a crystalline surface, interacts via a screened Coulomb
interaction with a bound-state electron, and both electrons
subsequently exit from the surface and propagate over a
macroscopic distance. The momentum-resolved coincident
detection of such electron pairs, usually referred to as (e,2e)
spectroscopy, has over the past two decades matured into a
powerful source of information on electron-electron scattering
dynamics as well as on exchange and Coulomb correlation
between electrons in condensed matter ([21–27] and references
therein). As regards the entanglement of these pairs, however,
we are not aware of a theoretical study nor of an experimental
demonstration. The former is the aim of the present work.

The paper is organized as follows. In Sec. II we outline a
theoretical treatment of the (e,2e) process, yielding a formal
expression for the post-collision two-electron state. In Sec. III
the entanglement of this state is addressed and quantified by
a modified von Neumann entropy. Subsequently we explore
geometry and energy conditions, for which this entropy attains
its maximal value. Our general analytical findings are then
complemented by numerically calculated (e,2e) intensity and
entanglement results for the ferromagnetic Fe(110) surface and
for Cu(111). Some concluding remarks are made in Sec. IV.

II. THEORY OF ELECTRON-INDUCED
TWO-ELECTRON EMISSION

In the following we recall key aspects of a previously
developed (e,2e) formalism [21,28] and then focus on the states
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representing two outgoing electrons with either parallel or
antiparallel spins. The formalism is based on the two-electron
Hamiltonian

H = H1 + H2 + U, (1)

where H1 and H2 are two one-electron Hamiltonians with
an effective one-electron potential, which represents the
interaction of each electron with the semi-infinite crystal or
adsorbate system. The two-body potential U , which describes
the interaction between the two electrons, is the bare Coulomb
potential if both electrons are in the vacuum region between the
surface and the detectors, and a screened Coulomb potential if
at least one electron is inside the crystal.

In the framework of standard perturbation theory (cf.
standard textbooks on quantum mechanics), we start with a
normalized initial two-electron state |I 〉, which is an eigenstate
of the unperturbed Hamiltonian H1 + H2. The interaction U

then generates a final state

|FT 〉 = T |I 〉, (2)

where T is the transition operator satisfying the equation T =
U + UG0T and G0 is the unperturbed two-electron Green
function. If one imposes specific boundary conditions, which
are characterized by an unperturbed normalized two-electron
final state |F 〉, the specific outgoing electron state is the
projection

|F 〉〈F |FT 〉 = |F 〉〈F |T |I 〉, (3)

where 〈F |T |I 〉 is the transition matrix element. The observed
reaction cross section is then |〈F |T |I 〉|2.

We now proceed to specifying in detail the two-electron
states |I 〉 and |F 〉, which are appropriate for the (e,2e)
process. The basic ingredients of these two-electron states
are one-electron states, which are eigenstates of H1 and H2

[cf. Eq. (1)]. For the sake of simplicity and transparency we
neglect here spin-orbit coupling, which has been found to be
a reasonable approximation for low-Z surfaces (like, e.g., Cu,
Fe). The one-electron states are then characterized by energy
E, momentum �k‖ parallel to the surface, and spin orientation σ

with respect to a fixed direction. This direction is arbitrary for
nonmagnetic crystals and along the majority spin direction
(i.e., opposite to the magnetization direction) for crystals
with collinear ferromagnetic structure. The one-electron states
can then be expressed as a product of a scalar spatial part
|E,�k‖〉σ and a Pauli spinor |σ 〉 = |±〉 [with |+〉 = (1,0) and
|−〉 = (0,1)]. Note that the spatial part is different for spin-up
and for spin-down in the case of a ferromagnet, but the same
for a nonmagnetic surface system.

The (e,2e) process is illustrated schematically in Fig. 1.
The primary electron is represented by a low energy electron
diffraction (LEED) state |E1,�k‖

1,σ1〉 with energy E1, surface-
parallel momentum �k‖

1, and spin orientation σ1 with respect
to an arbitrary but fixed direction. The valence electron state
|E2,�k‖

2,σ2〉 is a bound state with energy E2, parallel momentum
�k‖

2, and spin σ2. The two outgoing electrons are described by
two time-reversed LEED states |E3,�k‖

3,σ3〉 and |E4,�k‖
4,σ4〉 with

energies E3, E4 and parallel momenta �k‖
3, �k‖

4, or equivalently
by the corresponding three-dimensional momenta �k3 and �k4,

FIG. 1. (Color online) Schematic setup for electron-induced
emission of entangled electron pairs from a crystal surface. A
primary electron with definite spin and kinetic energy E1 impinges
perpendicularly, i.e., with surface-parallel momentum �k‖

1 = 0, on the
surface and collides with a bound-state valence electron of opposite
spin, energy E2, and parallel momentum �k‖

2 . Subsequently, the two
electrons leave the crystal with energies E3 and E4 at polar angles
ϑ3 and ϑ4, i.e., with surface-parallel momenta �k‖

3 = (k3x,k3y) =√
2E3 sin ϑ3(cos ϕ, sin ϕ) and �k‖

4 = −�k‖
3 . The numbers 1 to 4 next to

the electron symbols (filled circles) stand for (En, �k‖
n) with n = 1

to 4. The spins of the two outgoing electrons are antiparallel to
each other, such that either the electron with (E3, �k‖

3) may have the
same spin as the primary electron and the electron with (E4, �k‖

4) the
opposite spin (direct process), or vice versa (exchange process). The
relative weights of the two processes determine the entanglement of
the outgoing two-electron state.

which point into the directions of the two detectors. The spins
of the outgoing electrons are labeled by σ3 and σ4. With
energies and parallel momenta of the primary electron and
of the two outgoing electrons fixed by boundary conditions,
the respective values for the valence electron are dictated by
conservation of energy and of parallel momentum (modulo a
parallel reciprocal lattice vector):

E1 + E2 = E3 + E4 and �k‖
1 + �k‖

2 = �k‖
3 + �k‖

4 . (4)

To make the following more transparent, we write the above
four states as |n,σn〉 = |n〉|σn〉 with n = 1, . . . ,4, where |n〉
stands for the spatial part |En,�k‖

n〉σn , which depends on the
spin orientation σn in the case of a ferromagnetic system.

The initial two-electron state |I 〉 is an antisymmetrized
product of the incoming and valence one-electron states

|I 〉σ1σ2 = 1√
2

(|1,σ1〉|2,σ2〉 − |2,σ2〉|1,σ1〉). (5)

First consider the case that the spins of primary and valence
electrons are parallel to each other, i.e., σ1 = σ2 =: σ . In
the absence of spin-orbit coupling, the spins of the two
outgoing electrons are the same, i.e., σ3 = σ4 = σ . The only
unperturbed normalized final state, which is subject to the fixed
energy-momentum boundary conditions and allows a nonzero
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transition amplitude, is then the antisymmetrized product

|F 〉nσσ = 1√
2

(|3,σ 〉|4,σ 〉 − |4,σ 〉|3,σ 〉). (6)

As is readily seen, the transition amplitude [cf. Eq. (3)]
is n

σσ 〈F |T |I 〉σσ =: fσσ − gσσ , where fσσ and gσσ are the
direct and exchange matrix elements between the spatial parts
|n〉 = |En,�k‖

n〉σ :

fσσ = 〈3|〈4|T |1〉|2〉 and gσσ = 〈4|〈3|T |1〉|2〉. (7)

The projected state [cf. Eq. (3)] of two parallel-spin outgoing
electrons is thus

|F 〉σσ = (fσσ − gσσ )|F 〉nσσ (8)

and the observable reaction cross section (intensity) is

Iσσ = σσ 〈F |F 〉σσ δ(E)δ(�k‖) = |fσσ − gσσ |2δ(E)δ(�k‖), (9)

where the δ functions δ(E) and δ(�k‖) indicate the conservation
of energy and parallel momentum [cf. Eq. (4)].

In the case of antiparallel spins σ1 =: σ and σ2 = −σ of the
primary and valence electrons, nonvanishing matrix elements
exist for two sets of spins of the two outgoing electrons:
(a) the direct matrix element fσσ̄ if σ3 = σ and σ4 = −σ , and
(b) the exchange matrix element gσσ̄ if σ3 = −σ and σ4 = σ ,
with fσσ̄ and gσσ̄ analogous to fσσ and gσσ in Eq. (7). The
corresponding normalized final states are

|Fd〉nσ σ̄ = 1√
2

(|3,σ 〉|4,−σ 〉 − |4,−σ 〉|3,σ 〉) (10a)

and

|Fe〉nσ σ̄ = 1√
2

(|3,−σ 〉|4,σ 〉 − |4,σ 〉|3,−σ 〉). (10b)

Note that these two states are orthogonal to each other.
If the outgoing spin set (σ3,σ4) is actually fixed (e.g., by
means of spin filters in the paths of the two electrons),
the corresponding outgoing two-electron state is then either
fσσ̄ |Fd〉nσ σ̄ or −gσσ̄ |Fe〉nσ σ̄ , and the intensity is either |fσσ̄ |2 or
|gσσ̄ |2. If the set (σ3,σ4) is not fixed, i.e., allowed to be either
(σ,−σ ) or (−σ,σ ), the outgoing two-electron state |F 〉σ σ̄ is
the projection of the final state |FT 〉 = T |I 〉 [cf. Eqs. (2) and
(4)] on to the subspace spanned by the two orthonormal states
|Fd〉nσ σ̄ and |Fe〉nσ σ̄ :

|F 〉σ σ̄ := fσσ̄ |Fd〉nσ σ̄ − gσσ̄ |Fe〉nσ σ̄ . (11)

The reaction cross section for the antiparallel spin case is then

Iσ σ̄ = σ σ̄ 〈F |F 〉σ σ̄ δ(E)δ(�k‖) = (|fσσ̄ |2 + |gσσ̄ |2)δ(E)δ(�k‖).
(12)

III. ENTANGLEMENT OF THE ELECTRON PAIR
AFTER COLLISION

A. Concepts and analytical results

Before dealing with the entanglement of the specific two-
electron states, which we obtained in Sec. II, we would like
to recall the most pertinent aspects of entanglement of two-
electron states in general.

In the case of distinguishable particles, a two-particle state
is commonly defined as entangled if it cannot be expressed as

a single product of two one-particle states. A naive transfer
of this formal definition to the case of two identical (spin
1/2) fermions is however not physically adequate, as has
been discussed extensively in the literature ([3,20,29] and
references therein). Rather, one should adopt a “physical”
definition, according to which a two-particle state is referred
to as genuinely entangled if it is not possible to attribute
a complete set of properties to both particles individually.
Only then there exist quantum correlations which may violate
Bell’s inequalities or may be used for teleportation. This
holds for distinguishable as well as for identical particles.
For distinguishable particles, this definition is equivalent to
the above formal one. For two electrons, however, it implies
that a single Slater determinant, i.e., a single antisymmetrized
product of two one-electron states, is not genuinely entangled,
whereas it would appear entangled in the sense of not being
representable as a single product of one-electron states. A
two-electron state |1,2〉 consisting of a linear combination
of linearly independent Slater determinants with expansion
coefficients ak , which satisfy the normalization condition∑

k |ak|2 = 1, is genuinely entangled if the number of nonzero
coefficients ak (referred to as the Slater number) is greater than
one.

A quantitative measure of the entanglement of |1,2〉 can
hence be introduced as a real positive function of these
coefficients ak . Choosing—in analogy with the case of
distinguishable particles—the von Neumann entropy SN =
− tr[ρ1 log2(ρ1)], where ρ1 is the one-electron reduced density
matrix corresponding to the state |1,2〉, one obtains [cf., e.g.,
[3], Eq. (12)]

SN = 1 −
∑

k

|ak|2 log2(|ak|2). (13)

For a single Slater determinant (with only one coefficient
a1 = 1), which according to the above definition is not
genuinely entangled, one thus obtains SN = 1, and genuinely
entangled states are characterized by SN > 1. It is therefore
more appropriate to use as a measure of entanglement the
modified entropy

S = SN − 1 = −
∑

k

|ak|2 log2(|ak|2). (14)

Returning now to the specific two-electron states, which
are relevant for (e,2e), we first note that the initial state |I 〉 [cf.
Eq. (5)] is just a single Slater determinant. It is therefore not
entangled, and according to Eq. (14) it has entropy S = 0. The
same holds for the final state |F 〉σσ [cf. Eq. (8)] obtained in
the case of parallel spins of the two outgoing electrons.

In contrast, the antiparallel-spin final two-electron state
|F 〉σ σ̄ [cf. Eq. (11)] is a linear combination of two antisym-
metrized products of two one-electron states. Since in general
both coefficients fσσ̄ and gσσ̄ are nonzero, it is genuinely
entangled (with Slater number 2). In order to calculate its
entropy S, we normalize it, replacing fσσ̄ and gσσ̄ by

f̃ = fσσ̄ /
√

|fσσ̄ |2 + |gσσ̄ |2 (15a)

and

g̃ = gσσ̄ /
√

|fσσ̄ |2 + |gσσ̄ |2 (15b)
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such that |f̃ |2 + |g̃|2 = 1. According to Eq. (14) we then
obtain

S = −|f̃ |2 log2 |f̃ |2 − |g̃|2 log2 |g̃|2. (16)

Due to the absolute squares, S can be expressed in terms of
the direct and exchange intensities |fσσ̄ |2 and |gσσ̄ |2.

If the direct matrix element fσσ̄ has some finite value and
the exchange matrix element gσσ̄ is zero, or vice versa, it is
obvious from Eqs. (15) and (16) that the entropy S is zero,
and according to Eqs. (10) and (11) the two-electron state
|F 〉σ σ̄ consists of a single Slater determinant. The maximal
entanglement, which is possible for |F 〉σ σ̄ , is attained if
|fσσ̄ |2 = |gσσ̄ |2. One then has S = log2 2 = 1.

If fσσ̄ = gσσ̄ , |F 〉σ σ̄ can be rewritten in the form

|Fσσ̄ 〉 = fσσ̄

1√
2

(|3〉|4〉 + |4〉|3〉)(|σ 〉|−σ 〉 − |−σ 〉|σ 〉),
(17)

i.e., as a product of a symmetric spatial part and an anti-
symmetric spin (singlet) part. This is in fact the form of
the paradigmatic two-electron state, which was employed in
Bohm’s version [17] of the Einstein-Podolsky-Rosen paradox
[1] and which clearly violates a Bell inequality (cf., e.g., [3,4]
and references therein).

In general, fσσ̄ and gσσ̄ depend on the specific surface
system and the energies and surface-parallel momenta of the
primary electron and of the outgoing electrons. They have to be
calculated numerically and yield S somewhere between zero
and the maximal value 1, as will be illustrated in Sec. III B.

There is however a special configuration which always
leads to the maximal entanglement. Consider the coplanar
symmetric geometry with normal incidence of the primary
electron on to the surface (cf. Fig. 1) and equal energies
(E3 = E4) and polar angles of the two outgoing electrons.
If the reaction plane is perpendicular to a mirror plane
normal to the surface or if the surface normal is a twofold
rotation symmetry axis, symmetry entails |fσσ̄ |2 = |gσσ̄ |2,
and hence from Eqs. (15) and (16) S = log2 2 = 1, which is
the maximal entanglement possible for the two-electron state
|F 〉σ σ̄ [Eq. (11)].

The occurrence of this maximal entanglement for antipar-
allel spins is universal in two respects. First, for a given
crystalline surface system, it does—for any chosen primary
energy E1 and subject to energy conservation—not depend
on the values of the outgoing electron energies E3 = E4 and
not on the surface-parallel momenta �k‖

3 = −�k‖
4, i.e., not on the

polar angle ϑ3 = ϑ4 between the emission directions and the
surface normal. Second, it does not even depend on the choice
of a specific surface system.

Our finding of maximal entanglement for all values of the
polar angle ϑ3 = ϑ4 and all values of the outgoing electron
energies E3 = E4 is in contrast to the situation in the scattering
of two free electrons via Coulomb interaction (cf. [20]),
where—in the laboratory system with one electron initially
at rest—maximal entanglement is generated only if—for a
given primary energy E1—each of the two outgoing electrons
has energy E1/2. This in turn occurs only for the special value
45◦ of the scattering angle.

So far the cases of parallel and of antiparallel spins
have been considered separately. This is realistic for (e,2e)

from surfaces if—for valence electron energy E2 and par-
allel momentum �k‖

2 as determined by the conservation laws
Eq. (4)—only valence electrons with one definite spin orienta-
tion contribute to the reaction cross section, which is possible
first for ferromagnetic surface systems and second by virtue
of (e,2e) selection rules [30], even for nonmagnetic systems.

If valence electrons of both spin orientations contribute, the
final two-electron state is a mixed state ρF described by the
sum of the statistical operators corresponding to the two pure
states |F 〉σσ [Eq. (8)] and |F 〉σ σ̄ [Eq. (11)]:

ρF := |F 〉σσ 〈F |σσ + |F 〉σ σ̄ 〈F |σ σ̄ . (18)

An appropriate measure of the entanglement is then the
“entropy of formation” S̃ of ρF (cf., e.g., [31]). Since the
entropy is zero for the case of parallel spins, we obtain

S̃ = SIσσ̄ /(Iσ σ̄ + Iσσ ), (19)

where S is the entropy for the antiparallel-spin case [Eq. (16)]
and Iσ σ̄ and Iσσ are the intensities for antiparallel and
parallel spins [cf. Eqs. (9) and (12)], respectively. S̃ is thus
generally smaller than S due to the contribution of parallel-spin
electrons.

B. Numerical results

In order to obtain quantitative entanglement results
for (e,2e) cases more general than the above-discussed
antiparallel-spin equal-energy case, numerical calculations
are required. To this end we employed a multiple scattering
formalism, which has been described in detail in earlier
articles ([21,28] and references therein), to calculate the partial
spin-dependent intensities |fσσ̄ |2 and |gσσ̄ |2 [cf. Eqs. (11) and
(12)] and hence pure-state entropy S according to Eqs. (15)
and (16) and the mixed-state entropy of formation S̃ according
to Eq. (19). An important feature of this formalism is the
inclusion of imaginary self-energy corrections, which account
for the finite lifetimes of the four quasiparticle states involved
and lead to an energy broadening of spectral features.

Since parallel-spin contributions reduce the entanglement,
it is desirable to avoid them. This is obviously possible
for ferromagnetic surfaces. Selecting valence electron energy
regions, in which there are only majority-spin electrons (σ2 =
+), and using a primary electron beam with opposite spin
polarization (σ1 = −), the favorable pure antiparallel spin case
can be realized experimentally.

As a typical ferromagnetic system we chose the Fe(110)
surface, which has been the subject of a previous experimental
and theoretical (e,2e) investigation [32]. Specific theoretical
model features, in particular quasiparticle potentials and the
screening of the Coulomb interaction, were taken to be the
same as in [32]. Using these model features, spin-dependent
(e,2e) intensity spectra were obtained in good agreement with
experimental data [32]. Since our entanglement measure S is a
function of partial intensities, it should also be quite realistic.

In Fig. 2 we present (e,2e) results from ferromagnetic
Fe(110) obtained for the coplanar symmetric geometry
sketched in Fig. 1 with fixed polar and azimuthal emission
angles ϑ3 = ϑ4 and ϕ = ϕ3 = ϕ4 + π . The normally incident
primary electron has fixed energy E1 = 27 eV, a typical value
used in low-energy (e,2e) studies from surfaces. Intensities
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(a)

(c) (d)

(e) (f)

(g) (h)

(b)

FIG. 2. (Color online) Numerically calculated (e,2e) energy distributions from ferromagnetic Fe(110) for normally incident primary
electrons with energy 27 eV and spin σ1 = −, i.e., opposite to the spins of the majority valence electrons. The two outgoing electrons
have energies E3 and E4, equal polar angles ϑ3 = ϑ4, and azimuthal angles ϕ3 = 0 and ϕ4 = 180◦. The azimuthal angle ϕ of the reaction plane
(cf. Fig. 1) is 0, with x along the [0,0,1] direction. The vertical axis indicates the valence energy E2 relative to the Fermi energy EF , which
by virtue of energy conservation [cf. Eq. (4)] is equivalent to the sum energy E3 + E4 of the outgoing electrons. (a) Antiparallel-spin intensity
I−+ [cf. Eq. (12)] for polar angles ϑ3 = ϑ4 = 45◦. (b) Entropy S [calculated according to Eqs. (15) and (16)]. (c) Total intensity I−+ + I−−,
where I−− is the parallel-spin intensity [cf. Eq. (9)]. (d) Entropy of formation S̃ [cf. Eq. (19)]. (e) and (f) as (a) and (b) but for ϑ3 = ϑ4 = 35◦.
(g) and (h) as (c) and (d) but for ϑ3 = ϑ4 = 35◦.

and entropies then depend only on the two outgoing electron
energies E3 and E4. Since the energy sum E3 + E4 is equal
to E1 + E2 [cf. Eq. (4)], they can equivalently be regarded as
functions of the energy difference E3 − E4 and the valence
electron energy E2 + � = E2 − EF relative to the Fermi
energy EF , where � is the work function. Furthermore, in our
geometry the conservation laws Eq. (4) associate with each pair
(E3,E4) a unique value of valence electron parallel-momentum
�k‖

2 = (k2r ,0), where k2r is the component in the reaction plane:

k2r = (
√

2E3 −
√

2E4)sinϑ with ϑ = ϑ3 = ϑ4. (20)

This implies in particular that electrons with E3 − E4 = 0
originate from collisions with valence electrons with �k‖

2 =
(0,0), i.e., at the center of the surface Brillouin zone. The
presentation of (e,2e) results as functions of E3 − E4 and E2 −
EF thus facilitates the association of individual (e,2e) intensity
features with features of the underlying �k‖-resolved valence
electron density of states.

Figure 2(a) shows, for primary electron energy E1 = 27 eV
and polar emission angles 45◦, the antiparallel-spin cross
section I−+ [cf. Eq. (12)], i.e., with valence electron spin
σ2 = + (parallel to the majority electron spin direction) and
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FIG. 3. (Color online) Numerically calculated (e,2e) energy distributions from Cu(111) for normally incident primary electrons with energy
27 eV and spin σ1 = −. The two outgoing electrons have energies E3 and E4 and equal polar angles ϑ3 = ϑ4. The azimuthal angle ϕ of the
reaction plane (cf. Fig. 1) is 0, with x along the [1, −1,0] direction. The results are displayed in the same way as those in Fig. 2.

primary electron spin σ1 = − (antiparallel to the majority
spin direction). Along the dashed vertical line, i.e., for equal
energies E3 = E4 of the outgoing electrons, the salient features
are two maxima between valence energies −1 and −1.5 eV.
These two maxima reflect the layer-resolved density of states
of spin-up valence electrons at �k‖

2 = 0 (cf. [32]), as one would
expect from Eq. (20). Going away from the equal-energy line,
i.e., for increasing finite k2x , the two intensity maxima persist,
dispersing downward in energy and getting weaker, and two
new features appear below −2.3 eV.

The entropy S, which is associated with the intensity I−+,
is shown in Fig. 2(b). Along the (dashed) equal-energy line, S

reaches the maximally possible value 1, as one expects from
our above analytical result. With increasing energy difference
S is seen to decrease, but large values are still found near the
equal-energy line (e.g., S = 0.953 for |E3 − E4| = 0.5 eV)

and in a few regions further out. While the former appear
plausible on continuity grounds, the E2-dependent extent
of the large-S stripe around the equal-energy line and the
occurrence of the outer large-S regions have no intuitive
explanation, but can only be ascribed to complicated multiple
scattering processes in the individual electron states affecting
the relative weights of the absolute squares of the direct and
exchange matrix elements, which determine the entropy [cf.
Eq. (16)].

Figures 2(a) and 2(b) show that electron pairs with highest
intensity and largest entropy originate from the central region,
which is about 0.5 eV wide in valence electron energy and
about 2 eV in the difference of the outgoing-electron energies.

If—at energy E2 and momentum �k‖
2—there are also

minority-spin electrons in the ferromagnet, which for spin-
down primary electrons lead to the (e,2e) intensity I−− [cf.
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Eq. (9)], the experimentally observable intensity is I−+ + I−−.
This total intensity is presented in Fig. 2(c). Comparison with
I−+ in Fig. 2(a) shows that for equal energies (along the dashed
line) there is no parallel-spin contribution. The reason for this
is that there exist no contributing minority-spin states (cf. band
structure and densities of states shown in [32]). This also holds
over the entire energy difference range for valence energies
below −1 eV, whereas above −1 eV there is a dominant
contribution of I−− at larger energy differences.

The corresponding effects on the entanglement of formation
S̃ [cf. Eq. (19)] are shown in Fig. 2(d). S̃ is much smaller than
S in the regions with significant parallel-spin contribution,
while it is almost the same in the remainder of the plot. In
particular, for E3 = E4 the maximal entanglement persists as
well as do the large values up to about |E3 − E4| = 1.5 eV
(e.g., S̃ = 0.94 for |E3 − E4| = 0.5 eV).

To demonstrate the existence of strong entanglement for
polar angles (of the two outgoing electrons) other than 45◦,
we show in Figs. 2(e)–2(h) (e,2e) results for ferromagnetic
Fe(110) analogous to those in Figs. 2(a)–2(d) but for polar
angles ϑ3 = ϑ4 = 35◦. As the most important finding we
point out that in the central region around the equal-energy
line (along which there is of course S = 1) there is still high
intensity associated with strong entanglement. The same was
found in calculations for angles larger than 45◦.

In nonmagnetic materials, with no spin polarization of
the valence electrons, there is—for all energies and parallel
momenta—always an equal number of spin-up and spin-down
partners available for collisions with primary electrons of
definite spin. So one might expect that for, e.g., spin-down
(σ1 = −), primary electrons there is, in addition to the
antiparallel-spin (e,2e) intensity I−+, always a parallel-spin
intensity I−− and consequently—according to Eq. (19)—less
entanglement. For our coplanar symmetric geometry there
are however selection rules [30] which suppress I−− (and
I++). If, for equal energies of the outgoing electrons, the
reaction plane is chosen perpendicular to a mirror plane
normal to the surface, the matrix elements fσσ and gσσ are
equal if the relevant valence state has even mirror symmetry.
Consequently, Iσ,σ = 0 and one has maximal entanglement
with entropy S = 1.

As a typical nonmagnetic surface we chose Cu(111).
Specific theoretical model features, in particular quasiparticle
potentials and the screening of the Coulomb interaction, were
taken to be the same as in previous (e,2e) work [33].

Results of our (e,2e) calculations are shown in Fig. 3, laid
out analogous to Fig. 2. The antiparallel-spin intensity I−+ for
ϑ3 = ϑ4 = 45◦ [Fig. 3(a)] and 35◦ [Fig. 3(e)] is seen to be
dominated by the arched structure, which from valence energy
about 0.4 eV below the Fermi energy EF at E3 − E4 = 0
disperses upward towards EF . This structure reflects the sp-
like Shockley surface state (cf. [34] and references therein).
The intensity features below −2 eV originate from the d-band
region. The entropy S in Figs. 3(b) and 3(f) extends, from the
universal maximal value 1 at equal energies, with still large
values quite far outward.

The inclusion of the parallel-spin intensity I−− is seen [in
Figs. 3(c) and 3(g)] to make no difference to the Shockley-
derived arched structure. It contributes however substantially
to the d-band-derived region below −2 eV, in particular

also at equal energies. The reason for this different behavior
lies in the symmetry of the respective valence states with
respect to the mirror plane, which is normal to the reaction
plane and normal to the surface. The Shockley state has
even symmetry, where I−− = 0 by virtue of (e,2e) selection
rules. In contrast, there are d states of even and of odd
symmetry. The latter entail nonvanishing I−−. The effect on
the entanglement is illustrated in Figs. 3(d) and 3(h). In regions
with significant contributions of I−− it is substantially reduced
(S̃ < S), while nearly unchanged elsewhere. In particular,
strongly entangled electron pairs are emitted with high
intensity in the region of the Shockley surface state. Results
similar to the ones for ϑ3 = ϑ4 = 35◦ and 45◦ presented in
Fig. 3 were obtained for further polar angles between 30◦
and 60◦.

IV. CONCLUDING REMARKS

In the present theoretical work we have explored the
spin entanglement of two electrons, which are emitted from
a solid surface due to the collision of an incident low-
energy electron with a bound valence electron. Analytical
calculations revealed that in coplanar symmetric setups the
entanglement of two emitted antiparallel-spin electrons with
equal energies is always maximal irrespective of their energies
and their emission angles and even of the choice of the
surface system. For unequal energies of two antiparallel-
spin electrons, numerical (e,2e) calculations for the Fe(110)
and Cu(111) surface yielded still rather strong entangle-
ment for a fairly wide range of energy and polar angle
values.

In (e,2e) experiments using primary electrons with definite
spin, there are in general also collisions with valence electrons
of the same spin orientation and consequently there are
parallel-spin electrons, which are emitted in addition to the
antiparallel-spin electrons and lead to a reduction of the
entanglement. The avoidance of parallel-spin electrons and
hence the preservation of the strong entanglement of the
antiparallel-spin electrons is possible for ferromagnets, as we
have demonstrated by (e,2e) calculations for the ferromagnetic
Fe(110) surface. Due to (e,2e) selection rules, it is even
possible for nonmagnetic surfaces, as our results for Cu(111)
show.

In view of experimental studies of entanglement creation
in (e,2e) we would like to briefly comment on potential
modifications of our theoretical results due to energy and
angular uncertainties in experimental apparatus. A typical
uncertainty of 0.5 eV in the primary electron energy has
almost no effect on our intensity and entanglement results.
To assess the influence of such uncertainty in the outgoing
electron energies, we convoluted the intensities in Figs. 2
and 3 with a Gaussian of 0.5 eV width and calculated the
corresponding entanglement of formation. While features
in the resulting intensities are noticeably broadened, the
entanglement is much less affected. For example, in the
high-intensity large-entanglement region obtained for Fe(110)
about 1 eV below EF [cf. Figs. 2(a)–2(d)] the entropy changes
for equal energies E3 = E4 from the maximal value 1 to 0.997
and for |E3 − E4| = 0.5 eV from 0.953 to 0.954. The effect
of an uncertainty of the order of 1 deg in the polar angles of
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primary and emitted electrons turned out to be minute for both
entanglement and intensities.

With regard to comparing our results with results of
previous theoretical studies of bipartite entanglement creation
by interaction, we note that Refs. [9–16] involve momentum
or position entanglement, whereas we focused on spin en-
tanglement. Compared to the spin entanglement results in
the scattering of two antiparallel-spin free fermions [20],
our results for (e,2e) from surfaces offer the advantage that
maximal entanglement is obtained for a range of energies
E3 = E4 (rather than only for E3 = E4 = E1/2) and for all
scattering angles (rather than only for 45◦). The latter feature
is due to the fact that the three-dimensional momentum of
the two outgoing electrons is—in contrast to the free electron
case—not determined by the momenta of the initial electrons,
since momentum can be “absorbed” by the crystal. The range
of energies E3 = E4 originates, for a given fixed primary
electron energy, via energy conservation from the availability
of a range of valence electron energies.

Since (e,2e) from single atoms is sort of intermediate
between free electron collisions and (e,2e) from crystal
surfaces, one can also expect spin-entangled electron pairs
in spin-polarized (e,2e) from atomic targets in the gas phase.
While we are not aware of such an entanglement study, we
can infer a salient feature from calculated angular intensity
distributions in low-energy (e,2e) from H, Na, and Mg atoms
[35,36]. In the coplanar symmetric configuration with equal
energies of the two electrons, the parallel-spin intensity was
found to vanish and the antiparallel-spin intensity to have finite
values for all scattering angles. Since vanishing parallel-spin
intensity is associated with the direct scattering amplitude
f being equal to the exchange scattering amplitude g, the
antiparallel-spin pairs are maximally entangled just like those
in (e,2e) from surfaces.
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