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We show that the superconducting order parameter and condensation energy density of phonon-
mediated superconductors can be calculated in real space from first principles density functional theory for
superconductors. This method highlights the connection between the chemical bonding structure and the
superconducting condensation and reveals new and interesting properties of superconducting materials.
Understanding this connection is essential to describe nanostructured superconducting systems where the
usual reciprocal space analysis hides the basic physical mechanism. In a first application we present results
for MgB2, CaC6 and hole-doped graphane.
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In the last decades, many theoretical and experimental
studies about superconductors, especially those with a large
critical temperature (Tc), have highlighted, as crucial for
the superconducting (SC) condensation, very special fea-
tures in reciprocal space, like specific phonons and/or
electronic bands. Cuprates, pnictides, MgB2, and interca-
lated graphite are all relevant examples. Since the SC
condensation occurs for electron pairs of opposite momenta
[1–3], it seems natural to describe it in reciprocal space [3],
e.g., by characterizing the momentum dependence of the
SC gap. This has been the traditional way of analyzing
superconductivity.
There are, however, important features, such as the

chemical bonding structure, which are not easily understood
in k space. Since the electrons, within the bonds, are found
to have a different degree of localization and considering that
this bonding structure also determines the electron-phonon
coupling, a real-space analysis can reveal essential informa-
tion for superconductivity. In fact, in the class of MgB2-type
superconductors the strength of the σ bond was found to
correlate with the magnitude of the critical temperature [4,5].
The preferable space for analyzing superconductors

should, in fact, depend on the material. In a conventional
superconductor like bulk lead, remarkable anisotropies in
reciprocal space have been observed and predicted [6–9].
However, many bulk materials and, even more so, systems
with a broken periodicity in one or two dimensions—
surfaces, 2D-systems, interfaces, nanostructures—clearly
exhibit strong anisotropies and selective features also in
real space, where the SC transition might involve only
specific atoms, layers, and chemical bonds. This suggests
that characterizing how the SC order parameter behaves in
real space and identifying the specific chemical structures
that enhance or weaken the SC condensation can be
important to set new connections between superconduc-
tivity and simple chemistry, laying the ground for rational

design. Clearly, in nanostructured systems, a real-space
analysis seems much more intuitive and revealing, due to
the folding of the Brillouin zone.
In this Letter we develop a scheme to calculate the SC

order parameter in real space. A detailed analysis of
this quantity and the corresponding SC pairing potential
is performed for three strongly anisotropic systems, as
MgB2, CaC6, and hole-doped graphane (C2H2). Further,
the connection between the stability of the SC state and the
local chemical environment is established by introducing a
condensation energy density which is defined and computed
for the three considered superconductors. Several phenom-
enological or model approaches, such as the Ginsburg-
Landau theory [10,11], the Bogoliubov–de Gennes (BdG)
equations [12], lattice models, and others [13] were used as
models to achieve real-space descriptions of mesoscopic
systems in complex geometries [14–16] and topologies [17].
The present work aims to take a step further and obtain a
description of real-space quantities in a completely ab initio
fashion, thereby also filling the gap between large scale
models and microscopic approaches typically framed in the
reciprocal space.
We develop our real-space description in the framework

of the fully ab initio density functional theory for super-
conductors (SCDFT) [9,18–25]. The real-space description
can in principle be obtained also starting from alternative
approaches such as the Eliashberg theory [26]. However,
some distinctive features of SCDFT, as compared to many-
body perturbation theory are (i) the absence of semi-
empirical parameters like the Coulomb pseudopotential
μ⋆, commonly used in Eliashberg implementations to
reduce the computational cost, and (ii) the possibility of
performing analytically and exactly the frequency integra-
tions implied by the electron-phonon (e-ph) interaction
retardation effects, a fact that makes this theory computa-
tionally much cheaper than other many-body approaches.
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This allows us to calculate the SC properties in much larger
or complex systems.
In SCDFT, both the electronic density nðrÞ as well as the

exact SC order parameter χðr; r0Þ of the interacting system
are reproduced by a SC noninteracting Kohn-Sham (KS)
system where the exchange-correlation (xc) effects on
superconductivity are included via the pairing potential
Δsðr; r0Þ, functional of nðrÞ, and χðr; r0Þ. Δsðr; r0Þ does
not have, in principle, a direct physical meaning. However,
in the approximation for the xc energy functional introduced
in Ref. [19], its diagonal matrix elements with respect to the
normal state (NS) KS Bloch orbitals Δnk

s ¼ hφnkjΔsjφnki
modify the electronic spectrum according to a BCS expres-
sion of the quasiparticle energies Enk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2nk þ jΔnk

s j2
p

,
where ξnk are eigenvalues of the NS-KS system and n and k
are band and Bloch vector indexes, respectively. This is the
reason why Δs has been very successfully interpreted
[21,23,27] as a mean field SC gap function, in the same
sense as the NS-KS eigenvalues are interpreted as approxi-
mate quasiparticle energies. The gap function is obtained by
solving the self-consistent equation

Δnk
s ¼ ZnkΔnk

s −
X
n0k0

Knk
n0k0

tanhðβ
2
En0k0 Þ

2En0k0
Δn0k0

s ; ð1Þ

where the effects of the Coulomb and the retarded e-ph
interactions [28] are included in the kernels Z and K,
functionals of the densities. β is the inverse temperature. The
matrix elements of the order parameter (OP) in KS states are
then expressed in terms of Δs as

χnk ≡ Δnk
s

2jEnkj
tanh

�
β

2
Enk

�
: ð2Þ

The typical energy dependence ofΔnk
s and χnk is sketched in

Fig. 1(a). If the system shows time-reversal symmetry, these
functions can be chosen to be real and positive at the
Fermi energy (EF), where both functions show a sharp
peak. However, due to the Coulomb repulsion, beyond the
phononic energy scale the gap function changes sign and
exhibits a long and rather deep negative tail extending at high
energies. In the Supplemental Material [30], we review in
detail how the Coulomb renormalization mechanism [38,39]
operates in the SC-KS system. A negative tail is expected
also in χnk [Eq. (2)], but it is strongly suppressed by the
ð2jEnkjÞ−1 factor.
The order parameter and the gap function can be

expressed in real space using the NS KS Bloch basis

χðR; sÞ ¼
X
kn

χnkφnk

�
Rþ s

2

�
φ�
nk

�
R −

s
2

�
; ð3Þ

ΔsðR; sÞ ¼
X
kn

Δnk
s φnk

�
Rþ s

2

�
φ�
nk

�
R −

s
2

�
; ð4Þ

where we introduced the center of mass coordinates
R≡ ðrþ r0Þ=2, s≡ r − r0, which is very convenient for
the analysis presented below. By applying the Bloch
theorem, it is easily seen that both χðR; sÞ and ΔsðR; sÞ
are lattice periodic in R, while they show Friedel-like
oscillations as a function of s. The presence of these
oscillations can be understood by considering a 1D homo-
geneous model system, with planewaves as Bloch functions.
In this case, χðsÞ reduces to the Fourier transform of χnk.
Modeling χnk as a Lorentzian function peaked at the Fermi
vectors kf and −kf [Fig. 1(b)], we see that its transform
[Fig. 1(c)] shows oscillations whose period and damping are
related to the Fermi momentum modulus and χnk width,
respectively. The real-space computation of χ is realized in
two steps, first by solving Eq. (1) and extracting the matrix
elements in Eq. (2), and second by performing the n;k
integration in Eq. (4).
A brief summary of the studied materials is presented

below (see also the Supplemental Material [30]). MgB2 has
two Fermi surface (FS) sheets, associated with σ and π
electrons and coupled very differently to the phonons. This
anisotropic material is a well-known prototype of a two-gap
system: the cylindrical FS arising from the B─B─σ bonds
shows a SC gap three times larger than the π-related one
[40]. A former SCDFT study [21] reported a critical
temperature and a gap structure in good agreement with
the experimental observations [41].
The second system considered is a hole-doped graphane

single layer, recently studied within SCDFT [42]. Here, the
cylindrical FS arises mainly from the C σ bonds, strongly
coupled to the phonon modes [43]. Finally, we will
investigate CaC6, a material where a Tc ¼ 9.4 K was
obtained in SCDFT, slightly below the experimental
11.5 K [23,44]. Compared to MgB2 and graphane, CaC6

has a complex FS with a strong atomic orbital character.

FIG. 1 (color online). (a) Superconducting gap Δnk
s versus

energy ξnk on a logarithmic scale of an isotropic (dark blue line)
and an ideal two gap (dashed red) system. In real materials, k
anisotropy leads to a continuous set of Δnk

s at a given energy
(shaded area). (b) Typical Lorentz peak of χðkÞ in a 1D model
system around the Fermi vectors�kF with widthG. Its real-space
transform [panel (c)] shows oscillations of periodicity 2π=kF and
exponential damping e−Gjsj.
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The outer parts are dominated by C─pz orbitals, while the
central spherical one mostly by Ca─dz2 and Ca─s orbitals.
The strongly anisotropic e-ph coupling is due to Ca
vibrations, while C modes give a smaller, homogeneous
contribution. As a result, CaC6 does not show distinct
multiband superconductivity but a rather anisotropic gap in
k space [27].
In Fig. 2 we show the plots of χðR; s ¼ 0Þ and

ΔsðR; s ¼ 0Þ for the three considered systems, at
T ¼ 0.01 K. We consider only a low temperature limit
since T acts as a spatially homogeneous scale factor.
Although related to each other, the two functions highlight
different properties. Since χnk is strongly peaked around
the FS and only slightly negative elsewhere, χðR; 0Þ reveals
the structure of the electronic states close in energy to EF,
weighted by the relative strength of the e-ph coupling
[Eq. (4)]. Δnk

s , instead, is much broader in energy and its
long negative tail overbalances the positive phonon con-
tribution, dominating the ΔsðR; 0Þ overall behaviour and
giving more weight to the high energy KS states. Via the
mechanism described following Eq. (2), these are involved
in the Coulomb renormalization. Therefore, χðR; 0Þ is
positive almost everywhere (red to yellow), negative only
in regions where the Coulomb renormalization dominates
while ΔsðR; 0Þ is negative (light to dark blue).

Specifically, in MgB2 [Fig. 2(a)] we observe from
χðR; 0Þ how the e-ph pairing is dominated by the B σ
states, and much less by the π states, that are barely visible.
A change of sign in the center of the Boron hexagon, yet
with a very small magnitude, indicates that this region plays
a role in the Coulomb renormalization. Regions in the unit
cell (U.c.) contributing to this mechanism are, however,
highlighted better by ΔsðR; 0Þ [Fig. 2(d)]. Clearly distin-
guishable are the ring-shaped regions around the B atoms,
overimposed on a homogeneous background, respectively
originating from states below and above EF. The region of
the Mg atom gives a negligible contribution (black region).
The χðR; 0Þ plot for CaC6 [Fig. 2(b)] highlights instead a

complex orbital character in the EF region that mirrors the
complexity of the e-ph coupling. Regions associated with
C─π states appear with the largest magnitude, while C─σ
regions provide Coulomb renormalization, and are again
better seen in Δs [Fig. 2(e)]. Ca─dz2 states are also clearly
visible in the lower right corner of Fig. 2(b).
In graphane, χðR; 0Þ reflects the hexagonal bonding

structure [Fig. 2(c)] similarly to MgB2; i.e., the C─σ bond
regions show the largest positive values. On the other hand,
the regions of Coulomb renormalization shown by
ΔsðR; 0Þ [Fig. 2(f)] are not only the carbon honeycomb
lattice but have a strong contribution also the covalent

FIG. 2 (color online). Normalized χðR; 0Þ for MgB2 (a), CaC6 (b), and C2H2 (c) (See also Refs. [30,45]). States relevant for
superconductivity appear in the plots. We show the normalized ΔsðR; 0Þ in MgB2 (d) CaC6 (e) and C2H2 (f). For small separations jsj
the pair potential is dominated by the screened Coulomb interaction.
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H─C─pz bonds, which do not participate in the phononic
pairing. In a H─C─pz bond, χðR; 0Þ is out of phase
(negative in Fig. 2(c) with respect to the C─C bond region,
indicating that this bond renormalizes the Coulomb repul-
sion. This clearly illustrates how our ab initio real-space
description is able to identify the chemical bonds that limit
the suppressive nature of the long range Coulomb inter-
action on the SC condensation.
In the present nonlocal formulation we can investigate

also the s dependence of the Cooper pair wave func-
tion χðR0; sÞ.
In Fig. 3(a) we set R in a MgB2 B─B bond and we plot

χðR0; sÞ on the B plane. The shape we observe is given by
the charge density at Fermi level, modulated by damped
Friedel-like oscillations representing the 3D generalization
of the 1D model of Figs. 1(b) and 1(c). Since the FS of both
MgB2 and graphane is almost cylindrical, the oscillations
lay in the boron plane. Here the envelope of χðR0; sÞ is
given by a Bessel function of first kind [Jnðjkr∥sjÞ with kr
the radius of the FS cylinder and n ¼ 0] times an
exponential damping due to the small width of χnk around
the Fermi level. In the out-of-plane direction (sz) destruc-
tive interferences lead to a rapid decay of χðR0; sÞ. For the
same reason, in CaC6 (not shown) the more complicated FS
results in a strong interference and no distinct oscillations
are visible.

The gap function (not shown) features an oscillatory
behavior in s that is similar to that of χ. However, due to the
broader structure in k space, the oscillatory envelope [see
Fig. 1(c)] is decaying more rapidly. Moreover, as seen in
Figs. 2(d) to 2(f) the gap function is negative at s ¼ 0. Here,
we are on the top of a very sharp negative peak about s ≈ 0.
This sharp negative peak reflects the strength of the
Coulomb repulsion at short length scales.
Beyond the order parameter and the KS pairing potential

a third very useful object is the SC condensation energy Esc,
defined as the difference between the SC and normal state
total energy. Equation (1) consists of a kinetic part Ekin

sc ¼P
nkξnkðρscnk − ρnkÞ, coming from the change in the occu-

pation numbers of single particle levels from normal (ρnk)
to superconducting (ρscnk), plus the pairing potential con-
tribution given by Estat

SC ¼ −
R
dr

R
dr0Eðr; r0Þ with the

nonlocal static condensation energy density Eðr; r0Þ ¼
χðr; r0ÞΔ�

sðr; r0Þ þ c:c: In Fig. 3, [panels (c) and (d)] we
show EðR0; sÞ forR0 in the MgB2 B─B─σ bond and in the
graphane C─σ bond. The sharp repulsive Coulomb peak at
s ≈ 0 is compensated by the phononic attraction that
dominates at larger separations. A sensible, yet nonunique,
definition of a local condensation energy density [46] is

ρEðrÞ ¼
Z

dr0Eðr; r0Þ −
X
nk

ξnk½nscnkðrÞ − nnkðrÞ�: ð5Þ

with nnkðrÞ ¼ ρnkjφnkðrÞj2 being the probability density
of KS electrons in state ðn;kÞ [and similarly for nscnkðrÞ�. An
important feature of our choice is that it turns out to be
positive for all materials studied, this allows us to directly
interpret its magnitude as the amount of energy gained in
the SC condensation at a point r.
Results according to this definition are reported in Fig. 4.

ρEðrÞ includes the competition between the kinetic energy
rise due to occupation number change and the energy gain
due to the SC pairing. Still its structure resembles closely
that of the diagonal of the OP χðR; 0Þ, apart for the missing
negative tails.
In this Letter, in the framework of the density functional

theory for superconductors, we performed a real-space

FIG. 3 (color online). s dependence of χðR0; sÞ [panels (a),(b)]
and EðR0; sÞ [(c) and (d)] in the xy plane and z direction. R0 is
located in a B─σ bond in MgB2 and in a C─σ bond in graphane.
Maximal values are 49 and 77 μ=U:c: in (a) and (b) and
64 fRy=U:c:2 and 120 fRy=U:c:2 in (c) and (d), respectively.
At s ≈ 0 a sharp negative peak in E marks the onset of the
Coulomb repulsion between paired electrons.

FIG. 4 (color online). Normalized, spatially resolved energy
gain due to the condensation ρEðrÞ for MgB2 (a), CaC6 (b), and
C2H2 (c) (See also Ref. [47]). The structure is very similar to
χðR; 0Þ, however, positive everywhere.
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analysis of the superconducting order parameter and the
pairing potential (typically only evaluated in reciprocal
space), highlighting their relation with the chemical bond-
ing in three anisotropic materials. We showed how the OP
structure reflects the underlying pairing mechanism:
regions in the unit cell that provide an attractive coupling
can be clearly distinguished from those that contribute via a
Coulomb renormalization and those that are not coupled.
We also show how the chemical bonding structure is
utilized to maximize the condensation energy. The broader
understanding reached via our real-space analysis may help
to better characterize or even design new superconductors,
especially in the case of nanostructured systems.
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