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Ab initio theory of superconductivity in a magnetic field. II. Numerical solution
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We numerically investigate the spin density functional theory for superconductors (SpinSCDFT) and the
approximated exchange-correlation functional, derived and presented in the preceding Paper I [A. Linscheid
et al., Phys. Rev. B 92, 024505 (2015)]. As a test system, we employ a free-electron gas featuring an exchange
splitting, a phononic pairing field, and a Coulomb repulsion. SpinSCDFT results are compared with Sarma,
the Bardeen-Cooper-Schrieffer theory, and with an Eliashberg type of approach. We find that the spectrum of
the superconducting Kohn-Sham SpinSCDFT system is not in agreement with the true quasiparticle structure.
Therefore, starting from the Dyson equation, we derive a scheme that allows to compute the many-body excitations
of the superconductor and represents the extension to superconductivity of the G0W0 method in band-structure
theory. This superconducting G0W0 method vastly improves the predicted spectra.
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I. INTRODUCTION

Interaction between the magnetic and superconducting
(SC) order leads to complex and fascinating phenomena.
Apart from the Meissner effect as the most apparent aspect
of this interaction on macroscopic length scales, for singlet
SC, the ferromagnetic parallel spin alignment competes with
spin antiparallel Cooper pair formation. While for triplet SC,
such as UGe2 a ferromagnetic (F) order is possible even
in a bulk geometry [1], F/SC interfaces or SC surfaces in
an external magnetic field allow to study the microscopic
competition of a large spin splitting also for singlet SC.
This may lead to spatial inhomogeneities of the SC order
parameter, such as the phase predicted by Fulde and Ferrell
and Larkin and Ovchinnikov [2,3]. Furthermore, the spin
valve behavior of complex F/SC structures [4–6] may provide
opportunities for novel devices making use of the unique
electronic configuration that appears due to the vicinity of
these two competing phases (see Ref. [7] for a review).

These effects are addressed in the theoretical literature
so far mostly within model or semiempirical calculations
due to the lack of a complete and efficient ab initio theory.
This leaves the prediction of essential material-dependent
properties as critical temperature and excitation gap in the
presence of a magnetic field out of reach. The spin density
functional theory for SC (SpinSCDFT) approach presented by
Ref. [8] (hereafter referred to as I) may fill this gap, as the
theory has the computational convenience of a Kohn-Sham
(KS) density functional framework and allows to calculate
material-dependent SC parameters from the crystal structure.
The SpinSCDFT is in principle exact, but relies on the
approximation of the exchange-correlation (xc) potential. A
first approach to derive such an xc potential relies, in turn, on
the Sham-Schlüter equation [9] for a SC [10] and is presented
in I.

In this work, we present numerical results for SpinSCDFT,
aiming to achieve a deeper understanding of this theoretical
framework and to characterize and validate the xc potential, as
derived in I. In particular, we will investigate the properties of
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the KS pairing function, that is a key object in SCDFT [11,12].
The test system we adopt for this analysis is a spin-splitted free-
electron gas with a phononic and Coulomb coupling. Details
of the model will be presented in Sec. II. One advantage of
this simplified model with a homogeneous exchange splitting
is its similarity to the starting point of Refs. [13,14] for
their discussion of the Eliashberg equations and BCS theory,
respectively. As compared to Ref. [13], we use a different
notation (compare Paper I) and take a more general route which
reduces to the earlier results in the case that the magnetic field
homogeneously splits the electronic states. We will compute
the temperature versus exchange splitting diagram of the
model using, apart from SpinSCDFT, the BCS theory and
the Eliashberg equations. Then, in Sec. V we will compare
our SpinSCDFT results with the BCS approach (reviewed in
Sec. III) and with the reference Eliashberg method (Sec. IV).

The SpinSCDFT KS system proves to give qualitatively
correct results for the J -T diagram. However, we find in
Sec. V that it does not show a physical excitation spectrum. A
similar problem is very well known in conventional DFT, and is
usually called the band-gap problem. Since the excitation gap
is a very important property of SC, it is important to devolve
methods to compute it. Therefore, the last part of this work
will be devoted to describe an extension of the G0W0 method
to our SC system and show that it entirely solves the problem,
similar to its normal-state counterpart [15].

II. A TEST SYSTEM

The model system which we will use to investigate the
SpinSCDFT formalism is based on a noninteracting electron
gas under the influence of a homogeneous magnetic field B0.
The energy of its electronic states εkσ , relative to the Fermi
energy Ef (k = k,n where here n is a band index and we use
the notation −k = −k,n), reads as

εkσ = 1
2 k2 − Ef − sign(σ )μBB0 . (1)

The Fermi energy is defined by integrating the density of
states (DOS) up to Ef to have Ne electrons in the system.
We set the density to Ne/�uc = 1 a−3

0 (a0 is the Bohr radius
and �uc the unit-cell volume) which leads to a relatively
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FIG. 1. (Color online) Model α2F (ω) function used in this work
(full red line) as compared to that of MgB2 (green dotted line).

large Ef of 4.78 Ha ignoring the small imbalance in up-
and down-spin occupations. We also define a center of
energy between spin-splitted states ε(k) = 1

2 (εk↑ + ε−k↓) =
1
2 k2 − Ef and the splitting J (k) = 1

2 (εk↑ − ε−k↓) = −μBB0.
This will prove useful since, as seen in I, many SpinSCDFT
entities depend on k only via these two parameters ε and J .

Superconductivity is induced in this model by an electron-
phonon-like attractive interaction, expressed by the Gaussian
Eliashberg function [16]

α2F (ω) = λ
ω

2

1

ωw

√
π

e− 1
2 ( ω−ω0

ωw
)2

. (2)

This model depends on three parameters: λ, the electron-
phonon coupling constant [16]; ω0, the center of frequency
of the optical branch of the phonon spectrum; and ωw,
the width of the optical branch. In the calculations we fix
these numbers to ω0 = 2.2 mHa, ωW = 0.5 mHa, and λ = 0.7
which lead to coupling properties that are loosely similar
to those of MgB2 [17]. The resulting spectrum is plotted
in Fig. 1 and compared with a calculated one of MgB2. In
SpinSCDFT one can consider a general Coulomb coupling on
the same footing as the phonon interaction [11]. Here, we use
a simple Thomas-Fermi–based model that was used before in
SCDFT [11,18]. In this model, the screened Coulomb matrix
element between a state of energy ε and one of energy ε′ is
given by

C stat(ε,ε′)

≈ − πρEG(ε′)
2
√

(ε + Ef )(ε′ + Ef )

× ln

(
ε+ε′+2Ef + 2

√
(ε+Ef )(ε′+Ef ) + 1

2k2
TF

ε+ε′+2Ef − 2
√

(ε+Ef )(ε′+Ef ) + 1
2k2

TF

)
.

(3)

The screening parameter is chosen to be k2
TF = (0.005)2 Ha.

With this parameter, the shape of the model C stat(ε,ε′) is shown
in Fig. 2. All properties of the test system depend on the Bloch
vector k and the band index n only via the single-particle
energy εk . For brevity, we use the notation e = (ε,J ),

∫
de =∫

dε
∫

dJ . Further, let δ(e − e′) = δ(ε − ε′)δ(J − J ′), then
we may cast a Brillouin zone integral into the isotropic

FIG. 2. (Color online) Screened Coulomb interaction function
Cstat(e,e′) as given by the model expression in Eq. (3). The chosen
model parameters are Ef = 4.78 Ha and k2

TF = (0.005)2 Ha.

formulation with the double DOS:


(e) =
∑

k

δ

(
ε − εk↑ + ε−k↓

2

)
δ

(
J − εk↑ − ε−k↓

2

)
. (4)

This quantity describes the number of states on equal center
of energy ε and splitting J surfaces. In our model, the external
field is homogeneous. This means the number of states on
equal splitting surfaces has a delta distribution character that
peaks at J0 = −μBB0. In the remainder of the paper, J0 replaces
the J integrals almost everywhere so we simplify the notation
using J0 → J .

III. BCS THEORY WITH AN EXCHANGE SPLITTING

The J -T diagram of a BCS model with a homogeneous ex-
change splitting parameter J has been presented by Ref. [14].
This approach, that we are going to review here, can only be
used to obtain qualitative results. Still, it will be an important
guideline in understanding the more involved Eliashberg and
SpinSCDFT results of the next sections. In a BCS model [19],
one replaces the interactions among single electrons with
an effective one, keeping only the matrix elements that
couple the states k, ↑ and −k, ↓. The effective interaction is
approximated with “a box” centered at the Fermi level (from
−�d to �d which is of the order of the Debye phonon frequency
to mimic phononic type of pairing and with height −V ). This
leads to a fixed-point equation for the mean-field gap � [14]:

1

ρ(0)V
=

∫ �d

0

dε√
ε2 + �2

(fβ(J −
√

ε2 + �2)

− fβ (J +
√

ε2 + �2)). (5)

ρ(0) is the DOS at the Fermi level and J is the splitting energy
between up and down states. Apart from the solutions � of
Eq. (5), there is also the trivial solution � = 0. We solve Eq. (5)
numerically as a function of T and J .1 The solutions �(T ,J )
are presented in Fig. 3(a). There, we normalize � to �0, the
solution for T → 0 and J = 0. Similarly, we normalize the J

to �0 and T to Tc0, the critical temperature for J = 0. In this
way, we remove the explicit dependence on the parameters
ρ(0)V and �d.

1We use �d = 0.2 and ρ(0)V = 1.0 in the numerical calculation.
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FIG. 3. (Color online) BCS solutions for a spin-splitted band structure [14]. In the panel (a) we plot the solution � if we can find one,
while in (b) � is set to zero if the free energy favors the magnetic state. The green curve in (a) shows the Tc(J ) behavior from the linearized
equation which has a curious shape that bends inwards. Below the thin dashed line in (b) at the label A at T/Tc0 ≈ 0.6 no solution with small
� exists and the transition is of first order. Label B at 1/

√
2 represents the Chandrasekhar-Clongston [20,21] limit.

When one attempts to linearize Eq. (5), a peculiar behavior
is found in that the Tc(J ) curve bends inwards [14]. We solve
a linearization of Eq. (5) and show the resulting Tc(J ) as a
green line in Fig. 3(a). As pointed out by Refs. [14,22], unlike
the original BCS model at J = 0, this equation leads to a
J -T diagram in which the SC transition can be discontinuous
in �, i.e., of first order. Below the temperature T/Tc0 ≈ 0.6
at point A, i.e., below the dashed line in Fig. 3(b), no small
� solution to the nonlinear equation can be found and the
initial assumption of the linearization that an arbitrarily small
solution exists is not valid.

While we can find a nonvanishing solution �, it may not
correspond to the stable thermodynamic phase. In Fig. 3(b), we
remove the nonvanishing solutions �, if the free energy favors
the magnetic state. The resulting T -J diagram shows that for J

larger than the Chandrasekhar-Clogston limit at T = 0 [20,21]
of Jc = �0/

√
2, no SC solution is stable.

Another interesting approach to describe SC in the presence
of a magnetic field is presented by Powell et al. [22] who use a
Hubbard model in connection with a homogeneous exchange
splitting. They treat the pairing part of the interactions among
electrons in the system in the Hartree-Fock approximation,
similar to BCS as described above and consequently arrive
at a similar gap equation as compared to Eq. (5). The matrix
elements of the KS system of SpinSCDFT within the spin
decoupling approximation will turn out to have a similar
analytic structure.

Also, Ref. [22] discusses why the transition is of first order.
They observe that for J < � and T = 0, the gap equation (5),
and consequently �, is independent on J . Thus, �(J ) = �0

as long as J < �0. If instead we allow for J > � in the range
where ε <

√
J 2 − �2 the Fermi functions in Eq. (5) are equal

and thus cancel at T = 0. This solution intersects �(J ) = �0

at J = � and corresponds to the unfavorable total energy [14].
At this point follows that �(T = 0 K,J ) = �0θ(�0 − J ) and
the transition is discontinuous T = 0 in �.

The above analysis will be crucial later, in Secs. IV and V,
to guide the discussion of the more sophisticated approaches,
that feature a qualitatively similar behavior. In the next section,
we will discuss results of the Eliashberg method (as derived in
Paper I, Sec. IV) when applied to our test system of Sec. II.

IV. SOLUTIONS TO THE PHONON-ONLY ELIASHBERG
EQUATIONS

We solve the Eliashberg equations [Paper I, Eqs. (140) to
(143)]. The approximations used here, for the special case of
a homogeneous exchange field, lead to equations similar to
those derived by Vonsovsky et al. [13].

Similar to every equation that describes a spontaneously
broken symmetry, in addition to a possible finite solution, the
Eliashberg equations [Paper I, Eqs. (140) to (143)] always
have the solution �E

n(J ) = 0. Usually, this non-SC solution
is not stable below Tc in the sense that small symmetry-
breaking fields (that in the self-consistent iteration scheme
are equivalent to a small but nonzero starting guess) lead
to the finite �E

n(J ) solution via iteration of the Eliashberg
equations [Paper I, Eqs. (140) to (143)]. Thus, we say that in
this case the �E

n(J ) = 0 solution has a zero basin of attraction;
only the starting value �E init

n (J ) = 0 leads to the final solution
�E

n(J ) = 0. Whenever J = 0, the �E
n(J ) = 0 solution has a

zero basin of attraction below Tc.
From Eq. (122) in Paper I we know that the complex �E

n

changes the poles of the Green function (GF). We assume the
term Ãω

k (ωn) to be zero, for simplicity. Then, from the analytic
continuation to the real axis of Eq. (123) in Paper I, we see
that the energy ω of such a pole satisfies the condition ω =
sign(σ )Jk ±

√
εk

2 + �(ω)2 which is analogous to the usual
Eliashberg equations (compare also Ref. [23]). At T = 0, the
analytic continuation of �E

n the real axis is purely real in the
range of the Fermi energy and its value there defines the SC
excitation gap [23]. Thus, the Matsubara component n = 0
of �E

n is related to the SC excitation gap of the quasiparticle
system. We choose this as a characteristic property that we
investigate as a function of J and T . In the following, we
generate two J -T diagrams shown in Fig. 4. In Fig. 4(a) we
follow the SC solution, i.e., we take the converged �E

n(J )
as input for the calculation at �E

n(J + dJ ), starting at J = 0
with dJ positive. This way we compute the diagram “from
left to right” and test the stability of the �E

n(J ) �= 0 solution.
In Fig. 4(b), we take the converged �E

n(J ) as input for the
calculation at �E

n(J − dJ ), starting at J = 0.5 mHa. Thus,
we generate the diagram “from right to left.” Because for large
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FIG. 4. (Color online) J -T diagram of the n = 0 component �E
n=0 from the solution to the Eliashberg equations. We follow the SC solution

�E
n(J ) �= 0 in (a) or the non-SC solution �E

n(J ) = 0 in (b) and observe that we can find a region where both are (meta)stable. We show the full
solution �E

n(J ) along the blue lines in Fig. 5. For comparison, we show the linear BCS curve as a green dotted line in (a). In (b) we compare
with SpinSCDFT results of Sec. V (green curve); the black curve is scaled on both axes by T Eliashberg

c /T SpinSCDFT
c .

J , �E
n(J ) is zero, we start from a small, symmetry-breaking

value at �E
n(J − dJ ) instead of zero. This way, we test the

stability of the trivial �E
n(J ) = 0 solution.

Comparing Figs. 4(a) and 4(b) we see that the borders of
stability between the stability of �E

n(J ) = 0 and �E
n(J ) �= 0 do

not agree. In fact, we find a region where both the �E
n(J ) = 0

and the �E
n(J ) �= 0 solutions have a finite basin of attraction;

here the normal and the SC states are (meta)stable. The shape
of the border of the region where �E

n(J ) = 0 is unstable
resembles closely to the linear BCS solution which we show
in Fig. 4(a) as a green dashed line.

We plot the �E
n(J ) at T = 10 K in Fig. 5(a) and 40 K

in Fig. 5(b) as a function of J on the vertical axis. The
corresponding equal temperature lines are blue in Fig. 4. We
find that the shape is largely independent on the splitting J

and the temperature T except for a scale factor. Thus, �E
n=0

is sufficient to investigate the behavior of the theory. For low
temperatures, the downscaling is much less pronounced and
it is safe to say that the pairing is almost unaffected by the
presence of a splitting up until the point where the SC phase is
suppressed. For a high temperature, instead, the downscaling
is more pronounced and the transition becomes continuous
above a certain temperature.

V. RESULTS OF SPINSCDFT WITH THE G0 FUNCTIONAL

In this section, we discuss the numerical solution of the
SpinSCDFT gap equation [Eq. (103) in Paper I] using the xc
potential derived in Sec. III C of Paper I. We refer to this
functional as the G0 functional.

In Eq. (103) of Paper I, we have derived the gap equation of
SpinSCDFT using the G0 functional. This equation (103),
in turn, is derived from the Sham-Schlüter equation for a
superconductor, written in Paper I in the form

∫
de′Sβ[�s

S](e,e
′)�s

S(e
′) = 0. (6)

From the previous discussion in Secs. III and IV, a continuous
transition is to be expected for a small exchange field intensity
J as compared to the transition temperature.

For the point of the continuous transition, Eq. (6) can be
linearized in �s

S. Similar to I, we use the notation with a breve
to indicate linearized entities S̆β = Sβ[�s

S = 0]. Thus, in this
case Tc(J ) can be computed from the condition that S̆β =
S̆C

β + S̆M
β + S̆D

β has a singular eigenvalue

detS̆β = 0 . (7)

FIG. 5. (Color online) Solutions to the Eliashberg equations �E
n(J ) for T = 40 K (a) and T = 10 K (b) along the blue lines of the left

panel of Fig. 4.
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The corresponding shape of the solution �s
S/||�s

S|| is the right
eigenfunction to such a singular eigenvalue.

The contributions to S̆β(e,e′) are given in Eqs. (99)–(102)
of Paper I. To investigate the structure and properties of the
SpinSCDFT xc potential is easier within the linearized form
since the matrix S̆β(e,e′) = S̆C

β (e,e′) + S̆M
β (e,e′) + S̆D

β (e,e′) is
independent of the potential �s

S. As discussed in detail in I,
S̆D

β (e,e′) [S̆C

β (e,e′)] corresponds to the Nambu (off-) diagonal

self-energy contribution. S̆M
β is due to the vxc part of the Sham-

Schlüter equation. In Sec. V A, we present and discuss the
shape of the contributions S̆M

β (e,e′), S̆D

β (e,e′), S̆C

β (e,e′), and the
Tc(J ) curve from the linearized xc potential.

Finally, the properties of the general nonlinear gap equation,
i.e., the J -T diagram of the solutions to Eq. (6) with and
without the Coulomb repulsion, will be presented in Sec. V B.

A. Linearized Sham-Schlüter equation

As discussed before, in the part of the J -T diagram for a
relatively small applied field (i.e., low splitting J and high T )
we expect a second-order phase transition. This section deals
with the corresponding continuous transition. In Sec. V A 1,
will show the shape of S̆C

β , S̆M
β , and S̆D

β . To determine the
point of the transition according to Eq. (7), in Sec. V A 2 we
investigate the spectrum of S̆β as a function of temperature and

splitting and the corresponding solutions �s
S/||�s

S||. Then, we
will discuss the shape of the Tc(J ) curve in Sec. V A 3 from
this linear approach.

1. Temperature dependence of S̆β

The three contributions to S̆β(e,e′) are [see Sec. III C 1 of
Paper I, Eqs. (99)–(102)]

S̆β(e,e′) = [
S̆D

β (e) + S̆M
β (e)

]
δ(e − e′)

+S̆C

phβ(e,e′) + S̆C

Cβ(e,e′). (8)

The linear version of the Sham-Schlüter equation (6) is
obtained by multiplying the above equation with �s

s(e
′) and

integrating over e′ with the result
∫

de′S̆β(e,e′)�s
s(e

′) = 0.
Thereby, we see that S̆M

β (e) and S̆D

β (e) multiply �s
s(e) directly

without integration . They are shown for several T for J = 0.0
and 0.1 mHa in Figs. 6(a) and 6(b), respectively. Note the
logarithmic center-of-energy ε scale in all the plots in this
section. The color scale blue to red indicates increasing
temperatures. All terms have features only in the close vicinity
to ε = 0 and quickly decay to zero within a characteristic
energy width of the phonon coupling. This energy scale is
the analog of Debye frequency ω0 in Eq. (2). However, the
ε dependence shown in Fig. 6 in the presence [panel (b)]
and the absence [panel (a)] of an exchange splitting is very

FIG. 6. (Color online) Contributions to the linearized Sham-Schlüter equation (6). In the top row, we show the diagonal S̆M
β and S̆D

β that
originate from the vxc and Nambu diagonal self-energy in the Sham-Schlüter equation, respectively. In the second (bottom) row, we show
the contributions that originate from the Nambu off diagonal phonon (Coulomb) self-energy. The color scale of S̆C

β (e,e′) for negative values

(decreasing: blue to white to green) is relative to max(S̆M
β ) (white). Red to yellow to white indicates increasingly positive values. Note that S̆D

β

and S̆C

phβ switch sign at ε ≈ 0 for J = 0.1 mHa at low T as compared to J = 0 mHa.
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different. In fact, in Fig. 6(a) where J = 0 both S̆M
β (e) and

S̆D

β (e) are positive and monotonously decreasing as a function
of |ε|. In presence of a J �= 0 [Fig. 6(b)], instead, they have
the following complex temperature and energy dependence:
For small T in the range |ε| < J , S̆D

β (e) is negative and,

in the limit T → 0, S̆M
β (e) and S̆D

β (e) approach zero from

opposite sides. At |ε| ≈ J , both S̆M
β (e) and S̆D

β (e) vary very
rapidly. This behavior is smoothed out with increasing T and
at temperatures high enough with respect to J the nonsplitted
behavior is recovered. The temperature dependencies at J = 0
and 0.1 mHa of S̆C

phβ(e,e′) are shown in Figs. 6(c) and 6(d),

respectively. S̆M
β serves as a scale that other kernel contributions

have to be compared with, so we choose a color scale relative
to the maximum of S̆M

β , indicated on the right of every plot.

For J = 0 mHa we note that the size of S̆C

phβ(e,e′) [Fig. 6(c)]
decays faster with temperature than the size of the diagonal
S̆M

β and S̆D

β . This can be seen from the the position of “white”
in the color scale of Fig. 6(c) which moves to the left with
increasing temperatures. Furthermore, being both positive and
diagonal, S̆M

β and S̆D

β have to be compared with the eigenvalues

of S̆C

phβ . S̆M
β and S̆D

β alone would result in a positive-definite
Sham-Schlüter matrix for J = 0 mHa at all temperatures, as
can be seen in Fig. 6(a), so there is no nontrivial solution to
Eq. (6). Thus, technically, the phase transition from the SC to
the non-SC state is induced by this relative reduction of S̆C

phβ as

compared to S̆M
β plus S̆D

β . We will turn to a systematic analysis

of the eigenvalues of the linearized Sham-Schlüter matrix S̆β

in Sec. V A 2.
The relative scale reduction is also found for the splitted

S̆C

phβ . At ε ≈ 0, however, we stay much below the scale of S̆M
β

and exceed it only for higher temperatures. Moreover, the sign
change of S̆D

β is effectively reducing the diagonal repulsion.
A purple line in Fig. 6(d) indicates the zero contour

and shows that for very low T , S̆C

phβ(e,e′) is positive for
approximately the region where |ε| < J or |ε′| < J ′ and has a
sharp negative peak at ε = ε′ ≈ J . Thus, as a curious fact, the
phonon interaction is not “attractive” everywhere in this case.
We show the shape of the static Coulomb part S̆C

Cβ in Figs. 6(e)
and 6(f) for J = 0 and 0.05 mHa, respectively. Apart from the
differences in sign, the overall behavior of the Coulomb term
and phonon terms is roughly similar with significant deviations
in the fact that it does not change sign for a low temperature
and exchange splitting [compare Fig. 6(d) with 6(f)].

In summary, we can say that we see relevant changes in the
shape of the contributions to S̆β for a finite exchange splitting
for the low-temperature limits in the region |ε| < |J | as
compared to the spin degenerate case. At higher temperatures,
the splitting becomes less important. We point out that we
know from the earlier discussion that this is the region,
where we expect the linearization to be unjustified. From
the form of the Bogoliubov eigenvalues Eσ

α = sign(σ )J +
sign(α)

√
ε2 + |�s

s|2 we expect that, whenever �s
s is larger

than J , will see a behavior more similar to the case J = 0
. The reason is that, then, only the α = + branch has positive
excitation energies Eσ

+ � 0, meaning that the ground state does
not correspond to some of the excitations γ̂k being occupied.
For details, see the discussion in Sec. III A 2 d of Paper I and
in Ref. [14].

FIG. 7. (Color online) Spectrum of S̆β (J = 0.0 mHa) as a func-
tion of T with only one negative eigenvalue that leads to a singular
point.

2. Critical temperatures and the shape of �s
s the pair potential

Since we compute the critical temperature from Eq. (7), i.e.,
the occurrence of a singular eigenvalue of S̆β , in this section,
we will investigate the full spectrum of S̆β as a function of T

and J .
The KS potential �s

s is proportional to the right eigenvector
of S̆β that is associated to a singular eigenvalue. Thus, all
eigenfunctions �s

s we show are normalized to a common
arbitrary value. In this section, we are not considering the
Coulomb contribution. We show the spectrum of S̆β as a
function of temperature in Fig. 7. In the spin degenerate case
J = 0 mHa, we see that the eigenvalues decrease in magnitude
with temperature in a monotonous way. At low temperature,
all eigenvalues but one are positive; the negative eigenvalue
crosses zero at the temperature Tc(J = 0 mHa) ≈ 30 K in the
present system, above which S̆β becomes positive definite.
The temperature at which the crossing occurs is the critical
temperature.

As compared to the J = 0 mHa, the spectrum at finite
splitting J = 0.1 mHa shown in Fig. 8 is fundamentally
different. For small T , we observe many negative eigenvalues
and, most interestingly, several solutions det(S̆β) = 0 at low

FIG. 8. (Color online) Spectrum S̆β (J = 0.1 mHa) as a function
of T with many negative eigenvalues that cross zero and lead to
singular points.
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FIG. 9. (Color online) Eigenfunctions to a singular eigenvalue at
T ≈ Tcross. All eigenfunctions except one are of either type.

temperatures. There is a temperature regime Tcross ≈ 10 K in
this system, in which most negative eigenvalues cross zero and
become positive. Beyond Tcross, only one negative eigenvalue
remains that is crossing at a higher temperature Tc(J =
0.1 mHa) ≈ 25 K. Continuously reducing the splitting, this
specific eigenvalue/eigenfunction pair can be traced to the spin
degenerate limit. Similarly, upon reducing the splitting, it is
found that the temperature range where the crossings appear
goes to Tcross → 0 K as J → 0.

We analyze the eigenfunctions in Figs. 9 and 10 corre-
sponding to these multiple solutions and see that only the one
at T ≈ 25 K has a continuous behavior. The other solutions
are of two kinds shown in Fig. 9 and both show numerical
discontinuities. While the green dashed solution in Fig. 9 has
a 1/ε-like pole, there is a second kind, red in Fig. 9, which
has a delta-peak-like structure, i.e., the value at the pole of the
first kind is large while the rest is extremely small. Increasing
the number of sampling points increased the relative value
at the discontinuity, so this led us to the conclusion that we
are numerically sampling an unbound function. It has to be
understood that an unbound function cannot be the linearized
solution to an originally nonlinear fixed-point problem. This is
because, at the pole, the function is not small and a linearization
cannot be justified. We expect that in the nonlinear equation
these types of solutions will be suppressed. We therefore ignore
these other, unbound, solutions in the following discussion
and always refer to the continuous, bound, high-temperature
solution.

FIG. 10. (Color online) �s
s(e) at Tc for J = 0.0 and 0.1 mHa

without the Coulomb interaction.

As a side remark, we point out that comparing T SCDFT
c (J =

0) ≈ 30 K with the solution to the Eliashberg equations,
the latter predicts a much higher T Eliash

c (J = 0) ≈ 50 K. For
a detailed comparison, see Fig. 4(b) where we show the
linearized T SCDFT

c (J ) in the phase diagram of the Eliashberg
equations. We also observe via the black curve of Fig. 4(b)
that the Eliashberg solutions predict a SC phase that is less
susceptible against a splitting. The reason for the lower Tc

prediction is that within the xc potential construction Ḡ was
replaced with ḠKS which violates Migdal’s theorem [11]. The
solution has been recently presented by Sanna et al. [24] using
a corrected self-energy in the functional construction. We will
come back to this point and elaborate on the distinction in
the Appendix A. As a curious result, the linearized T SCDFT

c (J )
curve bends upwards and starts an almost linear increase
at the point where the transition is expected to become of
discontinuous type. We investigate this issue in Sec. V A 3 and
give an explanation in Sec. V C after studying the nonlinear
gap equation.

3. Analysis of the B0 dependence of Tc

Using the condition of S̆β to be positive definite, we
compute the Tc(J ) curve of the system shown in Fig. 11(a). At
a low field, the Tc(J ) curve behaves as expected; the critical
temperature is slowly reducing with increasing J . Similar to
the Eliashberg results in Sec. IV, the SpinSCDFT pair potential
seems to be more resistant against a splitting than the BCS
approach predicts.

In the regime of a first-order phase transition, where the
conditions for a linearization are not met, SpinSCDFT behaves
differently as compared to the linear BCS solution of Fig. 3.
While in neither case, BCS nor SpinSCDFT, a linearization
can be expected to yield sensible results for a discontinuous
first-order transition, the behavior of the Tc(J ) curve from
SpinSCDFT is certainly more unphysical. At high field, past
J ≈ 0.15 mHa in the present system, the Tc(J ) curve bends
outwards and starts an almost linearly increase with J .

In Fig. 11(b), the eigenfunctions to the singular eigenvalues
of S̆β for increasing J are plotted. We can clearly observe
that the upturn of the Tc(J ) curve is accompanied by an
increasing localization of �s

s at the Fermi level. The usual
high-energy tail gets more and more suppressed. For very large
splittings, �s

s becomes numerically noisy. Reintroducing the
Coulomb coupling in Sβ , apart from the expected reduction
of Tc, we observe a similar behavior, with the unphysical
increase of Tc(J ) in Fig. 11(c) for large J . In this case,
�s

s plotted in Fig. 11(d) shows a characteristic negative tail
induced by the Coulomb renormalization mechanism [25,26]
as it occurs within SCDFT [11,12,18]. We will come back
to the increase of Tc(J ) later in Sec. V C. As a second
point, we note that in the regime of the continuous transition,
where a linearization is sensible, the SpinSCDFT and the
BCS Tc(J ) deviate. From the comparison between T SpinSCDFT

c (J )
with the green dashed BCS curve in Fig. 11(a), we note
that in the second-order regime T BCS

c (J ) scales down with
J faster. In order to make the strong coupling SpinSCDFT
theory more similar to the weak coupling BCS approach, we
disregard S̆D

β in Figs. 11(e) and 11(f). In this case, we are
only considering the effectively attractive coupling among
electrons via phonons, similar to Fröhlich [27] and BCS.
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FIG. 11. (Color online) Tc(J ) from SpinSCDFT and the linear BCS curve with the same Tc(J = 0). We show the Tc(J ) in, or excluding the
Coulomb coupling in, or excluding contributions from triplet self-energy parts. Beyond the range of the continuous transition, the SpinSCDFT
solutions start to increase at J ≈ 0.15 mHa. This point marks the border of the appearance of the unphysical solutions discussed in Sec. V C. The
effect of the Coulomb potential is to reduce the Tc(J = 0), but the overall shape remains essentially unaltered. The normalized eigenfunctions
are shown with a color code indicating the respective splitting. The solutions become numerically noisy at large splittings.

The effective Fröhlich interaction requires the coupling to be
small, and moreover we neglect the phonon influence on the
normal state via the Nambu diagonal part of the self-energy
entirely. Thus, this approximation is called the weak coupling
limit. As expected, the resulting T SpinSCDFT

c (J )/T SpinSCDFT
c (0) and

T BCS
c (J )/T BCS

c (0) behave very similarly. Here, the Tc(J ) curves
shown in Fig. 11(e) also feature the linear increase for
high splitting. Moreover, we observe a discontinuous jump
of the critical temperature at a certain splitting Jc which
is accompanied by the eigenfunction dramatically changing
shape. After the jump, the solution does not have a common
sign convention but shows positive and negative parts. Also,
here we find numerically noisy solutions.

The BCS Tc(J ) curve, fitted to the same Tc(0 mHa), matches
the weak coupling SpinSCDFT Tc(J ) curve Fig. 11(e), not the
strong coupling curve of Fig. 11(a). This points out that the
strong coupling S̆D

β term does not simply scale Tc(J ) down

equally on both T and J axes. Instead, S̆D

β leads to a larger
Tc(J ) reduction of the temperature axis. Thus, we conclude
that strong coupling systems are less effected by an exchange
splitting relative to their Tc(0 mHa).

B. Nonlinear Sham-Schlüter equation

The previous section has shown the importance to consider
the fully nonlinear Sham-Schlüter equation Sβ[�s

s]�
s
s = 0

of Eq. (6) when working in the limit of strong external
field/large exchange splitting J . We solve the fully nonlinear
Sham-Schlüter equation

�s
s = KS [�s

s]�
s
s, (9)

KS = S−1(Sβ + S) , (10)

with the splitting matrix S chosen to be SM
β (ε,J = 0.0 mHa)

Details on this procedure can be found in Sec. III C 2 in
Paper I. In Fig. 12 we show results, neglecting the Coulomb
coupling along the isosplitting line J = 0.0 mHa as a function
of temperature T . We obtain a �s

s(e) that goes to zero at the
Fermi level for low temperatures as can be seen by the purple
to blue lines in Fig. 12. This means the SC KS system is not
gapped while still maintaining χ �= 0, and we cannot directly
interpret the SC KS excitations as quasiparticles.

It is important to highlight that the SC KS system has
been constructed to reproduce the density, not the excitation
spectrum, so this result, albeit inconvenient for practical
purposes, does not invalidate the method. The improved
functional for the spin degenerate case by Sanna et al. [24]
also leads to KS gap that approaches zero at the Fermi level
for very small temperatures.

What has to be considered is that one of our approximations
in I was to replace the interacting GS with the SC KS GF in
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FIG. 12. (Color online) �s
s(e) for J = 0.0 mHa as a function of

T . For low T , �s
s(e) goes to zero at ε ≈ 0.

the self-energy for the functional construction. Being a SC,
the interacting GF will be gapped while the SC KS GS may
not be. We will come back to this point in Sec. V C where we
give an explanation of the upward bending of the SpinSCDFT
Tc(J ) curve.

In order to have the computationally convenient DFT
scheme and a good approximation to the quasiparticle structure
at the same time, we introduce the one-cycle Dyson equation
iteration for SC in the Appendix A. This approach is similar
to the common G0W0 approximation in band-structure the-
ory [15] and leads to excellent results in SpinSCDFT.

To complete the discussion of the J and T dependence of
SpinSCDFT, we need a characteristic number of a given �s

s(e)
solution. As mentioned, �s

s(ε = 0,J ) is not a sensible choice
because it neither corresponds to an excitation gap nor is it a
measure for the size of the potential �s

s(e).
Instead, we chose

∫
�s

s(e)dε and the resulting SpinSCDFT
J -T diagram of Fig. 13 shows a transition at a point where,
from the shape of the nonlinear BCS and Eliashberg diagram,
the first-order phase transition is to be expected. However,
following this discontinuous transition, the solutions �s

s(e) do
not vanish but have a different shape. In Fig. 14, we show the
�s

s(e) with increasing splitting on the equal-temperature line at
T = 10 K and the transition is clearly seen. In general, while
before a critical splitting Jc(T ) the potential is little effected
by the splitting, past Jc(T ) the solutions �s

s(e) localize at the
Fermi level and show positive as well as negative regions.

FIG. 13. (Color online) J -T diagram of solutions to the nonlin-
ear gap equation. We include the T full

c (J ) curve (dashed blue) from
the linearized functional of Fig. 11(a).

FIG. 14. (Color online) �s
s(e) for T = 10 K as a function of J .

At J ≈ 0.17 mHa, �s
s(e) dramatically change shape.

This behavior is similar to the shape of the solutions from the
linearized S̆β as given in Fig. 11(b). We show the Tc(J ) curve
from the linear equation as a dashed blue line in Fig. 13 and
see that it marks the border of the appearance of the curious
solutions in the nonlinear equation past the range in J of the
second-order phase transition. We show �s

S(e) at J = 0.1 mHa
as a function of T in Fig. 15 noting that its value at ε ≈ 0 always
remains above J for small temperatures (compare Fig. 12) to
prevent the switching of the Bogoliubov branches.

Due to the Coulomb renormalization, including the
Coulomb repulsion,

∫
�s

s(e)dε is predominantly negative.
Thus, as a physical property, we compute the number of
condensed electrons NSC = ∫

d r
∫

d r ′|χ(r,r ′)|2 instead of
the plain integral. We show the SpinSCDFT J -T diagram
including the Coulomb coupling in Fig. 16. The region past
the transition has essentially no condensed electrons, while,
still, the �s

s(e) is not zero as shown in Fig. 17.

C. Origin of the unphysical solutions in the
discontinuous regime

The interacting GF, in contrast to the SC KS GF, will be
gapped for a SC. Comparing the energy range where the
deviation between this two GFs will be the largest, namely
ε ≈ 0.01 mHa and lower, with the region where the unphysical
solutions past the transition (green to red) localize in Fig. 14
we find that these energy ranges coincide. In addition, we

FIG. 15. (Color online) �s
s(e) for J = 0.1 mHa as a function of

T . For low T , �s
s(e) remains above J at ε ≈ 0.
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FIG. 16. (Color online) NSC(T ,J ) and the linear Tc(J ) (dashed
blue line) including the Coulomb repulsion. The �s

s(e) after the
transition leads to almost no condensed electrons.

note that at the point of the transition, that corresponds to the
light green solutions in Fig. 14 at J ≈ 0.17 mHa, the value
of �s

s at the Fermi level drops below the value of the splitting
J . This leads to a swapping of the Bogoliubov particle and
hole branch as discussed in Sec. III A 2 d of Paper I which
causes severe problems in the construction of the Bogoliubov
transformations. Since, thus, the unphysical solutions are
characterized by the swapping of the Bogoliubov branches
due to �s

s(ε ≈ 0) < J and we are essentially substituting the
true many-body gap with �s

s in the functional construction in
I, it is very likely that it is exactly this substitution G → GKS

that causes the appearance of the unphysical solutions in the
first place.

D. Numerical calculation of the DOS from the G0W0 GF

We compute the GF according to the SC G0W0 scheme
derived in the Appendix A. In detail, we solve Eq. (A38) using
Eqs. (A23)–(A26) together with Eqs. (A2)–(A5) for the model
and couplings described in Sec. II. We exclude the Coulomb
potential at this point for a better comparison with Eliashberg
theory although there is no difficulty to include it.

In Fig. 18, we compute the G0W0 corrected DOS at every
point in J and T and extract the SC excitation gap. We find that

FIG. 17. (Color online) �s
s(e) at T = 3 K for several J along the

dashed green line in Fig. 16. The �s
s(e) past the transition at J =

0.056 mHa are similarly confined to the Fermi level region as without
the Coulomb repulsion.

FIG. 18. (Color online) The SC gap in the SpinSCDFT G0W0

DOS. The dashed blue line is the linear T full
c (J ) of Fig. 11(a).

the curious solutions past the transition Jc(T ) lead to almost
no excitation gap. The reason is that for the self-energy in
the calculation of the SC DOS in the Appendix A, �s

s(e) is
integrated in ε. In the high-ε region, away from the Fermi level,
the contributions to the integral are negligible because the KS
potential past Jc(T ) is extremely small in this large ε range.
Thus, the effect of these solutions �s

S on the G0W0 excitation
gap is negligible. The ω resolved DOS along the J = 0 mHa
line and the up and downspin DOS along the T = 10 K line
of Fig. 18 is shown in Figs. 19(a)–19(c), respectively. The
SC G0W0 gap including the Coulomb potential is presented
in Fig. 20 and similar to the results without the Coulomb
interaction of Fig. 18. The ω-resolved DOS for the upspin
channel along the thin dashed T = 3 K line of Fig. 20 is given
in Fig. 21 and, again, we only find small features past the
discontinuous transition.

Comparing the SpinSCDFT G0W0 gap of Fig. 18 with
the BCS (Fig. 3) and the Eliashberg J -T diagram (Fig. 4)
we conclude that the point of the transition can be clearly
identified. We have seen that for small T and J = 0 the
nonlinear �s

s(e) go to zero at the Fermi level (compare Fig. 12)
while the analogous gap from the G0W0 GF, the excitation
gap of Fig. 18, takes its largest value at T = 0 and shows the
expected monotonous decay with temperature to Tc.

This implies a significant difference in the quasiparticle
states if a splitting occurs with such a �s

s(e). While the KS

particle with the dispersion Eα
σ = sign(σ )J + α

√
ε2 + �s

s(e)2

is strongly altered by the splitting because the Bogoliubov
branches change their order (compare the earlier discussion in
the conclusion of Sec. V A 1 and in I) this is not the case in the
true quasiparticle structure. In fact, from Fig. 15, we see that
the SC solutions �s

s(e) if J > 0 do not go to zero and, instead,
rise with J to prevent this situation. On the other hand, after
the discontinuous transition we find �s

s(0,J ) < J .
As discussed before, the replacement Ḡ → ḠKS in the

functional construction is thus a strong suspect for the
occurrence of this curious solution past the SC transition
because Ḡ and ḠKS deviate in that the latter can be nongapped
while still corresponding to a SC solution.

E. Triplet components

The present implementation of SpinSCDFT assumes the
spin decoupling approximation, i.e., assumes the pairing to
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FIG. 19. (Color online) DOS from the G0W0 GF. We show the DOS in (a) corresponding to the SpinSCDFT results �s
s(e) shown in Fig. 12

for no splitting J = 0 mHa. In (b) (σ = ↓) and (c) (σ = ↑) we present the two different spin channels of the DOS with the SpinSCDFT results
for the �s

s(e) along the isotemperature line T = 10 K as shown in Fig. 14.

be of spin-singlet type (compare Sec. III A 2 c of Paper I).
However, it was also shown in I that a magnetic splitting creates
triplet components in the pairing potential, even for a purely
singlet order-parameter density. Triplet components appear
as an intermediate step in the self-energy that leads to the
G0 functional in I since the Nambu off-diagonal up-spin and
down-spin components are in general not equal and of opposite
sign. They can be intermediate since such triplet self-energy
contributions lead to triplet as well as singlet order-parameter
contributions. The intermediate triplet self-energy that leads
to singlet order-parameter contributions can be included in the
spin decoupling approximation functional without difficulties.
From the theoretical side, this is an unpleasant signature
of formal inconsistency. We have, in fact, computed the
critical temperature and KS gaps with and without these
intermediate triplet self-energy terms. In Sec. V A 2 and
Fig. 11(a) and Fig. 11(e), comparing Tc(J ) curves with and
without those contributions, we observe that their effect is
negligibly small. The possibility of a triplet condensation,
i.e., nonvanishing triplet order-parameter contributions, is not
investigated further in this work.

F. Extension to real materials

In this work, properties of the free-electron gas with a
phonon and Coulomb coupling subject to a homogeneous
exchange splitting have been calculated. To compute real
materials without the use of adjustable parameters, the
electron-phonon coupling and the Coulomb potential have to

FIG. 20. (Color online) The SC gap in the SpinSCDFT G0W0

DOS. The dashed blue line is the linear T full
c (J ) of Fig. 11(c).

be calculated from first principles. Then, according to Eqs.
(132)–(134) of Paper I these couplings, as well as the computed
single-particle states εkσ may well have a distribution in J

different from the homogeneous J0 = −μBB0 that we are con-
sidering here. Also, sometimes several regions in the Brillouin
zone (or in k) have different couplings and a different SC
pairing as in the well-known case of MgB2 [28]. The isotropic
formulation does not have to be given up; often it is enough to
group this region which we refer to as multiband SC [28,29].
We extend notation e = (ε,J,b),

∫
de = ∫

dε
∫

dJ
∑

b where
b labels the groups of quantum numbers {k} sharing similar
pairing.

VI. SUMMARY AND CONCLUSION

In this work, we have presented parameter-free ab initio
calculations of a superconductor in presence of a homoge-
neous exchange splitting as, for example, the result of an
external magnetic field. We have used two approaches: a
generalization of the Eliashberg approach and SpinSCDFT.
SCDFT allows the direct inclusion of Coulomb interactions in
a straightforward way, while its direct inclusion remains to be
problematic within Eliashberg where one has to rely on the μ�

approach [25,30]. The Eliashberg equations, on the other hand,
provide the reference for the phononic self-energy, allowing
to understand and develop functionals for SpinSCDFT.

FIG. 21. (Color online) Up-spin channel of the G0W0 DOS along
the dashed green line in Fig. 20 at T = 3 K. We see only small
features from the unphysical, oscillatory solutions past the transition
(light blue to red in Fig. 17.)
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We have implemented a code that solves the SpinSCDFT
equations with a linear and nonlinear xc potential and the
nonlinear Eliashberg equations derived in I. The xc functional
is derived in I from the Sham-Schlüter equation based on the
replacement of the interaction with the SC KS GF. We have
investigated the behavior of the xc potential on a model of
a free-electron gas with a tunable, homogeneous exchange
splitting J , a phonon coupling that resembles to the one of
MgB2 and, optionally, a static Coulomb interaction in the
Thomas-Fermi approximation. We compute the SC properties
of this system and find that in the regime of a second-order
phase transition in the T versus J diagram, SpinSCDFT is
qualitatively similar to the Eliashberg solutions. In the weak
coupling approximation, i.e., removing the contributions in the
functional that arise from the normal-state (Nambu diagonal)
part of the self-energy, we arrive at a shape that is very
similar to the BCS behavior. Including the Coulomb interaction
reduces the critical temperature but otherwise does not largely
effect the shape of the J -T diagram.

In agreement with BCS and Eliashberg, SpinSCDFT
predicts a discontinuous transition in �s

s(e) for large J except
that the �s

s(e) past the transition are not zero but have a
curious shape that has positive and negative values. These
solutions �s

s(e) past the transition increasingly localize at the
Fermi level ε ≈ 0. In addition and in agreement with the
improved functional for SCDFT by Sanna et al., we find that
the nonlinear SpinSCDFT solutions go to zero at ε ≈ 0 for
T → 0 and J = 0 and thus the SC KS GF is not gapped while
the interacting and G0W0 GF is.

The SpinSCDFT solutions past the transition show |J | >

|�s
s(0,J )| and since we have noted in I that it is difficult to

construct the Bogoliubov transformations in this case, these
solutions are, in fact, unphysical. Since the energy range where
the SC KS gap goes to zero agrees with the energy range
that causes the unphysical solutions and in our functional
construction in I we have substituted the many-body gap with
the SC KS gap, we believe that it is this substitution that causes
the occurrence of the unphysical solutions in the first place.

We perform a G0W0-like correction to the GF where we
solve the Dyson equation with the same self-energy that we
used originally for the xc-potential construction. The resulting
excitation spectrum (here in the isotropic case the DOS) is
gapped and behaves as one would expect for a SC. From this
result we conclude that a fitting technique of the self-energy
similar to Sanna et al. [24] will allow us to reproduce the J -T
diagram of Eliashberg and remove the unphysical solutions,
while keeping the possibility to include the Coulomb potential
in addition to a numerically simple form where the Matsubara
summations can be computed analytically.

APPENDIX: QUASIPARTICLE EXCITATIONS FROM THE
ONE-CYCLE INTERACTION GREEN’S FUNCTION

The theoretical definition of SC is the existence of a
nonvanishing order parameter χ [the thermal average of Eq. (4)
in Paper I], while experimentally SC are usually characterized
by the properties of their excitation spectrum, namely, the
single-particle gap at the Fermi level [31]. This can be rather
directly extracted from the solution to the Eliashberg equations
on the imaginary axis since �E

n=0(J ) is closely related to this

excitation gap itself [23] and we use it in Fig. 5 for the J -T
diagram.

The SC KS system of SpinSCDFT is designed to reproduce
the densities of the interacting system, not the quasiparticle
spectrum. On the other hand, for a normal metal the KS
particles are often in good agreement with experiment so
that the resulting KS excitation spectrum is used as an
approximation to the interacting quasiparticle spectrum. With
the potential �s

s(e) of Fig. 12 it turns out in SCDFT, also for
the zero-field case [24], this is not always the case since, e.g.,
for T → 0 the SC KS system is not gapped.

To predict a proper excitation spectrum without having to
solve the many-body problem self-consistently we introduce
the G0W0 approximation in the context of SC. This means to
solve the Dyson equation once while replacing the interacting
GF with the SC KS GF in the self-energy. Here, we use the
same approximations for the self-energy made to arrive at the
functional in I which means we use �̄KS = �̄[ḠKS] instead of
the true self-energy �̄[Ḡ].

In this section, we work in the isotropic formulation but
note that the approach is easily generalized to the anisotropic
case. We use the notation e = ε,J,b and the isotropic Dyson
equation

Ḡn(e) = ([
ḠKS

n (e)
]−1 + �̄KS

n (e)
)−1

, (A1)

that follows from the assumption that the couplings depend
on k via the center of energy εk↑−ε−k,↓

2 → ε and the splitting
εk↑−ε−k,↓

2 → J and the isotropic bands b (that is a set of
quantum numbers {k}). We introduce the notation Ḡα,α′

nσ (e) =
Îkσ (e)Ḡα,α′

kσ,±k±σ (ωn). The averaging procedure Îkσ (e) on equal
splitting and equal center-of-energy surfaces is defined in
Eq. (131) of Paper I. We refer to the nonvanishing matrix
elements with a spin label that refers to the first index of
Ḡα,α′

kσ,±k±σ (ωn) and similarly for the self-energy.

1. Imaginary-axis formulation

The inversion of the Dyson equation (A1) to compute
the GF explicitly is very analogous to the derivation of
the Eliashberg equations in Paper I, Sec. IV A 1. We
compute Ḡn(e) via Eq. (A1) and the nonvanishing com-
ponents are found to be [suppressing the arguments of
Fnσ (e),�ω

n (e),�J
n (e),Aωz

n (e),�Re�
n (e),� Im�

n (e), and �t±
n (e)]:

Ḡ1,1
nσ = 1

2Fnσ

∑
α

Fnσ + α
[
ε + �ε

n + sign(σ )Aωz
n

]
iωn − �ω

n − sign(σ )
(
J + �J

n

) − αFnσ

,

(A2)

Ḡ−1,−1
nσ = 1

2Fn−σ

∑
α

Fn−σ + α
[
ε+�ε

n − sign(σ )Aωz
n

]
iωn − �ω

n +sign(σ )
(
J + �J

n

)+αFn−σ

,

(A3)

Ḡ1,−1
nσ = sign(σ )

2Fnσ

∑
α

α
(
�Re�

n + i� Im�

n + sign(σ )(�t−
n + �t+

n )
)

iωn − �ω
n − sign(σ )

(
J + �J

n

) − αFnσ

,

(A4)
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Ḡ−1,1
nσ = sign(σ )

2Fn−σ

∑
α

α
(
�Re�

n − i� Im�

n + sign(σ )(�t−
n − �t+

n )
)

iωn − �ω
n + sign(σ )

(
J + �J

n

) + αFn−σ

(A5)

with

Fnσ (e) = ([
ε + �ε

n + sign(σ )Aωz
n

]2

+[
�Re�

n + i� Im�

n + sign(σ )(�t+
n + �t−

n )
]

×[
�Re�

n − i� Im�

n + sign(σ )(�t+
n − �t−

n )
]) 1

2 , (A6)

where the self-energy parts are constructed similar to the
Eliashberg theory with the result

�ω
n = 1

4

∑
σ

(
�̄KS1,1

σn + �̄KS−1,−1
σn

)
, (A7)

Aωz
n = 1

4

∑
σ

sign(σ )
(
�̄KS1,1

σn + �̄KS−1,−1
σn

)
, (A8)

�ε
n = 1

4

∑
σ

(
�̄KS1,1

σn − �̄KS−1,−1
σn

)
, (A9)

�J
n = 1

4

∑
σ

sign(σ )
(
�̄KS1,1

σn − �̄KS−1,−1
σn

)
, (A10)

�t+
n = 1

4

∑
σ

(
�̄KS1,−1

σn + �̄KS−1,1
σn

)
, (A11)

�t−
n = 1

4

∑
σ

(
�̄KS1,−1

σn − �̄KS−1,1
σn

)
, (A12)

� Im�

n = −i

4

∑
σ

sign(σ )
(
�̄KS1,−1

σn + �̄KS−1,1
σn

)
, (A13)

�Re�
n = 1

4

∑
σ

sign(σ )
(
�̄KS1,−1

σn − �̄KS−1,1
σn

)
. (A14)

Note, however, that �̄KS1,−1
σn contains a triplet contribution that

is generated by the coupling imbalance of the spin channels.
The isotropic variants of the Eqs. (67) to (70) of paper I are
given by

�KS
ph

1,1

σn
=

∫
d�

∫
de′ α2F D

σ (e,e′,�)

×
∑

α

αε′ + F ′

2F ′ Mph

(
�,Eα

σ
′
,ωn

)
, (A15)

�KS
ph

−1,−1

σn
=

∫
d�

∫
de′ α2F D

σ (e,e′,�)

×
∑

α

αε′ + F ′

2F ′ Mph

(
�, − Eα

σ
′
,ωn

)
, (A16)

�KS
ph

1,−1

σn
= −sign(σ )

∫
d�

∫
de′ α2F (e,e′,�)

×
∑

α

α�s′
s

2F ′ Mph

(
�,Eα

σ
′
,ωn

)
, (A17)

�KS
ph

−1,1

σn
= −sign(σ )

∫
d�

∫
de′ α2F (e,e′,�)

×
∑

α

α�s′
s
∗

2F ′ Mph

(
�, − Eα

σ
′
,ωn

)
(A18)

with �s′
s shorthand for �s

s(e
′), the averaged �s

sk and F ′ =√
ε′2 + �s′

s
2. Furthermore, Eα

σ
′ = sign(σ )J + sign(α)F ′ and

similarly Eqs. (76) and (77) of Paper I become

�KS
C

1,−1

σn = −sign(σ )
∑

α

∫
de′ α�s′

s

2F ′ C stat(e,e′)fβ

(
Eα

σ
′)
,

(A19)

�KS
C

−1,1

σn = −sign(σ )
∑

α

∫
de′ α�s′

s
∗

2F ′ C stat(e,e′)fβ

( − Eα
σ

′)
.

(A20)

With these equations we can compute the G0W0 GF from the
results of a converged SpinSCDFT calculation.

2. Real-axis formulation

To obtain the (L)DOS from the temperature GF we
substitute

iωn → ω + iη, (A21)

where η is a real positive infinitesimal [32]. The expres-
sions (A2)–(A5) remain essentially unchanged on the real
axis, except that we have to insert the self-energy (SE)
parts (A7)–(A14) on the real axis and write iη + ω instead
of the Matsubara frequency. Here, we have two options: first
we may compute the SE parts on the imaginary axis and use
a numerical analytic continuation to the real axis, or we can
compute analytic formulas for the real axis and use them. We
choose the latter because this avoids the sometimes unstable
analytical continuation.

We will see that the SE parts, e.g., �Re�
n (e), on the real axis

have to be computed via independent calculations of imaginary
and real parts. The dependence on the Matsubara index of the
SE is only via the function Mph of Eq. (74) of Paper I, i.e., the
results of the first Matsubara summation in the SE. Thus, on
the real axis

Mph(�,E,ω) = P̂
nβ(�) + fβ(E)

� − E + ω
− P̂

nβ(�) + fβ(−E)

� + E − ω

− iπ ([nβ(�) + fβ(E)]δ(� − E + ω)

+ [nβ(�) + fβ(−E)]δ(� + E − ω)).

(A22)

Here, P̂ is the principal-value operator. Because of the very
different nature of the imaginary and real parts of the SE we
compute both parts independently. Then, we obtain

Im�ω(e,ω) = −π

∫
de′ ∑

μα

αε′ + F ′

8F ′
([

nβ

(
Eα

μ
′ − ω

) + fβ

(
Eα

μ
′)][

α2F D
μ

(
e,e′,Eα

μ
′ − ω

) − α2F D
μ

(
e,e′,ω − Eα

μ
′)]

+ [
nβ

(
Eα

μ
′ + ω

) + fβ

(
Eα

μ
′)][

α2F D
μ

(
e,e′,Eα

μ
′ + ω

) − α2F D
μ

(
e,e′, − Eα

μ
′ − ω

)])
, (A23)
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Re�ω(e,ω) =
∫

d�

∫
de′ ∑

μα

αε′ + F ′

8F ′ α2F D
μ(e,e′,�)

(
P̂

nβ(�) + fβ

(
Eα

μ
′)

� − Eα
μ

′ + ω

− P̂
nβ(�) + fβ

(
Eα

μ
′)

� − Eα
μ

′ − ω
− P̂

nβ(�) + fβ

( − Eα
μ

′)
� + Eα

μ
′ − ω

+ P̂
nβ(�) + fβ

( − Eα
μ

′)
� + Eα

μ
′ + ω

)
, (A24)

Im�ε(e,ω) = −π

∫
de′ ∑

μα

αε′ + F ′

8F ′
([

nβ

(
Eα

μ
′ − ω

) + fβ

(
Eα

μ
′)][

α2F D
μ

(
e,e′,Eα

μ
′ − ω

) − α2F D
μ

(
e,e′,ω − Eα

μ
′)]

− [
nβ

(
Eα

μ
′ + ω

) + fβ

(
Eα

μ
′)][

α2F D
μ

(
e,e′,Eα

μ
′ + ω

) − α2F D
μ

(
e,e′, − Eα

μ
′ − ω

)])
, (A25)

Re�ε(e,ω) =
∫

d�

∫
de′ ∑

μα

αε′ + F ′

8F ′ α2F D
μ(e,e′,�)

(
P̂

nβ(�) + fβ(Eα
μ

′)
� − Eα

μ
′ + ω

+ P̂
nβ(�) + fβ(Eα

μ
′)

� − Eα
μ

′ − ω
− P̂

nβ(�) + fβ(−Eα
μ

′)
� + Eα

μ
′ − ω

− P̂
nβ(�) + fβ(−Eα

μ
′)

� + Eα
μ

′ + ω

)
(A26)

and very similar for Aωz(eω) that only differs from �ω by putting a sign(μ) into the spin sums. We also obtain �J (eω) from the
relation for �ε(e,ω) in the same way, i.e., we put a sign(μ) into the spin sum. The above equation again points out the problem
in the ε′ integral if the energy dependence of α2F D

μ(e,e′,�) is neglected. Here, Eα
μ

′ → α|ε′| for large |ε′| so there are parts in
the integral that behave as 1

ε′ leading to logarithmic divergence. Thus, we see explicitly that we cannot compute the energy
renormalization without considering the influence of the interaction on the full energy spectrum and quasiparticle occupations
as was already discussed in I and Ref. [11].

We define the integrand

ImB±(e,e′,ω) = π
∑
μα

sign(μ)
1±1

2
sign(α)

2F ′
[
nβ

(
Eα

μ
′ − ω

) + fβ

(
Eα

μ
′)][

α2F D
μ

(
e,e′,Eα

μ
′ − ω

) − α2F D
μ

(
e,e′,ω − Eα

μ
′)]

, (A27)

ReB±(e,e′,ω) = −
∑
μα

sign(μ)
1±1

2
sign(α)

4F ′

[∫
d�α2F D

μ(e,e′,�)

(
P̂

nβ(�) + fβ(E+
μ

′)
� − E+

μ
′ + ω

− P̂
nβ(�) + fβ(−Eα

μ
′)

� + Eα
μ

′ − ω

)

+fβ(Eα
μ

′)C stat(e,e′)
]

(A28)

and further introducing

Bs
n(e) ≡ �Re�

n (e) + i� Im�

n (e), (A29)

Bs�
n (e) ≡ �Re�

n (e) − i� Im�

n (e), (A30)

Bt
n(e) ≡ �t+

n (e) + �t−
n (e), (A31)

Bt�
n (e) ≡ �t+

n (e) − �t−
n (e), (A32)

we obtain the following equations on the real axis:

Bs(e,ω) =
∫

de′�s
s
′B−(e,e′,ω), (A33)

Bs�(e,ω) =
∫

de′�s′
s

∗B−(e,e′,ω), (A34)

Bt (e,ω) =
∫

de′�s
s
′B+(e,e′,ω), (A35)

Bt�(e,ω) =
∫

de′�s′
s

∗B+(e,e′,ω), (A36)

and, thus, Eq. (A6) becomes on the real axis (omitting the
arguments e,ω)

Fσ = ([ε + �ε + sign(σ )Aωz]2

+ [Bs + sign(σ )Bt ][Bs� + sign(σ )Bt�])
1
2 . (A37)

Now, we can finally obtain the retarded GF with the equations
from Eqs. (A2)–(A5) together with Eq. (A6) for Fnσ (e) in
terms of B and the corresponding SE parts constructed from
real and imaginary parts close to the real axis. Then, we can
evaluate the DOS according to

ρσα(ω) = −2
∫

de Im
(

lim
η→0

lim
iωn→ω+iη

Ḡα,α

nσ (e)
)

(e). (A38)

We obtain the local DOS ρσα(r,ω) simply by replacing 
(e)
with the local double DOS 
σ (e,r) = Îkσ (e)|ϕk(rσ )|2.
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