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1. Introduction

Frustrated magnetic systems have become a topic of particular 
interest in condensed matter physics [1–3]. The geometrical 
frustration arises from the specific geometry of the system rather 
than from disorder. It leads to ‘exotic’ low-temperature states, for 
example spin ice. In pyrochlore lattices—prominent compounds 
are dysprosium and holmium titanate—the spins arranged in 
corner-sharing tetrahedra mimic the hydrogen positions in water 
ice [4]. Experiments have found evidence for the existence of 
magnetic monopoles in these materials [5, 6], showing proper-
ties of hypothetical magnetic monopoles postulated to exist in 
vacuum [7]. Nano-scale arrays of ferromagnetic single-domain 
islands can show an artificial spin ice as well [8, 9].

Artificial spin ice consists of twodimensional periodic 
arrangements of nanometer-sized magnets. These nanoislands 
are typically elongated to show a single-domain state [10, 11], 
modeled for example as a magnetic dipole; the magnetic 
moment of a single island then points in one of two direc-
tions. Because the nanoislands are isolated from each other, 
e.g. separated by a distance of the order of several hundred 
nanometer, they are coupled by the long-range dipole–dipole 
interaction [12, 13].

Typical geometries of the nano-scale arrays are honey-
comb or square lattices, fabricated using microstructuring 

techniques which allow for fine-tuning to obtain specific 
properties [14]. Shifting the rows and columns of a square 
lattice vertically (figure 1) by an amount determined by the 
lattice spacing and the islands' dimensions, one can produce 
the same degree of degeneracy in the ground state as in pyro-
chlore spin ice [15, 16] and the same residual entropy as water 
ice at zero temperature [17].

An advantage of dipolar arrays is that their properties can be 
tuned by their dimensions and shape. However, being twodi-
mensional, they capture properties of genuine threedimensional 
spin ice in rough outlines. By stacking planar nanoarrays, a 
three-dimensional artificial spin ice has been realized which 
exhibits excitations as in real spin ice systems [18].

Because of the specific geometries used so far, artificial 
spin ice was hardly thermally active [19]: for permalloy nano-
magnets the magnetic moment of each island is in the order of 
some 107 Bohr magneton, equivalent to an interaction energy 
of about 10−19 J. Thus in simulations the activation tempera-
ture is much larger than the melting temperature of permalloy 
(1450 K). However in recent investigations by Farhan and 
coworkers thermal activation at =T 420 K has been shown for 
up to three hexagons of nanomagnets [20] and for a square 
lattice [21]. The theoretical investigation presented in this 
paper relies on the experimentally feasible nanoisland dimen-
sions of [20] in order to study thermal excitations at room 
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temperature for square spin ice lattices. As one result we con-
firm the thermal activation at =T 420 K and below (e.g. at 
room temperature) found experimentally for the honeycomb 
lattice [20]. Moreover, the calculated switching rates of the 
nanomagnets are in the order of −0.2s 1, thus accessible by 
experimental techniques.

In a ground state the square-lattice nanomagnets align 
according to the ice rule (‘two in, two out’) [16, 22]. 
Associating a magnetic charge Q to each node of the square 
lattice, a ground state is characterized by Q = 0 at each node. 
Excitations appear as reversals of dipoles, leading to nodes 
with a charge of ±2 or ±4. String excitations [22] are then 
given by a pair of these emergent quasi-monopoles [23, 24] 
with opposite charge that are connected by a ferromagnetic 
path of nanomagnets [21, 25]. While these strings have been 
produced experimentally by an external magnetic field, we 
focus in this paper on their thermal excitation. The response of 
the system to an external perturbation is observed by a variety 
of experimental techniques, for example photoemission elec-
tron microscopy [21, 26].

In the most part string excitations with |Q| = 2 nodes have 
been considered so far [16, 22, 27], which is attributed to the 
comparably small probability of |Q| = 4 string excitations. We 
show in this paper that the above-mentioned vertical displace-
ment in the square lattice leads to a drastic increase of the 
number of |Q| = 4 string excitations, in particular at low tem-
peratures. Moreover, we address the thermal stability of such 
excitations, thereby providing time scales for their experi-
mental observation.

The paper is organized as follows. The theory is outlined in 
section 2, results are discussed in section 3. After addressing 
the magnetic ground state (section 3.1), we turn to the thermal 
string excitations: thermal activation and switching rates 
( section 3.2.1) as well as their number (section 3.2.2) and spatial 
correlation (section 3.2.3). Appendices comprise information on 
the dipolar energies (appendix A), the Monte Carlo simulations 
(appendix B) and the residual entropy (appendix C).

2. Theoretical aspects

In this section we address those aspects of the theoretical 
approach needed for the discussion of the results. More details 
are given in the appendices.

For the present study we consider nanomagnets with 
dimensions taken from [20] (length 470nm, width 170nm, 
and height 3nm), since these exhibit thermal excitations at 
experimentally achievable temperatures. Each nanomagnet 
in the sample is labeled by an index i. The lattice constant 
a of the square lattice [8] is 793.8nm (the lattice spacing 
in [21] is 425nm). Due to their elongated shape and mag-
netic anisotropy they are in a single-domain state with mag-
netization parallel to the long edges of the islands. Their 
magnetic state is thus well described by a magnetization 
vector ±

⎯→
Mi . For permalloy islands of the above size one has 

⎯→
≈ −M| | 200·10 A mi

3 1. Rows and columns are vertically dis-
placed by δz which is given in units of a. Strictly speaking 
the twodimensional lattice is turned quasi-twodimensional 
for δz ≠ 0 (figure 1).

Instead approximating the nanomagnets as points 
[15,  16,  22] or dipolar needles [15, 27], we compute the 
dipole–dipole energies for realistic shapes. The computation 
of the dipole–dipole energies is done numerically, allowing in 
principle for arbitrarily shaped nanoislands. It turns out that 
the dipolar interaction [13, 26] is relevant only for first-nearest 
neighbors and for second-nearest neighbors (figure 2), with 
energies E1NN and E2NN, respectively [28].

The center ⃗Ci of a node i that consists of four nanomagnets 
at positions Rj (figure 3),

⃗ ⃗ ⃗ ⃗ ⃗∑= = + +
∈

C R R
a

e e
1

4 2
( ) ,i

j N

j i x y

i

 (1)

Figure 1. Artist’s rendering of artificial spin ice on a square lattice 
of nanomagnets with vertically displaced rows and columns. Arrows 
indicate the direction of the magnetic moments.

Figure 2. Dipolar energies E of nanomagnets on a square lattice 
versus distance r. The energy decreases (in absolute value) rapidly 
with distance r and can be neglected for distances larger than the 
second nearest neighbor distance >r( 1000nm). Some distances offer 
two energies, depending on the relative alignment of the nanoislands: 
nanoislands facing the long side (squares) offer a smaller energy 
than those facing the short side (circles). The inset shows the critical 
value δzc for which the first and second nearest neighbor energies 
coincide versus the aspect ratio or the length l of the nanoislands 
(a, lattice constant). Lines are added to guide the eye.
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carries a charge Qi. This charge is defined by the number of 
magnetic dipoles pointing toward this node,

⃗ ⃗

⃗ ⃗
∑≡

⎯→
· −

|
⎯→

|| − |∈

Q
M C R

M C R

( )
i

j N

j i j

j i ji

 (2)

leading to Qi ∈ {0, ±2, ±4 }.
The different magnetic configurations of the nodes are 

defined in table 1. The ice rule predicts groundstate configura-
tions ‘2in2out’ [29] which appear in two flavors: ‘2in2outAd’ 
shows inward pointing moments at adjacent (‘Ad’) nanomag-
nets, whereas ‘2in2outOp’ shows inward pointing moments at 
opposite (‘Op’) nanomagnets.

In accordance with the point group symmetry of the nodes 
the configurations are degenerate, as given by their multiplicity 
(table 1). For δz = 0, the least energy is produced by nodes 
with a ‘2in2outOp’ arrangement − +E E( 4 2 )1NN 2NN , with mul-
tiplicity 2 (see the four orange nanomagnets in figure 4; see 
[16]). The ‘2in2outAd’ configuration (confer the four purple 
nanomagnets in figure 4) has an energy of = −E E2 2NN and a 
multiplicity of 4.

An increasing vertical displacement δz of rows and col-
umns in the lattice results in a decrease of E1NN (figure 5). 
E2NN is unchanged because second-nearest neighbors are on 
the same or on adjacent rows or columns. At the special δz 
for which =E E1NN 2NN the degeneracy of the nodes' ground 
state is increased to 4 + 2 = 6 [16]. The honeycomb lattice 
possesses the same degree of degeneracy: the frustrated least-
energy nodes with charges ±1 (‘2in1out’ or ‘2out1in’) have 
a multiplicity of 3 each; showing identical energies, they are 
six-fold degenerate [23]. It is important to mention that in the 
honeycomb lattice this sixfold degeneracy is out of 8 pos-
sible vertices; in the square lattice considered here the sixfold 
degeneracy is out of 16 vertices (table 1). However, one may 
consider both lattices and their magnetic ground states equiva-
lent because both have similar residual entropy (appendix C). 
Furthermore, the approach of E1NN to E2NN reduces the total 
energy and, thus, enhances the thermal activity, allowing sim-
ulations already for room temperature.

For the present samples, we obtain δz  =  0.27  a, which 
is a monotonous function of the lattice constant a (inset in 
figure 5). This value differs from those calculated for nano-
scale arrays consisting of point or dipolar needles (0.419 a in 
[15], 0.444 a in [16] and 0.207 a in [15]). The limits given in 
the literature can be reproduced by varying the length l of the 
islands so that the volume and, thus, the magnetization density 
are conserved (inset in figure 2). We found a linear decrease 

Table 1. Magnetic configurations of nodes, defined in [29]. 
Charges are defined in equation (2). The multiplicity gives the 
 degree of  degeneracy for each configuration. The energy of a node 
is  expressed in terms of the first- and second-nearest neighbor 
 energies E1NN and E2NN.

Configuration Charge Multiplicity Energy

‘4in’ +4 1 +E E4 21NN 2NN

‘3in1out’ +2 4 0
‘2in2outAd’  0 4 − E2 2NN

‘2in2outOp’  0 2 − +E E4 21NN 2NN

‘1in3out’ −2 4 0
‘4out’ −4 1 +E E4 21NN 2NN

Figure 3. Square lattice of nanomagnets, forming a dipolar array. A 
node with center ⃗Ci is indicated by the dashed square and shows a 

‘2in2outAd’ configuration. Magnetic moments 
⎯→
Mi  of islands Ri and 

the two first nearest neighbors of Ri are represented as arrows and 
by R R,i i

1NN 2NN, respectively. The lattice parameter a is illustrated by 
the bold bar. The inset displays the Cartesian axes.

Ri R1NN
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R1NN
i R2NN

i

Ci

a
xxxx

yyy

Figure 4. Snapshot of a magnetic configuration in square-lattice 
spin ice with δz = 0.27 a (a, lattice constant). A string excitation 
is formed by a quasi-monopole with charge Q = −4 (node with the 
blue circle) connected by a ferromagnetic string (path of six green 
nanomagnets) with a quasi-monopole with Q = +4 (node with the 
red circle). Arrows in each nanomagnet indicate the respective 
magnetization orientation. The four purple (orange) nanomagnets 
form a node with ‘2in2outAd’ (‘2in2outOp’) configuration. For 
three plaquettes, the orientations of flux closures are shown by 
circular arrows. The snapshot, taken from a kinetic Monte Carlo 
simulation at =T 300 K, shows a part of the entire sample.
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of the critical point δzc with respect to l/a. A linear regres-
sion yields δ =z a0.218c  for l = 0.7a, a value close to the result 
of the dipolar needle approximation in [15]. δzc in the point 
approximation [15, 16] is obtained for an aspect ratio of 1 for 
which the islands are squares; it reads δ =z a0.383c . The minor 
differences are explained by a finite elongation of the islands 
and by the approximation of the short-range interaction: for a 
better comparison one could rely on ∑≡

≠
E E

i
i1NN

1NN
 which 

is considered in [15] and [16].
The δz for which =E E1NN 2NN depends also moderately on the 

island shape (inset in figure 5). To check this we studied rectan-
gular islands (type 1) with an aspect ratio of 2.76 (as in [20]) and 
rounded islands (type 2). The latter have the same area as type-1 
islands but are composed of a rectangle with an aspect ratio 
of 1.98 and two terminating semi-circles with radii of 85nm.  
Because the shapes of type-1 and type-2 nanoislands are similar, 
the properties of the respective dipolar arrays are much the same 
as well, in particular their thermal excitations. Therefore, we 
restrict ourselves to presenting results for islands of type 2 in 
this paper; analyses of dipolar arrays of nanoislands with various 
shapes and dimensions will be performed in the future.

A string excitation is identified as a ferromagnetic path of 
nanoislands connecting a pair of nodes with opposite nonzero 
charges (figure 4). To quantify the thermal activation we 
address the fraction of nodes with charge Q in the sample, 
ηQ ≡ NQ/N; on average 〈ηQ〉 = 〈η−Q〉.

In this paper we report on results for a lattice with 20  ×  20 
cells with 2 nanomagnets each (N = 20  ×  20  ×  2 = 800). 
These samples are large enough to suppress even minute 
finite-size effects (edge effects), as has been checked by com-
parison with calculations for larger arrays. The dynamics is 
obtained by kinetic Monte Carlo simulations, accompanied by 
standard Monte Carlo calculations [30, 31] (appendix B).

3. Discussion of results

In the following we focus on samples with vertical displace-
ments δz of 0 and 0.27 a, as well as on temperatures ≈T 1 K 
and 300 K (room temperature).

3.1. Magnetic ground state

For a small finite temperature of ≈T 1 K we find a ground 
state in agreement with the ice rule (figure 6); hence, irrespec-
tively of δz one has η = 100%0 . A closer inspection shows that 
‘2in2outOp’ vertices dominate for δz = 0, in agreement with 
earlier work (e.g. [16]). Upon increasing δz the number of 
‘2in2outAd’ vertices grows. Especially at δz = 0.27 a all six 
‘2in2out’ vertices are equally likely; this is explained by the 
energy barrier between the ‘2in2outAd’ and ‘ 2in2outOp’ ver-
tices which vanishes for this particular vertical displacement.

The system tends to form ‘2in2outOp’ and ‘2in2outAd’ 
domains (figure 6) whose shapes depend on the numerical 
‘cooling-down’ procedure used to obtain a global, highly 
degenerate free-energy minimum. For δz > 0.27 a ‘2in2outAd’ 
vertices prevail. Elevated temperatures lead to changes of size 
and to propagation of domains.

3.2. Thermal string excitations

3.2.1. Thermal activation and switching rates. We now show 
that the square-lattice dipolar arrays are thermally active at 
room temperature and that the rate of spin reversals depends 
significantly on the vertical displacement δz. Thermal activ-
ity at 300 K cannot be ruled out per se because the maximum 
nearest-neighbor interaction energy E1NN of 9.2meV is less 
than the thermal energy ≈k T 25meVB  (figure 5).

Figure 5. Dipolar energies of nanomagnets on a square lattice. 
Energies of first-nearest (1NN, filled circles) and second-nearest 
(2NN, filled triangles) nanoislands are shown versus the vertical 
displacement δz (in units of the lattice constant a). The arrow marks 
δz = 0.27a for which =E E1NN 2NN. The inset displays this critical 
point as a function of the lattice constant a. Filled circles and open 
squares indicate the crossing for rectangular (type 1) and rounded 
(type 2) islands, respectively. The dimensions of the nanomagnets 
and the lattice parameters are given in section 2.
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According to the implementation of the kinetic Monte Carlo 
method (appendix B and [32]), the rate τ−1 of spin reversals 
scales exponentially with temperature and the energy bar-
rier since τ−1 follows an Arrhenius form. The barrier height 
depends on the initial and final configurational energies Ei and 
Ef and is assumed linear [33]: Δ = + −E E E E½( )0 f i , where E0 
is an empirical parameter taken from [20].

Thermal activation is addressed by the duration—or rest 
time—between reversal of nanoislands. Figure 7(a) shows 
two representative sequences of magnetization reversal of one 
selected nanoisland; these could be measured by a local probe. 
Obviously the reversal rate is larger for δz = 0.27 a as com-
pared to that for δz = 0; in other words, the rest time becomes 
smaller with increasing δz. For the sequences shown we obtain 
average rest times of ·4.4 10 s3  and ·1.3 10 s4  for δz = 0.27 a and 
0, respectively, at =T 300 K.

Similar to the rest time of a single island, one can record 
the rest time of an entire sample. This duration is defined as 
the time between reversals of any nanoislands in the array. 
For arrays with 800 islands at =T 300 K, we obtain average 

rest times of 5.4s and 12.4s for δz  =  0.27  a and 0, respec-
tively. These values are smaller than that of a single island; 
they scale inversely with the number of islands in the sample. 
More precisely, they are about 1/800 of the single-island rest 
time. Because of the abovementioned Arrhenius behavior, rest 
times decrease significantly with temperature: for =T 420 K, 
as has been applied in [20], our simulations yield durations of 
the order of a few milliseconds.

We point out that the rest times should not be confused 
with the residence time defined in [20]. The residence time is 
defined as the duration between the reversal of the flux chi-
rality of a plaquette (26 s for the hexagonal rings studied in 
[20]). Such a definition is somewhat problematic for a square 
lattice because its plaquettes must not show flux closure.

For zero vertical displacement δz  =  0 the ground state 
‘2in2outOp’ nodes result in closed loops for the plaquettes; this 
can be viewed as energy-minimizing ‘flux closures’. This is not 
the case for δz = 0.27 a, for which there are ‘2in2outAd’ nodes 
in addition (figure 4). This loss of flux closure is explained by 
the increased degeneracy of the ‘2in2out’ nodes and a consider-
able number of nodes with charge Q = ±2 (top row in figure 4).

3.2.2. Number of string excitations. A finite temperature 
below the critical temperature of the nanoislands leads to ther-
mal excitations with nonzero charge [34] (figure 8; note that 
〈ηQ〉 = 〈η−Q〉): the larger |Q|, the smaller is 〈η±Q〉. In particular, 
〈η±4〉 is less than 2.3% for samples with δz = 0 at elevated tem-
peratures; at room temperature it is extremely small.

A closer inspection reveals, however, that 〈η±4〉 is strongly 
enhanced for δz = 0. 27 a as compared to samples with δz = 0 
(figure 8(c)). More precisely, there are about 3.5% quasi-mon-
opoles with |Q| = 4 in the sample at 1200 K. Compared with the 
fraction of 2.3% for δz = 0 this increase may be regarded insig-
nificant. However at room temperature, we find an enhance-
ment by a factor as large as 43 (inset in figure 8(c)). Vertical 
displacement is therefore a means to enhance the number of 
excitations; their number may be sufficiently large to allow 
investigations of ensembles of string excitations [35].

So far we considered the fractions of nonzero charges in a 
sample. The presence of string excitations is evident from a 
snapshot of a kinetic Monte Carlo simulation (figure 4). While 
a large part of the sample shows a ground-state configuration, 
there is also a single string excitation: a path of ferromagneti-
cally aligned nanomagnets (green nanomagnets in figure 4) 
connects a quasi-monopole of charge −4 (indicated by the 
blue circle, with ‘4out’ arrangement) with a quasi-monopole 
of charge +4 (red circle, with ‘4in’ arrangement).

3.2.3. Spatial correlation of string excitations. The spatial 
distribution of nodes with opposite charges is analyzed by 
means of the charge-correlation function

⃗ ⃗ ⃗ ⃗ ⃗δ| | ≡〈 〉νμ
ν

δ
μ

+S r Q Q( ) r r r r (3)

which defines the probability of simultaneously finding a 
charge Q = μ at position ⃗ ⃗δ+r r  and a charge Q = ν at position 

⃗r . The average is over all nodes in the sample, thus Sνμ = Sμν.
It turns out that S−4 4 is nonzero within the first four shells of 
neighbor nanomagnets (circles in figure 9). According to the 

Figure 7. Thermal activation of square-lattice spin ice. 
(a) Representative time sequences of reversals of a selected 
nanomagnet, obtained from kinetic Monte Carlo simulations, are 
shown for vertical displacements δz = 0.27a and 0.0 (indicated in 
each panel) at room temperature =T 300 K. M = ±1 characterizes 
the orientation of the selected magnetic moment. (b) Fractions of 
charges η±4 versus vertical displacement δz (a, lattice constant). 
The inset displays the average rest time 〈τ〉 between consecutive 
reversals of the entire sample.

-1

0

1

0.0·100 5.0·104 1.0·105 1.5·105

t (s)

δz = 0.0

-1

0

1

δz = 0.27

M
(a)

0

1

2

η ±
4

(%
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

δz (a)

-4
4

T = 300K

6

8

10

12

14

〈τ
〉

(s
)

0.0 0.2 0.4 0.6

δz (a)

(b)

J. Phys.: Condens. Matter 26 (2014) 266006



D Thonig et al

6

free-energy minimization these pairs prefer to arrange with 
the shortest possible distance. Pairs of nodes with identical 
charges Q = 4 cannot show up as nearest neighbors because of 
the lattice geometry (one nanomagnet would be shared among 
a pair); hence, S4 4 equals zero for δr = 0. Furthermore, S4 4 is 
almost constant (squares in figure 9) which implies that pairs 
of Q = 4 nodes are not spatially correlated.

4. Concluding remarks

Square-lattice dipolar arrays prove suitable for studying 
thermal string excitations in artificial spin ice. By varying the 
vertical displacement of rows and columns, for example done 
by microstructuring techniques, one can produce samples 
with a prescribed temperature dependence of the string-exci-
tation density. The thermal stability (mean average time) can 

be chosen to match the time resolution of the experimental 
probing technique.

Future investigations may focus on the effect of defects in 
the dipolar arrays (e.g. missing islands) or on the formation 
of domains.
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Appendix A. Interaction energies

The Heisenberg-type exchange is neglected in the calculations, 
owing to the fact that the nanomagnets are isolated from each 
other. Thus the dominant coupling mechanism comes from the 
dipole–dipole interaction. The total interaction energy then reads

⃗ ⃗∑= − · ·
=

QE m ij m .
i j

i j (A.1)

The magnetization density ⃗ =
⎯→

Ω
m

M
i

i

i

, where Ωi is the volume 

of the i-th island, is assumed homogeneous.
Expressing a position ⃗r  within the i-th nanomagnet by 

⃗ ⃗ ⃗≡ +r R ui i, where ⃗ui runs over its volume Ωi, the elements of 
the dipole–dipole tensor Qij are

⃗ ⃗⃗

⃗∫ ∫=μν μ
π

δ

Ω Ω

−μ ν μν
Q d u d u ,ij

r r r

r j i8

3 2

i j

ij ij ij

ij

0
5 (A.2)

with μ, ν  =  x, y, z. Here, ⃗ ⃗ ⃗ ⃗ ⃗≡ + − −r u R u Rij i i j j  and μ0 is the 
vacuum permeability.

Figure 8. Magnetic charges Q in square-lattice dipolar arrays. The fractions ηQ of charges Q = −4, …, +4 are shown for lattices with 
vertical displacement δz = 0 (a) and δz = 0.27a (b) versus temperature T. Because ηQ = η−Q on average, data for negative charges are 
covered by those for positive Q. (c) Ratios η±4(0.27a)/η±4(0) on a logarithmic scale versus temperature T. Monopole-charge fractions 
η±4 for δz = 0 (triangles) and δz = 0.27a (circles) (same data as in (a) and (b)) are given in the inset. Data are obtained by kinetic Monte 
Carlo simulations.
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Figure 9. Charge-correlation function Sνμ, equation (3), versus 
distance δr in square-lattice dipolar arrays at =T 300 K. Data are 
shown for S−4 4 (circles) as well as for S4 4 (squares). δr is in units of 
the lattice constant a. The dashed line indicates the saturation level 
for large distances.
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Besides analytical calculations we use numerical integra-
tion schemes for the evaluation of the dipole–dipole tensor 
because these allow to treat arbitrarily shaped nanomagnets. 
For the present study, the integrals in (A.2) are performed 
using a Gauss–Legendre quadrature with 32 supporting points 
in each spatial direction. As a consequence of taking into 
account the experimental geometry of [20], the energy cross-
over =E E1NN 2NN (figure 5) occurs at a vertical displacement 
δz that is different from those calculated with a shape approxi-
mation for the nanomagnets; for example 0.419 a for needles 
[15] and 0.444 a for points [16].

It turns out that the first and the second nearest neigh-
bors provide the relevant contributions to the interaction 
energy (figure 2); more precisely, =E E0.0453NN 1NN and 

=E E0.074NN 1NN for δz  =  0.27  a, with E1NN being the first-
nearest neighbor interaction energy. Interactions of second- 
and third-nearest neighbors do not depend on δz.

Lithographic techniques allow to produce nanomagnets 
with a specific shape. The chosen shape has evidently impact 
on the interaction energies although the lattice spacing may be 
unaltered. We briefly compare the interaction energies of two 
types with rectangular shape. Type 1 is strictly rectangular with 
an aspect ratio of 2.76 (as in [20]), type 2 is a rounded island 
with the same area as type 1, i e composed of a rectangle with 
an aspect ratio of 1.98 and circles with radius 85nm.

Having computed the set { }Qij  of dipole tensors we proceed 
with statistical methods that work on a discrete set in space 
(lattice of nanomagnets) and in the spin degrees of freedom 
(orientations of the nanomagnets' magnetizations).

Appendix B. Monte Carlo and kinetic Monte 
Carlo calculations

To simulate the ground state as well as the dynamics of the 
artificial spin ice Monte Carlo [36, 37] and kinetic Monte 
Carlo calculations have been performed. Both methods are 
implemented in the cahmd computer code [38, 39].

A Monte Carlo method tries to find a global minimum 
of the free energy at a given temperature T by successively 
reversing the island spins 

⎯→
Mi. Using the Metropolis algorithm 

[40] the reoriented state (final state) is accepted, if the energy 
difference Δ = −E E Ef i between the initial and the final state is 
negative or if the Boltzmann factor − ΔE k Texp ( / )B  is larger 
than a uniformly distributed random number p ∈ [0, 1]. kB is 
the Boltzmann constant.

In a kinetic Monte Carlo method the reorientation rate ri 
for each spin 

⎯→
Mi in the lattice follows an Arrhenius law,

⎛
⎝
⎜

⎞
⎠
⎟ρ= −Δ

r
E

k T
exp .i

i
0

B
 (B.1)

ΔEi is the site-dependent energy barrier while ρ0 is a funda-
mental rate fitted to experiment.

At each kinetic Monte Carlo step cumulative rates 

∑Γ≡
=

ri
j

i

j
1

 are calculated for i  =  1, …, N (N number of 

nanomagnets). Then the magnetization of the i-th island 
is reversed if Γi−1 ⩽ p·ΓN  <  Γi, with the random number p 
uniformly distributed in [0, 1] and Γ0 ≡ 0. The rest time  
τ, i  e the duration between two successive reversals in the 
entire sample, is τ = Γ ′− ( )pln 1 /N

1  (p′ uniformly-distributed  
random number).

The energy barrier ΔEi in equation (B.1) is given by the 
dipolar energy and depends on the initial and the final state of the 
entire system. It is assumed linear [33]: Δ ≡ + −E E E E½( )i 0 f i .  
The larger E0, the smaller are the rates and the larger are the 
rest times. ρ0 and E0 are empirical parameters and taken from 
[20] (E0 = 0.925 eV, ρ = − −10 s )0

12 1 . Both our standard and 
kinetic Monte Carlo approaches reproduce well the correla-
tion functions and the switching rates for the hexagonal rings 
studied by Farhan et al [20].

The energy barrier depends on the dipole energy variation 
including the vertical displacement of the islands which increases 
the reorientation rate. In the picture of a Stoner–Wohlfarth double 
well potential, E0 is determined by the magnetic anisotropy as 
well as by the inter-atomic magnetic exchange mechanisms [41].

For both standard and kinetic Monte Carlo simulations an 
initial ‘cooling down’, starting at =T 5000 K and approaching 
the chosen temperature of the simulation in 10 000 steps, has 
been performed to come close to a global free-energy min-
imum. A typical kinetic Monte Carlo simulation comprises 
at least 100 000 steps, with magnetic configurations saved to 
disk in intervals of 1000 steps. Average rest times 〈τ〉 have 
been computed using all steps while average charge fractions 
〈ηQ〉 are calculated from 100 samples.

Appendix C. Residual entropy

Following Pauling [17] a pyrochlore lattice contains 

=Z (3 / 2)
N
2  microstates for N spins, leading to the entropy per 

spin of = ≈S
k

N
Z kln 0.2B

B (the factor of 2 comes from the two 

possible spin orientations). Considering a step-by-step build-
up of a finite, vertically displaced spin-ice cluster from the 
top-left to the bottom-right corner, the ground state of a node 
with the center Ci is dominated by the configuration of its top 
and left node in the two adjacent islands. Depending on the 
relative alignment of the island spin coming from the top-node 
and the left-node, one obtains four possible states at node i. 
Neglecting rim effects the number of states ends up with 

=Z (3 / 2)
N
2  and the same residual entropy per spin for zero 

temperature as predicted by Pauling [17] for water ice. For 
δz = 0, however, the entropy per spin is =S k ln3 / 4 4 / 3B  [42], 
corroborating the preservation of the ‘quasi-ice’ character of 
the displaced system. Contrary to this the zero-point entropy 
of the honeycomb lattice is about k0.162 B [43], establish a 
slight difference of square and honeycomb dipolar arrays.
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