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Abstract – We present a novel mixed quantum-classical approach to the coupled electron-nuclear
dynamics based on the exact factorisation of the electron-nuclear wave function, recently proposed
in Abedi A., Maitra N. T. and Gross E. K. U., Phys. Rev. Lett., 105 (2010) 123002. In this
framework, the correct classical limit of the nuclear dynamics is worked out by taking the classical
limit of the exact time-dependent Schrödinger equation satisfied by the nuclear wave function.
The effect of the time-dependent scalar and vector potentials, representing the exact electronic
back-reaction on the nuclear subsystem, is consistently derived within the classical approximation.
We examine with an example the performance of the proposed mixed quantum-classical scheme
in comparison with exact calculations.

Copyright c© EPLA, 2014

Introduction. – Among the ultimate goals of
condensed-matter physics and theoretical chemistry is the
atomistic description of phenomena such as vision [1–3],
photo-synthesis [4,5], photo-voltaic processes [6–8],
proton-transfer and hydrogen storage [9–12]. These phe-
nomena involve the coupled dynamics of electrons and nu-
clei beyond the Born-Oppenheimer (BO), or adiabatic,
regime and therefore require the explicit treatment of
excited states dynamics. Knowing that the exact so-
lution of the complete dynamical problem is unfeasible
for realistic molecular systems, as the numerical cost for
solving the time-dependent Schrödinger equation (TDSE)
scales exponentially with the number of degrees of free-
dom, approximations need to be introduced. Usually, a
quantum-classical (QC) description of the full system is
adopted, where only a small number of degrees of free-
dom are treated quantum mechanically, while the remain-
ing degrees of freedom are considered as classical particles.
There are two major issues concerning this approximation,
namely i) the separation of the dynamical problem, such
that the classical approximation can be performed on only
a subset of degrees of freedom, and ii) the interaction of
the two subsystems in the approximate picture. Several
attempts [13–22] to propose a solution to such problems
have been investigated over the past 50 years and differ-
ent approaches to QC non-adiabatic dynamics have been
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derived. However, a final and general solution to this prob-
lem is still lacking.

In this paper, we approach the problem from a new
perspective, employing the exact factorisation of the time-
dependent electron-nuclear wave function [23,24]. In this
framework, coupled evolution equations of the two com-
ponents of the system are derived without employing any
approximation. In particular, the nuclear equation has
the form of a Schrödinger equation in which the coupling
to the electronic subsystem is taken into account through
time-dependent vector and scalar potentials in a formally
exact way. These potentials represent what is usually re-
ferred to as the electronic back-reaction on the nuclear
subsystem. Their presence in the nuclear equation is cru-
cial for determining the force that generates nuclear tra-
jectories within the approximate QC treatment of the full
problem. Recently, we investigated [25,26] the properties
of such potentials and studied the classical nuclear dy-
namics under the influence of the force extracted from
them. Here we present a new mixed QC (MQC) scheme
to treat the coupled electron-nuclear dynamics that is sys-
tematically derived by taking the classical limit of the
nuclear motion in the framework of the exact factorisa-
tion. The classical nuclear dynamics within this MQC
approach is governed by a force that includes the effect
of the time-dependent vector and scalar potentials in the
classical limit.
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Exact factorisation of the electron-nuclear wave
function. – A multicomponent system of interacting
electrons and nuclei is non-relativistically described by the
Hamiltonian

Ĥ(r,R) = T̂n(R) + ĤBO(r,R). (1)

Here, T̂n(R) is the nuclear kinetic energy and

ĤBO(r,R) = T̂e(r) + V̂e,n(r,R) (2)

is the BO Hamiltonian, containing the electronic kinetic
energy and all interactions. Throughout this paper, the
coordinates of the Ne electrons and Nn nuclei are collec-
tively denoted by r, R. It has been proved [23,24] that
Ψ(r,R, t), the exact solution of the TDSE with Hamilto-
nian Ĥ, can be exactly factorised as

Ψ(r,R, t) = ΦR(r, t)χ(R, t), (3)

with ΦR(r, t) and χ(R, t) being the electronic and nuclear
wave functions, respectively. ΦR(r, t) depends parametri-
cally on the nuclear configuration and satisfies the partial
normalisation condition∫

dr
∣∣∣ΦR(r, t)

∣∣∣2 = 1, ∀R, t. (4)

This condition makes the product (3) unique, up to
within a (gauge-like) (R, t)-dependent phase transforma-
tion. The evolution of the electronic and nuclear wave
functions is determined by the equations(

Ĥel − ε(R, t)
)

ΦR(r, t) = ih̄∂tΦR(r, t), (5)

Ĥn(R, t)χ(R, t) = ih̄∂tχ(R, t), (6)

where the electronic Hamiltonian

Ĥel = ĤBO + Ûcoup
en [ΦR, χ] (7)

is defined as the sum of the BO Hamiltonian and the
electron-nuclear coupling operator,

Ûcoup
en [ΦR, χ] =

Nn∑
ν=1

1
Mν

[
(−ih̄∇ν − Aν(R, t))2

2
+ (8)

(−ih̄∇νχ

χ
+ Aν(R, t)

)
(−ih̄∇ν − Aν(R, t))

]
,

and the nuclear Hamiltonian is

Ĥn(R, t) =
Nn∑
ν=1

ˆ̃P
2

ν

2Mν
+ ε(R, t) (9)

with nuclear momentum operator ˆ̃Pν = −ih̄∇ν +
Aν(R, t). The electronic and nuclear Hamiltonians in
eqs. (7) and (9) contain a time-dependent potential en-
ergy surface (TDPES)

ε(R, t) =
〈
ΦR(t)

∣∣∣ Ĥel − ih̄∂t

∣∣∣ΦR(t)
〉

r
(10)

and a time-dependent vector potential

Aν(R, t) =
〈
ΦR(t)

∣∣∣ −ih̄∇νΦR(t)
〉

r
, (11)

that together with the electron-nuclear coupling opera-
tor (8) mediate the coupling between the electronic and
nuclear motion in a formally exact way. Here, 〈·| · |·〉r de-
notes an inner product over electronic variables. Equa-
tions (5) and (6), along with the definitions given in
eqs. (8)–(11), present an exact separation of the electronic
and nuclear dynamics which maintains the full correlation
between the two subsystems as in the TDSE of the com-
plete system. Hence they provide a rigorous starting point
for developing practical schemes by introducing systematic
approximations. In particular, the nuclear equation (6)
has the appealing form of a Schrödinger equation that con-
tains a time-dependent scalar potential (10) and a time-
dependent vector potential (11) that uniquely [27,28] (up
to within a gauge transformation) govern the nuclear dy-
namics and yield the nuclear wave function χ(R, t).

Quantum-classical equations of motion. – Toward
developing a MQC scheme, we first derive classical nuclear
dynamics as the lowest h̄-order of the nuclear TDSE in
eq. (6). The wave function χ(R, t) is written [29] as

χ(R, t) = exp[iS(R, t)/h̄], (12)

assuming that the complex function S(R, t) can be
expanded as an asymptotic series in powers of h̄,
i.e. S(R, t) =

∑
α h̄αSα(R, t). When this expression up

to within O(h̄0) terms is inserted in eq. (6), the Hamilton-
Jacobi equation [30] is recovered

−∂tS0(R, t) = Hn

(
R,

{∇νS0(R, t)
}

ν=1,Nn
, t

)
, (13)

if we identify S0(R, t) with the classical action and, con-
sequently, ∇νS0(R, t) with the νth nuclear momentum.
The classical Hamiltonian in eq. (13) is

Hn =
Nn∑
ν=1

[∇νS0(R, t) + Aν(R, t)
]2

2Mν
+ ε(R, t). (14)

The canonical momentum, analogous to the case of a clas-
sical charge moving in an electromagnetic field, is

P̃ν(R, t) = ∇νS0(R, t) + Aν(R, t) (15)

and the classical trajectory is determined by Newton’s
equation [31]

˙̃Pν = −∇νε + ∂tAν − Vν × Bνν +
∑
ν′ �=ν

Fνν′ , (16)

with Vν = P̃ν/Mν . Equation (16) is derived by acting
with the gradient operator ∇ν on eq. (13) and by identify-
ing the total time derivative operator as ∂t+

∑
ν′ Vν′ ·∇ν′ .

It can be easily proved that eq. (16) is invariant under a
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gauge transformation. Henceforth, all quantities depend-
ing on R, t become functions of Rc(t), the classical path
along which the action S0(Rc(t)) is stationary. The first
three terms on the RHS of eq. (16) produce the electro-
magnetic force due to the presence of the vector and scalar
potentials, with “generalised” magnetic field

Bνν′
(
Rc(t)

)
= ∇ν × Aν′

(
Rc(t)

)
. (17)

The remaining term

Fνν′
(
Rc(t)

)
= −Vν′ × Bνν′

(
Rc(t)

)
+

[
(Vν′ · ∇ν′)Aν

(
Rc(t)

) − (Vν′ · ∇ν)Aν′
(
Rc(t)

)]
(18)

is an inter-nuclear force term, arising from the coupling
with the electronic system. Equation (18) shows the
non-trivial effect of the vector potential on the classical
nuclei [32,33], as it not only appears in the bare electro-
magnetic force, but also “dresses” the nuclear interactions.
In order to understand the effect of the magnetic-like
term in eq. (16), we recall that the vector potential is
the difference of paramagnetic nuclear velocity fields
derived from the full and nuclear wave functions [23,24].
The generalised magnetic field (17) appearing in the
classical treatment of the nuclear degrees of freedom,
is indeed the generalised vorticity of this difference,
which is now Aν

(
Rc(t)

)
. This vector potential in the

classical limit explicitly expresses the coupling between
electrons and nuclei as the variation of the electronic
wave function in terms of the nuclear displacement and
contributes to the classical force driving the nuclei via
a Lorentz-like force (the first three terms on the RHS of
eq. (16)) as well as an effective inter-nuclear force (18).
The forces due to the generalised magnetic field (17) in
the context of open quantum systems are referred to as
current-induced forces [32,34–40] that have been observed
experimentally [41,42] and are essential to describe
fascinating phenomena such as the interplay between
electronic and mechanical (nuclear) degrees of freedom in
nanoelectromechanical systems. In cases where the vector
potential is curl-free, the gauge can be chosen by setting
the vector potential to zero, then eqs. (17) and (18)
are identically zero. Only the component of the vector
potential that is not curl-free cannot be gauged away.
Whether and under which conditions curlAν(R, t) = 0
is, at the moment, the subject of investigations [43].

The nuclear wave function appears explicitly in the
definition of the electron-nuclear coupling operator (8).
Therefore, according to the previous discussion, the ap-
proximation

−ih̄∇νχ(R, t)
χ(R, t)

= ∇νS0
(
Rc(t)

)
+ O(h̄) (19)

will be adopted. It will appear clear later that such term in
the electronic equation is responsible for the non-adiabatic
transitions induced by the coupling to the nuclear motion,
as other MQC techniques, like the Ehrenfest method or

the trajectory surface hopping [44–46], also suggested.
Here we show that this term can be derived from exact
equations, but it represents only the zero-order contribu-
tion in a h̄-expansion. Moreover, this coupling expressed
via ∇νS0(Rc(t)) is not the canonical momentum ap-
pearing in the classical Hamiltonian (whose expression is
given in eq. (15)).

We now introduce the adiabatic basis {ϕ
(j)
R (r)}, the

set of eigenstates of the BO Hamiltonian with eigenval-
ues ε

(j)
BO(R), and we expand the electronic wave function

on this basis

ΦR(r, t) =
∑

j

Cj(R, t)ϕ(j)
R (r). (20)

The electronic equation (5) gives rise to an infinite set
of coupled partial differential equations for Cj(R, t), con-
taining all coefficients and their first and second spatial
derivatives. However, the spatial dependence of the coeffi-
cients is negligible when the nuclear wave packet becomes
infinitely localised at the classical positions (the density
of a classical point particle is a δ-function centred, at each
time, at the classical position evolving along the trajec-
tory). Indeed, when the classical approximation strictly
applies, the delocalisation or the splitting of a nuclear
wave packet is negligible. Therefore, any R-dependence
can be ignored and only the instantaneous classical posi-
tion becomes relevant. This is the assumption considered
here. This operation breaks the invariance of the MQC
equations under a gauge transformation. For instance, the
force term ∇νεGD(R, t) = 0 independently of the choice
of the gauge, where εGD(R, t) = 〈ΦR(t)| − ih̄∂tΦR(t)〉r is
the gauge-dependent term [26] of the TDPES in eq. (10).
It follows that a gauge, compatible with the approximation
Cj(R, t) = Cj(t), has to be chosen like the gauge adopted
in our calculations, εGD(R, t) = 0. As consequence of this
hypothesis, the coupled equations for the coefficients sim-
plify to a set of ordinary differential equations in the time
variable only

Ċj(t) = − i

h̄

[
ε
(j)
BO − ε

]
Cj(t) +

∑
k

Ck(t)Ujk, (21)

where all quantities depending on R, as ε
(j)
BO, ε and Ujk,

have to be evaluated at the instantaneous nuclear position.
The symbol Ujk is used to indicate the matrix elements
(times −i/h̄) of the operator Ûcoup

en [ΦR, χ] on the adiabatic
basis. Its expression, introducing the first- and second-
order non-adiabatic couplings, d(1)

jk,ν (R) = 〈ϕ(j)
R |∇νϕ

(k)
R 〉r

and d
(2)
jk,ν (R) = 〈∇νϕ

(j)
R |∇νϕ

(k)
R 〉r, is

Ujk =
∑

ν

δjk

Mν

[
i

h̄

(
A2

ν

2
+ Aν · ∇νS0

)
+

∇ν · Aν

2

]

−
∑

ν

1
Mν

[
d(1)

jk,ν · ∇νS0 − ih̄

2

(
∇ν · d(1)

jk,ν − d
(2)
jk,ν

)]
.

(22)
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Similarly, the TDPES and the vector potential can be
expressed in the adiabatic basis, as

ε
(
Rc(t)

)
=

∑
j

|Cj(t)|2 ε
(j)
BO + ih̄

∑
j,k

C∗
j (t)Ck(t)Ujk, (23)

Aν

(
Rc(t)

)
= −ih̄

∑
j,k

C∗
j (t)Ck(t)d(1)

jk,ν . (24)

The electronic evolution equation (21) contains three dif-
ferent contributions: i) a diagonal oscillatory term, given
by the expression in square brackets in eq. (21) plus the
term in parenthesis in the first line of eq. (22); ii) a di-
agonal sink/source term, arising from the divergence of
the vector potential in eq. (22), that may cause exchange
of populations between the adiabatic states even if off-
diagonal couplings are neglected; iii) a non-diagonal term
inducing transitions between BO states, that contains a
dynamical term proportional to nuclear momentum (first
term on the second line of eq. (22)), as suggested in other
QC approaches [44–46], and a term containing the second-
order non-adiabatic couplings. In particular, the dynam-
ical non-adiabatic contribution follows from the classical
approximation in eq. (19) and drives the electronic popu-
lation exchange induced by the motion of the nuclei.

Equations (16) and (21) suggest a new MQC scheme,
beyond Ehrenfest dynamics. The electronic equation (21),
which is shown to be norm-conserving by explicit cal-
culation of the time derivative of

∑
j |Cj |2, contains

the TDPES, time-dependent vector potential and the
electron-nuclear coupling operator that are derived from
the exact equation (5) and determines the evolution of
the electronic subsystem. Hence, eqs. (22)–(24) properly
account for the coupling between the quantum (electrons)
and the classical (nuclei) subsystems. The classical Hamil-
tonian (14) governs the dynamics of the nuclear subsystem
and contains the scalar and vector potentials represent-
ing the quantum back-reaction of electronic non-adiabatic
transitions on nuclear motion. The MQC scheme derived
here introduces new contributions, both in the electronic
and in the nuclear equations of motion, if compared to
the Ehrenfest approach (see for instance the first line in
eq. (22) or the second term on the RHS of eq. (23)). The
study of the actual effect of these corrections shall be ad-
dressed by investigating a wider class of problems than
the simple model presented here. For instance, it would
be interesting to analyse those situations where the vector
potential plays an important role. This analysis goes
hand-in-hand with our ongoing investigation [43] for cases
where this exact vector potential cannot be gauged away.

Non-adiabatic charge transfer. – We employ this
new MQC scheme to study a simple model for which
the exact numerical solution is achievable. The original
model was developed by Shin and Metiu [47] to study non-
adiabatic charge transfer processes and consists of three
ions and a single electron. Two ions are fixed at a dis-
tance L = 19.0 a0, the third ion and the electron are free

noi dexifnoi dexif

L

R
r

ion electron0

Fig. 1: (Color online) Model system described by the Hamil-
tonian (25).
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Fig. 2: (Color online) First (red line) and second (green line)
BO surfaces, initial Gaussian wave packet (thin black line) cen-
tred at R0, indicated as a blue dot (it also indicates the classi-
cal initial position). The third and fourth BO surfaces (dashed
black lines) are shown for reference.

to move in one dimension along the line joining the two
fixed ions. A schematic representation of the system is
shown in fig. 1. The Hamiltonian of this system reads

Ĥ(r, R) = −1
2

∂2

∂r2 − 1
2M

∂2

∂R2 +
1

|L
2 − R| +

1
|L
2 + R|

−
erf

(
|R−r|

Rf

)
|R − r| −

erf
( |r− L

2 |
Rr

)
|r − L

2 | −
erf

( |r+L
2 |

Rl

)
|r + L

2 | ,

(25)

where the symbols r, R have been used for the positions
of the electron and the ion in one dimension. Here, M =
1836, the proton mass, and Rf = 5.0 a0, Rl = 3.1 a0
and Rr = 4.0 a0, such that the first adiabatic potential
energy surface, ε

(1)
BO, is coupled to the second, ε

(2)
BO, and the

two are decoupled from the rest of the surfaces, i.e. the
dynamics of the system can be described by considering
only two adiabatic states. The BO surfaces are shown in
fig. 2.

For this model we examine the performance of the
MQC scheme in comparison with the exact solution of the
TDSE, by using a single-trajectory (ST) and a multiple-
trajectory (MT) approaches, referred to as ST-MQC and
MT-MQC, respectively. The initial wave function is
Ψ(r, R, 0) = Gσ(R − R0)ϕ

(2)
R (r), where Gσ is a real nor-

malised Gaussian centred at R0 = −4.0 a0 with σ =
1/

√
2.85 a0 and ϕ

(2)
R (r) is the second BO state. The classi-

cal trajectory starts at R0 with zero initial momentum and
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Fig. 3: (Color online) Upper panel: populations of the BO
states as functions of time, for exact calculations (continu-
ous black line), ST-MQC (dashed orange line) and MT-MQC
(dashed cyan line). Lower panel: nuclear kinetic energy (in
Hartree) as a function of time (the color code is the same as in
the upper panel).

|C1(0)|2 = 0, |C2(0)|2 = 1. If multiple independent tra-
jectories (6000 in this case) are used, initial conditions are
sampled according to the Wigner distribution associated
to Ψ(r, R, 0). We propagate the TDSE numerically with
time-step 2.4 × 10−3 fs (0.1 a.u.), using the second-order
split-operator technique [48], to obtain the full molecu-
lar wave function Ψ(r, R, t). The electronic and nuclear
equations, in the MQC scheme, are integrated with the
same time-step as in the quantum propagation by using
the fourth-order Runge-Kutta and the velocity-Verlet al-
gorithm, respectively.

The populations of the BO states and the nuclear ki-
netic energy, as functions of time, calculated from the full
electron-nuclear wave function and from the MQC scheme
are presented in fig. 3. It is shown (upper panel) that the
MQC evolution (orange line, ST-MQC, and cyan line, MT-
MQC) is able to reproduce the branching of the popula-
tions of the electronic states after transitioning the avoided
crossing at t ∼ 12 fs, in perfect agreement with the quan-
tum calculations (black line). The use of multiple trajec-
tories allows to smoothen the transition, improving the
agreement between 10 and 15 fs. The nuclear kinetic en-
ergy (lower panel) from MQC calculations shows a good
agreement with exact results, though presenting a slight
deviation after the passage through the avoided crossing.
It is worth noting that a better agreement with exact cal-
culations is achieved within the MT-MQC scheme at ini-
tial (inset in fig. 3) and final times, where the nuclear
kinetic energy is not zero, due to the contribution of the
spreading of the quantum nuclear wave packets. The rea-
son of the deviation in the kinetic energy is the spatial
splitting of the nuclear density after passing through the
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Fig. 4: (Color online) Nuclear densities from exact calcula-
tions (black lines) and the MT-MQC scheme proposed here
(red lines), at different times as indicated in the plots. The
dashed black vertical lines indicate the mean nuclear position
from Ψ(r, R, t).

avoided crossing, that is not captured by the proposed
MQC scheme, due to the approximation considered above,
i.e. Cj(R, t) � Cj(t). Even though the delocalisation of
the nuclear wave packet is accounted for in a description
in terms of multiple independent trajectories, the classical
density does not develop a double-peak behaviour but is
always centred at the mean nuclear position. This is shown
in fig. 4, where the exact nuclear density (black line), cal-
culated from Ψ(r, R, t), is compared to the nuclear density
reconstructed from the distribution of classical positions
(red line). In the figure, the dashed vertical line indicates
the mean nuclear position calculated using Ψ(r, R, t).

According to previous analysis, [25,26] the splitting of
the nuclear wave packet is caused by the appearance of a
step in the TDPES that is strictly related to the spatial de-
pendence of |Cj(R, t)|2: the step producing the splitting
appears at the position where |C1(R, t)|2 = |C2(R, t)|2.
In our MQC approach, this dependence has been ne-
glected and the splitting of the nuclear wave packet is not
properly reproduced. Further developments will require
an adequate treatment of this spatial dependence in the
electronic evolution equation.

Conclusions. – We have shown that the exact factori-
sation of the electron-nuclear wave function is a promis-
ing starting point for the development of approximated
MQC schemes to deal with non-adiabatic processes. The
approach proposed in this paper is the lowest-order
approximation to the full quantum-mechanical problem.
It represents a first attempt toward the development of
a MQC method where the approximations can be intro-
duced step-by-step, starting from the exact formulation.
In the case presented here, the “parameter” h̄ is used
to tune the quantum-to-classical approximation: higher-
order terms can be easily included in our scheme, to go
beyond the purely classical approximation of nuclear dy-
namics. It is interesting to notice that some well-known re-
sults can be derived and refined in our formulation, as the
role of the classical momentum in inducing electronic non-
adiabatic transitions. Furthermore, the exact factorisation
provides the exact electronic back-reaction in the form of
time-dependent scalar and vector potentials, that lead to
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the derivation of a well-defined classical force: it contains
i) a purely “electromagnetic” term, representing the direct
effect of the electrons on the nuclei, and ii) an indirect con-
tribution, appearing as an additional inter-nuclear force.
Further developments will focus on investigating the prop-
erties of this force on a wide range of situations, e.g. when
nuclear quantum effects are not negligible, and testing its
effect under different conditions, e.g. in the presence of
conical intersections.
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