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1.  Introduction: nano magnetism and spin-STM

Nano magnetism is a very active field of research, which con-
tributes to the ever advancing developments of magnetic data 
storage [1–4] and to the emerging field of spintronics [5–9]. 
In addition to these applications, fundamental questions also 
raise the interest in both experimental and theoretical studies 
in nano magnetism. Magnetization reversal of single nano 
structures is an example where an ab initio based under-
standing on the electronic level has not been achieved yet 
[10–13]. In this respect, the magnetic characterization of indi-
vidual nano structures, with sizes in the range of nm, which 
contain hundreds to thousands of atoms is called for [14]. 
This is a demanding topic for both experiment and theory, and 
some novel aspects that point to the contribution of electron 
confinement and structural relaxation for the spatial variation 
of spin-dependent electronic properties of individual nano 
structures are presented here.

Our quantitative studies by spin polarized scanning tun-
neling microscopy (spin-STM) identify the role of spin-
dependent electron confinement for the spatial modulation 
of the spin-polarization at the surface of a Co nano struc-
ture [15]. This finding also has significant impact on spin-
dependent transport properties such as the tunnel magneto 
resistance and its spatial variation on a single nano structure 
[16]. These results indicate the spatial extent of an inverted 
spin polarization in nm proximity to the rim of the nano 
structure as compared to its center. Spatially inhomogeneous 
properties are also revealed in our quantitative analysis of 
magnetization reversal of individual Co nano islands [17]. 
Here, the analysis suggests that only the core of the Co island 
contributes to the magnetic anisotropy, whereas the Co rim is 
magnetically soft [17].

This peculiar behavior of the spatial variation of the spin 
polarization and of the magnetic anisotropy is changed by 
perimetric decoration of the Co rim. Upon decoration of the 
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bilayer Co island by Fe, we observe a constant sign of spin 
polarization throughout the Co core, and also all Co atoms 
contribute to the magnetic anisotropy.

It is the goal of this paper to use spin-STM to shed light 
onto the physical origin of the impact of perimetric deco-
ration on the magnetic properties of Co nano islands. We 
discuss the role of structural and electronic relaxation—and 
the lifting thereof—for the spatial dependence of the spin-
dependent electronic properties within an individual Co 
islands.

Before we discuss this correlation between structural 
relaxation and spin-dependent electronic properties in greater 
detail, we want to point out the necessity to characterize 
individual nano structures. There are a number of magnetic 
characterization techniques [18], and some give sufficient sen-
sitivity for the magnetic characterization of an assembly of 
nano structures by collecting integrated data over a larger sur-
face area. Examples are secondary electron microscopy with 
polarization analysis (SEMPA) [19–21], spin polarized low 
energy electron microscopy (SPLEEM) [22, 23], magneto-
optical Kerr-Effect (MOKE) [24, 25], and x-ray magnetic cir-
cular dichroism (XMCD) [26–28]. However, these techniques 
cannot image and identify single nano structures on the low 
nm scale. Thus, although the integral magnetic response, such 
as the area-averaged spin polarization, magnetic susceptibility 
or dichroic signal is possibly accessible by these techniques, 
its understanding in view of individual nano structure charac-
teristics is complicated by the distribution of sizes and shapes, 
which typically characterize an assembly of nano structures. 
Spatial characterizations within a single nano structure are 
beyond reach, but they are the realm of STM.

The issue of size and shape distributions of nano structures 
prepared by self organization is illustrated in the STM image 
in figure 1. The assembly of nano structures was formed by 
room temperature deposition of sub-monolayer quantitates 
Co on Cu(1 1 1). It reveals different morphologies over a 
50 nm wide area. Bilayer Co islands of different size, as well 
as extended Co stripes decorating an atomic step of the Cu 
substrate are observed. Spin-STM provides the required spa-
tial resolution to not only image these structures, but also to 
characterize the spin-dependent electronic structure within a 

single nano structure by spatially-resolved spectroscopy on 
the atomic scale. Here we present measurements in magnetic 
fields to extract the dependence of spin polarization and mag-
netization reversal on island size and perimetric decoration.

The study of the magnetic properties of individual nano 
structures reveals novel insights into magnetic anisotropy and 
magnetization reversal, which go far beyond what has been 
established for thin films and atomic layers [14, 29, 30]. The 
limited lateral extension of an individual nano structure on the 
nm scale brings about the decisive impact of lateral structural 
relaxation and reduced coordination when one strives for the 
electronic origin of the peculiar magnetic properties on the 
nanoscale.

The corresponding theoretical description is very 
demanding. Already for tiny nano structures with some thou-
sand atoms (several nm3), the self-consistent ab initio based 
structural and magnetic characterization, of e.g. the magnetic 
anisotropy, is beyond the capabilities of state of the art theory. 
Thus, it is of utmost importance to provide reliable experi-
mental data on the magnetic properties of individual nano 
structures for comparison with theory, and the corresponding 
data are presented here.

This paper is organized as follows. Experimental details 
are presented next, before we discuss the impact of spin-
dependent electron confinement on spin polarization in 
section 3. Section 4 addresses structural relaxation, its iden-
tification by spectroscopy, and the impact of perimetric dec-
oration for lifting structural relaxations near the boundary 
of a nano structure. Section  5 discusses the quantitative 

Figure 1.  3D view of a 45  ×  34 nm2 constant current STM image 
of bilayer Co islands and a Co-decorated step edge on a Cu(1 1 1) 
surface at 8 K (Ugap = + 0.1 V, It = 1 nA). The image illustrates that 
deposition of Co at 300 K leads to the formation of various nano 
structures. Individual bilayer Co islands of different sizes, and an 
extended Co stripe, decorating a monoatomic step of the Cu(1 1 1) 
substrate, are formed.

Co-deocorated 
monoatomic step

Figure 2.  (a) The UHV system includes a Janis [49] LHe cryostat 
(1), which contains a superconducting magnet for fields of up to 
7 T along the vertical direction. It also cools the STM by thermal 
contact with a LHe-cooled plate to 8 K. A long travel manipulator 
is used to lower the Omicron [50] STM into the cryostat. (b) View 
of the STM head. Both, sample and tip are exchanged in situ under 
UHV at room temperature in the UHV chamber located above the 
cryostat with the help of Ferrovac [51] wobble sticks. (c) Tip holder. 
(d) Sample plate. Note the bores for the handling with the wobble 
stick. Please consult reference [14] for further details.
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analysis of magnetization reversal in bilayer Co islands and 
Fe-decorated Co-islands in view of the magnetic anisotropy 
of the nano structure.

2.  Experimental aspects

STM has become the method of choice to characterize indi-
vidual nano structures in the size range from individual 
atoms and molecules up to several ten thousands atoms  
[31–35]. One peculiarly powerful aspect of STM is that it 
provides access to the electronic density of states of the tip-
sample system by differential conductance spectroscopy with 
atomic resolution [36–40].

The magnetic sensitivity of spin-STM exploits the depend-
ence of the conductance of the tunnel junction on the rela-
tive orientation of tip and sample magnetization [41–45]. This 
means that tips with a non-vanishing spin-polarization are 
prepared in spin-STM experiments.

2.1.  Low temperature spin-STM in magnetic fields

The results of the spin-STM experiments reflect the spin 
dependent electronic properties of both tip and sample. Thus, 
the identification of the magnetic state of the tip is required 
to draw reliable conclusions about the magnetic state of the 
sample. The analysis of spin-STM data benefits tremendously 
from the combination of the STM with a magnetic field. 
This ensures that the magnetic state of the tip can be irrefut-
ably characterized by exploiting the magnetic field induced 
changes of the differential conductance of the system [46–48].

As critical temperatures for nano magnetism are often of 
the order of several K, we combine a LHe cooled STM with 
a superconducting magnet, which produces a field of seven T. 
Figure 2 shows the experimental set up used in our laboratory.

An Omicron cryogenic STM [50] is combined with a Janis 
cryostat [49]. The STM head, shown in figure 2(b), is loaded 
with the tip, figure 2(c), and the sample plate, figure 2(d), under 
ultra high vacuum at room temperature. The sample plate can 
be moved vertically by 10 mm by s stick-slip piezo drive. This 
facilitates sample exchange without tip damage and it allows 
one to accommodate different tip lengths. The STM tip can be 
positioned laterally in both x and y directions by  ± 5 mm. The 
tip is fixed while the sample plate is scanned for the acquisi-
tion of a STM image. After sample and tip preparation, the 
STM is lowered into the cryostat and positioned at the center 
of a split-coil superconducting magnet, which produces a field 
of up to 7 T along the vertical direction. The STM cools down 
from 300 to 8 K within 12 h. At 8 K we obtain a maximum 
scan range of roughly 800  ×  800 nm2.

2.2.  Sample preparation in situ under UHV conditions

The Cu(1 1 1) crystal is cleaned by repeated cycles of ion bom-
bardment and annealing, as described previously [14, 15, 17]. 
The procedure gives several 100 nm wide atomically clean and 
flat terraces, which are separated by single layer atomic steps, 
as checked by STM at 300 K and after cool down at 8 K. Co is 
deposited onto the clean Cu(1 1 1) surface at 300 K at a rate of 
approximately 1 atomic layer in 2 min. The deposition of sub-
monolayer quantities leads to the formation of predominant 
bilayer high Co islands and decoration of step edges [52], as 
shown in figure 1. Subsequent sub-monolayer deposition of 
Fe under the same conditions leads to a perimetric decoration 
of the Co bilayer islands, and also to the formation of indi-
vidual bilayer and trilayer Fe islands. The resulting surface 
coverage is shown in figure  3. Spatially resolved tunneling 
spectroscopy of the differential conductance identifies Co and 
two Fe modifications, as illustrated for an Fe-decorated Co 
island in figure 4.

The identification of the different areas of the Fe-decorated 
islands by spectroscopy exploits the previous work on bilayer 
Co islands on Cu(1 1 1) and on Fe on Cu(1 1 1). We ascribe 
the spectroscopy peak near  − 0.3  V to a Co minority state 

Figure 3.  Overview of a constant current STM image obtained after 
subsequent deposition of sub-monolayer quantitates of first Co, and 
then Fe on Cu(1 1 1) at 300 K. Bilayer high Co islands are decorated 
by Fe. Fe grows in two phases, labeled Fe-a and Fe-b, which differ 
in their stacking. The elemental identification is performed by 
spectroscopy, as illustrated in figure 4. Note the formation of a three 
layer tall island, imaged in the center. Image size: 50  ×  50 nm2 
(Ugap = + 0.1 V, It = 1 nA).

Figure 4.  (a) Constant current STM image of an Fe-decorated 
Co island, the Co core is encircled by the dashed white line. (b) 
Differential conductance point spectroscopy measurements at the 
Co core (green cross), and the Fe-a (dark blue cross) and Fe-b 
(light-blue cross) area. The areas are identified by their respective 
peak energies: Co:  − 0.3 eV, Fe-a:  − 0.4 eV, Fe-b:  − 0.2 eV, as 
outlined in the text. Please refer to figure 9 for spatially resolved 
spectroscopy of pure and Fe-decorated Co islands.
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[15, 53, 54]. Fe forms two phases on Cu(1 1 1). They are dis-
criminated due to their different stacking with respect to the 
Cu substrate. Fe-a refers to Fe in fcc stacking, whereas Fe-b 
refers to topmost Fe-atoms in bridge positions. These phases 
have also been coined ‘fcc- and bcc-(like) Fe’, respectively 
[55, 56]. The spectroscopic identification of these Fe phases 
has been established with reference to the atomic structure of 
Fe on Cu(1 1 1) [55]. Maxima of the differential conductance 
near  − 0.2 and  − 0.4 V identify Fe-b and Fe-a, respectively.

2.3. Tips used in spin-STM

To obtain spin-contrast in STM, we use tips with a spin-polar-
ized apex. Recipes for preparing suitable tips are given in the 
literature [43, 44, 46, 47, 57, 58]. We use electrochemically 
etched W-tips, which are briefly heated to 2200 K under UHV 
conditions, as checked by an optical pyrometer. They are 
covered by either Fe, Co, Cr or combinations thereof. A film 
thickness of order 40–100 layers is deposited onto the tip, and 
annealed at roughly 600 K. Alternatively, bulk Cr tips are also 
used, and they are introduced into the STM as electrochemi-
cally etched from a Cr rod ex situ [47].

The tips used in the spin-STM are investigated by field ion 
microscopy to check the atomic structure at the apex and to 
independently establish the film thickness from field evapora-
tion [59]. The spin polarization of field emitted electrons from 
the tips has been studied by spin polarization analysis with a 
Mott-detector [60]. These characterizations confirm and quan-
tify the spin-polarization of electrons emerging from the tip 
apex, in agreement with the corresponding analysis of the spin 
polarization presented in section 3.

For all tips, we scrutinize the presence of a spin-polarized 
tip apex in situ by measuring the differential conductance on 
Co islands while changing the external magnetic field along 
the sample normal. Previous spin-STM work has revealed the 
easy magnetization direction out-of-plane of these Co nano 
islands [61]. We exploit the variation of the differential con-
ductance as a function of field to obtain a magnetic hysteresis 
curve of a single nano structure. This procedure is described 
in the following.

2.4. The extraction of switching fields and spin polarization 
from spin-STM data

One key feature of the magnetic characterization is the clear 
identification of states of so-called parallel (P) and anti-parallel 
(AP) magnetization orientation of tip and sample. The mag-
netic field induced transition between these states gives the 
largest magnetic contrast in the differential conductance [41, 
62, 63]. The comparison of the spectroscopy signal of both 
states is the basis to extract the spin polarization of the system.

The tunnel current and also the differential conductance 
depend on the relative orientation between the magnetization 
of tip and sample [41, 42, 62], and this dependence gives the 
spin-dependent contrast in STM. The underlying physical 
principle is known as tunnel magnetoresistance (TMR), and 
it is also the basis for the functionality of e.g. modern sensors 
[3, 64, 65]. The external magnetic field is controlled to change 

the relative magnetization orientation between tip and sample 
[46], inducing a corresponding change of the tunnel current 
and the differential conductance. The change of the latter in 
response to the field is shown in figure 5 for measurements 
on the center of a larger and smaller bilayer Co island at 8 K.

The main feature of the spectroscopy signal is a peak 
around  − 0.3  eV, which is ascribed to a Co minority state 
[53]. With a change of field we see that the peak intensity and 
also the shape of the spectroscopy curve change. We plot the 
signal change at  − 0.5 V in figure 5(b) and obtain hysteresis 
curves [66] of the differential conductance for both islands, as 
shown in figure 5(c). Note, that the inner part of the hysteresis 
curves around zero T is similar for both islands, whereas the 
sharp signal change is observed at a larger field of 1.6 T for 
the larger island, as compared to 1.2 T found for the smaller 
island. The smooth signal variation for small fields around 0 T 
is ascribed to the response of the tip to the magnetic field.

The response of the magnetic state of the tip to the field 
can also be different. We also observe bi-stable tips and tips 
of constant magnetization orientation [46]. Our empirical 
observations tell us that the tip behavior is not conclusively 
determined by the macroscopic tip preparation. Rather, the 
tip response to the field is largely determined by microscopic 
changes at the tip apex [46, 48].

Figure 5.  Comparison between topography and spatially resolved 
spectroscopy between pure Co (top row) and Fe-decorated bilayer 
Co islands (bottom row). Constant current STM images of a 
pure Co bilayer island in (a) and of a Fe-decorated Co island in 
(c) (Ugap = + 0.1 V, It = 1 nA). The images show an arrow, along 
which position dependent spectroscopy data of the differential 
conductance were taken. The spectra are shown for the pure 
Co and the Fe-decorated Co island in (b) and (d), respectively. 
They are shifted vertically for clarity. Whereas the data for 
pure Co show a sizable shift of the peak at  − 0.3 eV to more 
negative values upon transition towards the edge of the island, the 
corresponding peak position measured on the Fe-decorated Co 
island does not show any appreciable shift up to the border with 
Fe. See text for the discussion.
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Our example of figure 5 indicates that both components, tip 
and sample respond to the magnetic field. At small fields the 
tip magnetization follows the direction of the magnetic field, 
and at a critical value, the so-called switching field, the island 
magnetization direction reverts from anti-parallel to parallel 
to the magnetic field, causing a sharp signal change. We 
extract switching fields of Co and Fe-decorated Co islands for 
different island sizes, and the quantitive analysis reveals the 
magnetic anisotropy of the islands, as discussed in section 5.

The discussion of the TMR effect [41, 62] reveals that the 
spin polarization of both tip and sample determines the mag-
netic contrast. With respect to figure 5(c) this means that the 
observation of a difference in the differential conductance 
between a parallel and an anti-parallel spin alignment of tip 
and sample indicates a non-zero spin polarizations of both tip 
Ptip and sample Psample.

The asymmetry of the differential conductance A is related 
to the spin polarization of the system. We have AdI/dV =(dI/d 
VAP − dI/dVP)/(dI/dVAP + dI/dVP) = − PtipPsample [15, 44]. Based 
on this relation we obtain the spin polarization of the system 
from measurements which were performed for parallel (P) and 
anti-parallel (AP) magnetization states. Maps of the asym-
metry, calculated from the corresponding differential con-
ductance, are analyzed in the next section to characterize the 
spatial dependence of the spin-polarization. The asymmetry 
signal shows a pronounced energy dependence [47, 67, 68]. 
We compared the energy dependence of the experimental 
asymmetry with that of the calculated spin-polarization (see 
supplementary online material of reference [15]). This anal-
ysis confirms that the asymmetry signal is indeed related to 
the spin-polarization of the sample, provided that the the spin-
polarization of the tip is taken into account.

3.  Spin-dependent electron confinement

The comparable magnitudes of the Fermi wave length, i.e. 
the wavelength of an electron at the Fermi energy, and the 
lateral dimensions of nano structures cause interference 
effects, which drive a pronounced spatial modulation of the 
electronic density of states within a nano structure [38, 69]. 
Experimentally, these modulation are observed in maps of the 
differential conductance [32, 53, 70, 71].

Electron confinement is a spin-dependent phenomenon 
[72]. Theory has revealed that pronounced spatial oscillations 
of the spin-resolved local density of states are to be expected 
[73]. Figure 6 provides examples for maps of the differential 
conductance measured close to the Fermi energy at  + 0.03 eV 
for states of antiparallel (AP) and parallel (P) alignment of tip 
and sample magnetization.

The maps reveal a pronounced spatial oscillation of the 
differential conductance, where the spacing between rows of 
minima is of order 2.5 nm for both maps. We can immedi-
ately conclude that the Fermi wavelength is of order 5 nm, as 
interference extrema in a standing wave pattern are spaced at 
half wavelength. A more stringent analysis of the dispersion 
relation is possible by analyzing the modulation patterns as 
a function of energy, and it confirms this estimate. We find 
that the modulation patterns are observed only for an energy 

above  − 0.18 eV, and we observe that the modulation wave-
length gets shorter with increasing energy. The corresponding 
energy dispersion relation can be approximated by a parabolic 
dispersion up to an energy of  + 0.3 eV, where the dispersion 
gets significantly flatter [74, 75].

We stress two important observations [15]. Firstly, the 
modulation maps of AP and P states vary in their contrast. 
The contrast is more pronounced for the AP state. Secondly, 
the modulation pattern does not extend to the edge of the 
island, but it appears to be limited to the inner core, with no 
periodic modulation in the outermost rim of approximately 
1–2 nm width.

We apply the theoretically derived relation between the 
asymmetry of the differential conductance and the spin polari-
zation introduced above in section 2.4 to perform image math 
to obtain a map of the differential conductance asymmetry. 
The result is shown figure 6(d). We see that the asymmetry 
is modulated around positive values in the core region of the 
Co island, and it shows a negative value in the rim area. In a 
previous publication we have shown that we can ascribe the 
map of the asymmetry to a map of the spin polarization above 
the Co island. We are led to this conclusion by the favorable 
agreement between the experimental asymmetry maps and 
calculated maps of the spin polarization at a height of 0.5 nm 
above the surface, which reflects the tip-sample distance in the 
experiment [15].

One example of the favorable correspondence between 
calculated spin polarization and experimental asymmetry is 
presented in figure 7. Our calculations are based on density 
functional theory implemented in the multiple-scattering 
Korringa–Kohn–Rostoker Greens function method [15]. 
Thus, we calculate spatially resolved maps of the LDOS 

Figure 6.  Magnetic characterization of bilayer Co islands in 
magnetic fields along the sample normal at 8 K. The differential 
conductance measured at the center of a large (a) and a small island 
(b), imaged in (a), changes in response to the field, as indicated in 
(b). The signal change at  − 0.5 V as a function of field is plotted 
in (c), and it reflects a magnetic hysteresis curve of a single nano 
island. The larger island shows the larger switching field. The small 
sketches indicate anti-parallel (AP) and parallel (P) states of sample 
and tip magnetization. The arrows indicate the sequence of field 
change.
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above a triangular two-atomic-layer Co island on Cu(1 1 1) for 
majority and minority states, and from this we derive the cal-
culated asymmetry map shown in figure 7.

We compare the experimental asymmetry data along a line 
scan to the calculated spin polarization along a corresponding 
line scan of the model system. We see that both experiment 
and theory find a pronounced spatial modulation in positive 
values of the signals in the inner part of the Co island. This is 
ascribed to the larger majority density of states at the Fermi 
energy, as compared to that of the minority states. This gives 
a positive spin polarization. As the experimental asymmetry 
signal is given by  − PtipPsample, we conclude that a favorable 
agreement between experiment and theory is given for a spin 
polarization of the tip of  − 0.1.

This result and also the successful description of the energy 
dependence of the asymmetry signal in view of the variation of 
the spin polarization with energy as discussed in [14, 15] indi-
cate that the asymmetry of the differential conductance can 

be quantitively related to the spin polarization of the sample. 
Thus, the spatial variation of the spin polarization on the nm 
scale is accessible and can be mapped with unsurpassed spa-
tial resolution by spin-STM.

The pronounced spatial modulation of the asymmetry 
maps reveals that electron confinement is a spin-dependent 
phenomenon [15, 72]. Majority and minority electrons of the 
Co are affected differently by electron confinement. Our data 
indicate that electron confinement acts mainly on the majority 
electrons. This is a plausible result, as majority electrons in the 
Co bilayer are of sp-character, whereas the minority electrons 
are of d-character. The more pronounced spatial localization 
of d-electrons renders them less susceptible to confinement 
effects as compared to sp-electrons.

The different sign of the asymmetry at the rim of the island, 
as shown in figures 6(d) and 7(a), points at a spatial variation 
of the electronic structure from the island center towards the 
island edge [71]. Experimentally, we characterize this varia-
tion of the electronic structure by position dependent differen-
tial conductance measurements. The spectroscopy data shown 
in figure 9 below and discussed in section 4 corroborate the 
impact of structural relaxation on the electronic structure. The 
data are in line with the assumption of larger Co-Co bond 
length at the island center as compared to the island edge.

In an effort to modify the peculiar spin-dependent elec-
tronic properties near the edge of the Co bilayer island, we 
decorate its perimeter by room temperature deposition of sub-
monolayer amounts of Fe. Fe forms a bilayer high decoration, 
surrounding the Co core. An assembly of Fe-decorated Co 
islands is shown in the constant current image of figure 3 above.  

Figure 7.  Maps of the differential conductance measured in a field 
of  − 1.1 T at 8 K near the Fermi energy (Ugap = + 0.03 eV) for anti-
parallel (AP) (b) and parallel (P) (c) states, for the bilayer Co island 
imaged in (a). Spatial modulation are observed in the inner part of 
the island. Calculated asymmetry of the differential conductance 
in (d) from maps (b) and (c) by image math: asymmetry= (map(b)-
map(c))/(map(b) + map(c)). Note the inverted asymmetry signal 
close to the Co rim within the Co island. This differs sharply from 
the asymmetry signal of the Fe-decorated Co island shown below 
in figure 8, which lacks the inverted asymmetry towards the Co 
rim. The dashed line in (d) shows the topographic border of the Co 
island of (a) as given by the line of half apparent height.
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results of figure 6, where already in nm proximity to the Co edge 
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Fe and Co are clearly identified by their respective spectro-
scopic signatures [53, 55], as shown in figure 4, which also indi-
cate an atomically sharp transition from Co to Fe in figure 9.

This perimetric decoration of the Co core changes the spin-
dependent electronic properties near the Co rim, and we dem-
onstrate this in the maps of the differential conductance and 
the asymmetry, which are presented in figure 8.

In sharp contrast to the images presented above in figure 6 
we find that the modulation of the differential conductance in 
figures 8(b) and (c) now extends all over the Co area. Upon 
decoration, the Co boundary does not show up as a region 
of lacking modulation of the differential conductance. Also, 
the asymmetry in figure 8(d) reveals an electron-confinement 
induced modulation, which extends all the way to the edge of 
the Co region. We do not observe a rim area of inverted asym-
metry, as shown above in figure 6(d) for the pure Co island.

This example shows that we can tune the spatial variation 
of the spin-dependent electronic properties of an individual 
nano structure by decoration. This has significant implications 
for spin-dependent transport, where we expect a much more 
spatially homogenous behavior of the TMR as compared to 
that measure on a pure Co island [65].

We ascribe the impact of Fe decoration on the modified 
spatially resolved spectroscopy to the change of structural 
relaxation upon Fe decoration. This view is corroborated by 
our observation in figure 9 of spatially constant energy posi-
tions of the minority related 3d-electronic state of Co. Peak 
shifts and electronic rim states are not observed upon Fe 
decoration, and this indicates spatially constant bond lengths 
within the Co core.

In order to arrive at an electronic picture of the underlying 
physics, we compare the spatial dependence of the differen-
tial conductance of a pure and a Fe-decorated Co island in 
figure 9 [76]. In the following Section we provide a flavor for 
the main issue.

4.  Structural relaxation and position dependent 
electronic structure

In contrast to epitaxial atomic layers, where lattice misfit, 
epitaxial strain, vertical layer relaxation are well defined 
properties [29, 77, 78], for individual nano structures spatial 
variations of the atomic structures are expected [79, 80] and 
experimentally observed [81–83]. Here, structural and elec-
tronic relaxations on the nanoscale are driven by uncompen-
sated forces and reduced coordination at the boundary of a 
nano structure. As a result, both atomic positions and electronic 
structure show a pronounced spatial dependence [54, 84, 85]. 
Thus, any appropriate description of spin-dependent proper-
ties stringently requires the consideration of these effects. 
Note, that concepts such as strain and layer relaxation need 
to be applied with considerable care, as the atomic distances 
vary throughout a single nano structure, and the description by 
a oversimplified strain concept appears questionable. Rather, 
the description in view of mesoscopic misfit [80, 86] appears 
to be better suited to address the peculiar bonding situation in 
nano structures.

The previous and the following Section  provide experi-
mental evidence that spin-polarization and magnetic anisot-
ropy in the rim region of individual Co bilayer islands are 
drastically changed upon perimetric decoration. The spin-
polarization becomes spatially more homogeneous, and 
the magnetic anisotropy of the Co core is reduced upon Fe 
decoration.

Here we exploit the spatial resolution of the STM to inves-
tigate the position dependence of the differential conductance 
signal [54] within pure and Fe-decorated Co islands. These 
data provide compelling evidence that structural relaxations 
in the Co core are lifted upon decoration.

The data of figure 9(b) reveal that the energy position of the 
peak of the differential conductance, which is related to the 
Co minority states, located near  − 0.3 eV at the island center, 
shifts to more negative values towards  − 0.4 eV close to the 
island edge [54]. Near the island edge, a novel electronic fea-
ture appears in spectroscopy as a peak at the Fermi energy, 
which has been coined rim state [71]. Where it is observed, 
the intensity of the peak near  − 0.4 is strongly suppressed.

We ascribe this spatial dependence of the spin-dependent 
electronic structure in an individual nano island to the impact 
of both, lattice relaxation and reduced coordination. Previous 
combined experimental and theoretical studies have identified 
the intimate link between structural relaxation and electronic 
structure for this [54] and a related system [85], and we focus 
on the structural relaxation first.

Figure 9.  Comparison of a line scan through the asymmetry map 
of figure 6(d) in (a) and the calculated spin polarization in (b). Plot 
(c) reveals that a favorable agreement between the experimental 
curve (black, left scale) and the calculated spin polarization (red, 
right scale) can be achieved for a tip spin polarization of  − 0.1, as 
explained in the text.
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The observed shift of the peak energy to more nega-
tive values towards the island edge for the island shown in 
figure 9(a) with a base length of 12 nm can be ascribed to a 
corresponding reduction of the in-plane Co–Co atomic dis-
tance. We present the relation between the average Co–Co 
bond length of Co islands of different size and the peak energy 
shift in figure 10, as extracted from the published data [54]. 
The plot shows as a dashed line the Co–Co bond length of 
2.556  Å, which serves as a reference indicating the bond 
length in pseudomorphic positions on Cu(1 1 1). At this bond 
length a peak energy of  − 0.3 eV is observed. The plot reveals 
that a shift of peak energy to more negative values indicates a 
shorter Co–Co bond length.

The calculations indicate that the Co–Co bond length 
at the center of a 15  nm size island approaches the value 
indicative of pseudomorphic growth on Cu(1 1 1). This 

gives a nearest neighbor distance of =a
1

2
2.556Cu  Å, with 

aCu = 3.615 Å. However, near the island edge a reduced bond 
length of  ≈ 2.51 Å is found in the calculations. This reduced 
bond length leads to a peak energy shift of  − 0.07  eV. The 
structural relaxation reflects the tendency of epitaxial misfit 
stress to reduce the Co–Co bond length. This stress is driven 
by the tensile misfit of η = (aCu  − afccCo)/afccCo = + 1.89 %, 
with afccCo = 3.548  Å[87]. As a result, atomic positions 
change throughout the nano structure, as stresses acting at the 
boundary of the structure differ from those acting at the island 
center, and this drives a spatially varying structural relaxation, 
which affects both topmost and the interface layer in con-
tact with Cu. Note that topmost and interface Co atoms may 
respond differently to the stress, and the notion of a strain to 
characterize the bond length on individual nm small islands 
may be too simplistic. Thus, a complex atomic relaxation is 
expected, and it is linked to the spatial dependence of the elec-
tronic structure, as observed here.

A further contribution which modifies structural and elec-
tronic properties is the reduced coordination. The lack of 
bonding partners inevitably affects all atoms at the boundary 
of any structure. Whereas an atom within a fcc material is 
surrounded by twelve nearest neighbors, this coordination 

shrinks to nine for atoms at the (1 1 1) surface, and to seven 
for an atom at the ridge of an (1 1 1) island. This reduced coor-
dination leads to an electron redistribution. This influences the 
atomic spacings, which often get shorter, and it gives rise to 
surface stress, which is generally tensile [88, 89]. Thus, the 
position dependence of the electronic properties, and conse-
quently of the atomic structure, is a general phenomenon for 
nano structures, and it is not limited to epitaxially strained 
systems [86].

The decisive difference of the position dependent spec-
troscopy data in figure 9(d) as compared to the data shown in 
(b) is an almost constant energy position of the spectroscopy 
signal from the Co core towards the border upon Fe decora-
tion. This contrasts with the substantial shift in peak energy 
for the corresponding transition from the center towards the 
edge of the pure Co island. Also, the electronic signature of 
the rim state as a peak at the Fermi energy is only observed for 
the pure Co island, but not for the Fe decorated island.

These observations support the conclusion that structural 
and electronic relaxation of a pure Co islands are substantially 
suppressed in the Co core of the decorated island. We dem-
onstrate in the following section, that also the magnetization 
reversal and magnetic anisotropy of the Co islands are heavily 
affected by the decoration, leading to a reduced magnetic ani-
sotropy of the Co core upon decoration.

5.  Magnetization reversal of bilayer islands

We have analyzed the magnetization reversal of bilayer Co 
islands of different sizes by extracting the switching field Hsw 
from the sharp signal drop of the magnetic hysteresis curves 
measured on individual Co islands [14, 17]. This approach is 
discussed above in section 2.4 and indicated in figure 5(c).

We find that the switching field of bilayer islands changes in 
a non-monotonic manner with island size. For pure Co bilayer 
islands (Fe-decorated Co islands) containing up to some 
7500 (4000) atoms we find that the switching field increases 
with island size, whereas it decreases for larger islands. This 
behavior is observed for both pure and Fe-decorated bilayer 

Figure 10.  Relation between the average Co–Co bond length of 
a bilayer Co structure on Cu(1 1 1) and the shift of peak energy 
of the 3d minority state of Co. The data are extracted from a 
previous study [54]. The dashed line indicates the Co bond length 
of 2.556 Å, representing pseudomorphic growth. The blue line is a 
guide for the eye. The peak energy shifts to more negative values 
with decreasing bond length.

0.255

0.254

0.253

0.252

0.251C
o-

C
o 

bo
nd

 le
ng

th
 (

nm
)

-0.06 -0.04 -0.02 0.00

Peak energy shift (eV)

Figure 11.  Compilation of switching fields of Co (cyan) and Fe-
decorated Co (red) bilayer islands on Cu(1 1 1), measured at 8 K.

S
w

itc
hi

ng
F

ie
ld

(T
)

2.5

2.0

0.0

0.5

1.0

1.5

0 5000
N (atoms)Co

10000 15000

Fe-decorated Co islands
pure Co islands

J. Phys.: Condens. Matter 26 (2014) 394008



D Sander et al

9

Co islands, as shown in figure 11. This size dependence of 
the switching field reflects a general trend due to thermally 
assisted magnetization reversal [90–93], and its physical 
origin can be rationalized as follows.

In smaller islands the total magnetic anisotropy is small, 
and the thermal energy determines the temporal evolution of 
a magnetic state. As a consequence, very small islands show a 
superparamagnetic response with vanishing switching fields. 
With increasing island size the magnetic state acquires tem-
poral stability, and the switching field increases. It approaches 
the value 2K/Ms(K: magnetic anisotropy, Ms: saturation mag-
netization), as given as the maximum possible switching field 
due to magnetization rotation of a single domain particle in 
the Stoner–Wohlfarth picture [94]. In larger islands, other 
reversal processes are conceivable, and the switching field 
decreases with increasing particle size [2].

Although the switching field data of figure 11 show con-
siderable scatter, we observe that the switching fields tends 
to increase upon Fe decoration as compared to the pure Co 
case for a Co island size of up to 4000 atoms. At first sight 
one might be tempted to conclude that an increased switching 
field implies a larger magnetic anisotropy. However, this con-
clusion would be wrong, as only the extraction of the energy 
barrier of reversal allows a reliable conclusion about the mag-
netic anisotropy [17].

This analysis in the framework of the Néel-Brown descrip-
tion of thermally assisted reversal gives the energy barrier of 
magnetization reversal ΔE in dependence of island size [17], and 
the result is shown in figure 12. This analysis reveals the energy 
barrier can be described by linear relation with respect to the 
island size. The slope of the curve gives the magnetic anisotropy.

For pure Co islands the data are represented by the 
solid line in cyan. Its slope gives a magnetic anisotropy of 

0.148 ± 0.005  meV/atom. Surprisingly, this line shows an 
offset, and it intersects the x-axis near 870 atoms. We ascribe 
this to the number of atoms, which do not contribute to the 
magnetic anisotropy. It appears plausible to localize the atoms 
of vanishing magnetic anisotropy at the rim of the island, 
within a stripe of width 1–4 atoms [17].

Previously, it has been proposed that edge atoms exhibit a 
higher magnetic anisotropy, due to their reduced coordination 
[95]. Our present work shows that coordination effects are 
comparably less important. Rather, the magnetic properties of 
Co islands on Cu(1 1 1) appear to be affected by structural and 
electronic variations near the island edge.

The data for the Fe-decorated island show a very dif-
ferent behavior. The slope of the curve representing a linear 
fit through the data points indicate a magnetic anisotropy of 
0.115 ± 0.005 meV/atom, 22% percent less than for pure Co 
islands. Remarkably, the fit extrapolates to zero, and there is 
no indication of a sizable offset. This is in sharp contrast to the 
result obtained for the pure Co islands.

How can we understand this change of the magnetic anisot-
ropy of the Co island upon decoration? We ascribe this change 
of the magnetic anisotropy to the decoration-induced lifting of 
the structural relaxation near the edge of the Co core and to 
the corresponding change of the electronic structure, as dis-
cussed above in section 4. The following outlook addresses 
the intriguing correlation between structural relaxation and 
magnetic properties of individual nano structures.

6.  Conclusion and outlook

The spin-polarization within single nm small bilayer nano 
structures has been mapped and quantified by spin-STM. The 
maps reveal that the spin-polarization at the Fermi energy of a 
bilayer Co island on Cu(1 1 1) is inverted to negative values in 
a nm wide rim near the island edge as compared to the island 
center, where it is positive. The decoration of the Co core by 
Fe lifts the inverted spin polarization, and the same sign of spin 
polarization is observed throughout the island. Magnetic field 
dependent tunneling spectroscopy has been applied to measure 
the switching fields of individual nano islands in dependence 
of their size. The quantitive analysis reveals a magnetic anisot-
ropy of 0.148 ± 0.005 meV/atom, where Co atoms at the rim of 
the island show a vanishing small magnetic anisotropy. Upon 
Fe-decoration, all Co atoms contribute to the magnetic anisot-
ropy with a reduced value of 0.115 ± 0.005 meV/atom. A spa-
tially resolved study of the electronic structure of individual 
islands by differential conductance spectroscopy suggests the 
lifting of structural relaxation in proximity to the island edge 
upon Fe decoration. In view of the data we speculate that relax-
ation phenomena of the electronic and geometric structure near 
the boundary of a nano structure are the key aspects to under-
stand the role of perimetric decoration in this system. From 
this we infer that the magnetic anisotropy of a nano structure is 
severely impacted by spatial variations of both spin-dependent 
electronic properties and structural relaxations.

But what is the link between structural and electronic 
relaxation and magnetic anisotropy and spin-polarization of 

Figure 12.  Energy barrier ΔE of magnetization reversal in 
dependence of island size given by the total number of Co atoms 
NCo. The data for pure Co islands are described by a linear fit, and 
only this line (cyan) is shown for clarity. The complete description 
is given in [17]. The linear fit shows an offset N0 at the intersection 
with the horizontal axis. The data of Fe-decorated Co islands 
(red) extrapolate through the origin of the plot, and they are well 
described by a linear relation. The slopes of the linear fits give the 
magnetic anisotropy of the systems.
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a nano structure? Ab initio calculations provide insights into 
the electronic origin of the strain dependence of the magnetic 
anisotropy. A strain-driven charge transfer between electronic 
states of different symmetry near the Fermi energy is a pivotal 
aspect [96–98].

Clearly, atomic bond lengths and magnetic anisotropy are 
linked by magneto elastic coupling. However, a word of cau-
tion seems to be well justified. Although it is well established 
for bulk samples and for atomic layers that bond-length vari-
ations and magnetic anisotropy are intimately linked via mag-
neto elastic coupling [29, 98–102], the reliable application of 
the corresponding description for individual nano structures 
has not been established yet. To appreciate this situation it is 
necessary to recall that the theoretical modeling of magneto 
elasticity is very demanding, even for bulk samples and even 
more so for strained atomic layers [102]. Local variations of 
bond lengths, such as expected here, may bring this descrip-
tion to its limitations. In view of these structural relaxations 
and due to the interface nature of all atoms involved in a bilayer 
nano structure, we conclude that the application of magneto 
elastic data obtained for bulk and even for strained atomic 
layers to individual nano structures appears questionable.

Rather, a self-consistent theoretical description of both 
structural and spin-dependent electronic properties is called 
for to advance our understanding of the relevant processes on 
the electronic level. Corresponding calculations for an island 
with some thousand atoms appear to be beyond present capa-
bilities. Our data may provide a reference for future work in 
this direction.
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