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Tuning the Dirac Point Position in Bi,Se;(0001) via Surface Carbon Doping
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Angular resolved photoemission spectroscopy in combination with ab initio calculations show that trace
amounts of carbon doping of the Bi,Se; surface allows the controlled shift of the Dirac point within the
bulk band gap. In contrast to expectation, no Rashba-split two-dimensional electron gas states appear. This
unique electronic modification is related to surface structural modification characterized by an expansion of
the top Se-Bi spacing of ~11% as evidenced by surface x-ray diffraction. Our results provide new ways to
tune the surface band structure of topological insulators.
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Three-dimensional topological insulators (TIs) are non-
magnetic semiconductors that host metallic surface states
originating from a bulk energy band gap inversion driven by
spin-orbit coupling [1-3]. These topological surface states
(TSSs) form a Dirac cone in which the spin of an electron is
locked perpendicular to its momentum thus being protected
from the elastic backscattering, a property provided by time-
reversal symmetry. In such a way, TSSs are robust against
disorder or perturbation, which respects time-reversal sym-
metry. This has been confirmed by scanning tunneling
microscopy and spectroscopy experiments on the random
alloy Biyg,Sbgog [4] surface, and defected Bi,Se; and
Bi,Te; surfaces [5—7]. This remarkable property of topo-
logical protection makes TIs potentially promising materials
for realization of dissipationless spin transport [8,9].

Topological protection also manifests itself in the experi-
ments where various adsorbates have been deposited. It has
been shown recently [10], that the TSS remains unchanged
until the concentration of adatoms reaches the level at
which the Fermi surface contours acquire strong hexagonal
warping, regardless of whether the adsorbates are magnetic
or nonmagnetic. Several photoemission studies have
shown the appearance of the two-dimensional electron
gas (2DEG) states at the Bi,Se; surface exposed to
molecules [11-13] or various adatoms [13—17]. In particu-
lar, the parabolic bands with a Rashba splitting are formed
in the energy gap just below the bulk conduction band.
Overlapping with TSS in a certain energy range, these
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spin-polarized states represent a natural scattering channel
for the TSS carriers. This can degrade transport character-
istics of the adsorbate-covered TI surfaces as compared to
the clean ones, hampering their possible application in
devices based on the topological spin currents.

In this Letter, we show for the first time that dosing of the
TI surfaces with a certain kind of adsorbate not only avoids
the appearance of undesirable states in the band gap, but
even can be used for tuning the TSSs. The latter is feasible
via the controllable expansion of the first interlayer spacing
(dy») which can be achieved, e.g., by doping the Bi,Se;
surface with carbon. Indeed, the surface x-ray diffraction
(SXRD) experiments and ab initio calculations revealed
that carbon atoms penetrate inside the topmost quintuple
layer (QL) of Bi,Se; and induce an expansion of
Ad,,/d\y ~ 11%. Further angle-resolved photoemission
spectroscopy (ARPES) measurements found no evidence
of the Rashba-split 2DEG states, but instead featured an
upward energy shift of the Dirac point (DP) inside the bulk
band gap, in agreement with ab initio electronic structure
calculations. These results show that the DP position inside
the TI band gap can be controlled by virtue of specific
surface doping. Since the latter does not involve the
formation of undesirable trivial states in the TI band
gap, such an approach makes the adsorbate-covered TIs
attractive for possible applications.

The Bi,Se; samples were grown by the Bridgman
method. After transfer into the ultrahigh vacuum (UHV),
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the surface was cleaned by mild Ar' ion sputtering
(E=0.5-1 keV) followed by annealing up to 470 °C.
The surface is clean on the basis of Auger electron
spectroscopy (AES) and exhibits a high contrast low-energy
electron diffraction pattern with sharp spots reflecting the
p3ml plane group symmetry. Doping of the as-prepared
surface by carbon was carried out by dosing 8.4 x 10* L
(1 L = 107 Torrs) of C4H under simultaneous irradiation
with electrons (Ey;, = 500 eV) emitted from a flood gun
(sample current 600 uA). We emphasize that the latter
induces the cracking of the C;Hg molecules leaving carbon
atoms in the near-surface region. Dosing of C,Hg alone is
not sufficient to deposit carbon in detectable amounts. The
SXRD experiments were carried out in situ in an UHV
surface x-ray diffractometer equipped with a microfocus
x-ray source (Cu-Ka) and a two-dimensional (2D) pixel
detector [18]. Laboratory (LAB) experiments were com-
plemented by experiments at the beam line 25B of the
European Synchrotron Radiation Facility (ESRF) in
Grenoble (France) also using 2D detector and 14 keV x rays.

In Figs. 1(a) and 1(b) symbols and lines correspond
to the experimental (|Fy(hk?)|) and calculated
(|F cale (hkZ)|) structure factor amplitudes along four crystal
truncation rods (CTRs) of the clean Bi,Se;(0001) surface.
Data taken at the ESRF (a) and in the LAB (b) were derived
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FIG. 1 (color online). Experimental (symbols) and calculated
(lines) structure factor amplitudes |F(hkZ)| along four CTRs,
10¢,01¢,20¢, and 11¢, for the clean Bi,Se;(0001), as measured
at the ESRF (a) and in the LAB (b), as well as those for carbon
doped Bi,Se;(0001) as acquired in the LAB (c). Curves are
shifted for clarity.

from the integrated intensities [[(hk?)] with /I(hk?)
|Fops(hk?)| collected under grazing incidence [a; = 0.3°
(LAB) and «a; = 1.0° (ESRF)] of the incoming beam.
According to the hexagonal setting of the rhombohedral
crystal structure bulk Bragg reflections appear at the
condition —h +k+ ¢ =3n (n € Z). Several LAB data
sets were collected, in general each consisting of about 160
symmetry independent reflections. The ESRF data set
consists of 1079 reflections along five CTRs. The ESRF
and LAB data are remarkably reproducible.

Uncertainties (1o) of the |F,,(hk?)| represented by the
error bars were derived from the counting statistics. Fits
were carried out by minimizing the unweighted R value
(R,) [19]. Since selenium and bismuth occupy high site
symmetry positions in the p3m1 plane group [20], only the
z parameters of the atoms (one independent atom per layer)
are free structural parameters. In addition, one overall
isotropic Debye parameter B = 87(u?) was allowed to
vary, where (u?) represent the mean squared displacement
amplitude. Good fits could be achieved. We obtain R, in
the range between ~12% and 14%.

Figure 2 shows a schematic structure model in side view.
On the right the relaxations of the interlayer spacings
relative to the bulk [20] are indicated. Relaxations are found
to be significant within the uppermost QL layer only. The
structure parameters derived from the ESRF and LAB
data for the un-doped sample are in good agreement,
especially with regard to the top interlayer expansion
Adyy/d5. Tt is +1.8% for ESRF and +2.7% for the
LAB data (d;, = 1.578 A). There is also some evidence
for a slight contraction of the second spacing (Ad,;/
dyy = —1.7%, LAB: — 2.4%), while the deeper ones are
almost unrelaxed. The only larger disagreement ~3%,
corresponding to 0.07 A between the ESRF and the
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FIG. 2 (color online). Model of the Bi,Se; near-surface
structure. Red (small) and gray (large) spheres represent Se
and Bi atoms, respectively. Interlayer spacings relative to the bulk
are labeled on the right for the different data sets. Carbon (small
black sphere) is placed in the most favorable position according
to the ab initio calculations.
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FIG. 3 (color online). (a) Differential AES spectrum showing
the Bi-NOO (96 and 101 eV) and the Bi-NNO transitions (249
and 268 eV) of the doped Bi,Se; sample. (b) Zoom into the 250
to 270 eV regime: (I) reference reproduced from Ref. [22],
(II) undoped sample, and (III) carbon-doped sample.

LAB data is observed for Ads,/d4. This worst case is used
as an estimate for the uncertainty for the determination of
Ad;; in general. An analysis of the variance of R, upon
variation of the structure parameters leads to about the same
value [21]. The magnitude of the Debye parameter lies in
the normal range for surfaces (B ~ 2-5 A?).

AES spectra (electron energy E,, = 3 keV) taken for the
doped Bi,Se; surface clearly indicate the presence of
carbon, albeit at very small amounts as estimated by
comparison of the AES spectra shown in Fig. 3.
Figure 3(a) shows a differential AES spectrum of doped
Bi,Se; including the Bi peaks between 96 and 268 eV. Note
that the sensitivity of the (unresolved) NOO lines at 96 and
101 eV is roughly a factor of 8 larger than that of the NNO
lines in the 249 to 268 eV range [22]. We note that the
96/101 eV lines are correctly labeled as Ng 70450, 5, but
for short we use the term NOO for these. Figure 3(b) shows
a zoom into the 250-270 eV regime. The solid upper curve
(D) represents the differential AES spectrum in the vicinity
of the Bi-NNO lines at 249 and 268 eV taken from Ref. [22].
Spectrum (IT) corresponds to the AES peaks obtained from
the un-doped sample, while spectrum (III) was obtained after
doping with carbon. The carbon KLL peak is located at
Ey;, =272 eV; therefore, it cannot be separated from the
Bi-NNO line at Ey;, =268 eV. However, after carbon
doping there is a small increase of the peak at Ey;, =
268 eV relative to that at E\;, = 248 eV which is attributed
to the presence of carbon. The sensitivity of the carbon KLL
peak for E,, = 3 keV is approximately a factor of 3 larger
than that of the Bi-NNO peaks [22]. We estimate the amount
of carbon to be well below half a monolayer.

The upper curves (red) labeled by (c) in Fig. 1 represent
the |F(hk?)| of the carbon-doped sample collected in the
LAB experiment. The corresponding structure parameters
are listed on the right of Fig. 2. There is a pronounced
expansion of Ad;, = 11%, while the other interlayer

spacings remain unrelaxed within the experimental uncer-
tainty of +3%. Direct inspection of the CTRs in Fig. 1
shows significant differences especially near the antiphase
position in between the bulk Bragg reflections. The
expansion of dj, in the 10% range is reproduced for a
number of samples [23] and depends sensitively on the
degree of carbon doping. For more details we refer to the
Supplemental Material [24].

Since SXRD is not sensitive to low-Z elements like
carbon, ab initio calculations were carried out to determine a
possible location of carbon atoms. We employed the
projector augmented-wave method [25] in VASP imple-
mentation [26,27] and the generalized gradient approxima-
tion to the exchange-correlation potential [28]. The
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FIG. 4 (color online). Momentum-resolved photoemission
measurement: band dispersion of undoped (a) and carbon-doped
(b) Bi,Se; along the K — T and T — M direction. Dotted straight
lines serve as a guide to the eye to the band dispersion in the
vicinity of the DP. Binding energies are given relative to the
Fermi level (Ey). Horizontal lines indicate the energy of the DP
and the k contour for the undoped (c) and doped (d) samples.
(e) Intensity profiles along the dashed line in (c) and (d).
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calculations were carried out by using 2 QL-thick Bi,Se;
films and placing one carbon atom per (3 X 2\/’3’) rectan-
gular supercell with 12 atoms per single substrate layer,
which is equivalent to an impurity concentration of ~8.3%.
Several high-symmetry surface adsorption sites (top, bridge,
fce-, and hep-hollow) were considered, as well as intersti-
tials and positions inside the van der Waals (vdW) gap. In all
cases, atomic coordinates were relaxed until the forces were
less than 5 x 102 eV/A. We found that carbon strongly
prefers the interstitial site between the first and second layer
(see Fig. 2). This geometry is by at least 0.69 eV more
favorable than any other, and leads to a ~6% increase of the
average d|,. This value is less than the experimental one;
however, we attribute this to the comparatively lower
concentration of carbon (8.3%) assumed in the calculation.

To explore the effect of carbon doping on the Bi,Ses
surface electronic structure, ARPES experiments were
performed at room temperature. The surface was illumi-
nated along the M —T — M direction by He-I (hv =
21.23 eV) radiation emitted from a focused gas discharge
lamp, under an angle of incidence of 22° with respect to the
sample surface. Photoelectrons emitted into the 2z solid
angle above the surface were collected by the objective lens
of a photoelectron emission microscope, forming a crystal
momentum (k,, k,) resolved image of the photoelectron
intensity distribution. Series of constant energy vs momen-
tum images (energy resolution ~20 meV) were recorded by
a CCD camera from a fluorescent screen image detector.

Figure 4(a) shows the ARPES spectrum of the pristine
Bi,Se;(0001) surface along the K—T and I' — M direc-
tion. As is usually observed for naturally grown Bi,Ses, the
DP is located 320 meV below E, which is fixed due to n
doping by selenium vacancies and traverses the conduction
band. Note, that E can be shifted down into the energy gap
by a very slight bulk calcium doping [16].

The spectrum obtained for the carbon-doped surface is
shown in Fig. 4(b). First of all, there is some band broad-
ening (see, e.g., the extra wings apparent in the valence band

between —0.3 and —0.5 eV), which we relate to the presence
of disordered carbon. More importantly and in contrast to
expectation, carbon doping does not lead to a formation of
Rashba-split 2DEG states in the Bi,Se; band gap. In
Ref. [17] it has been argued that such states appear due
to the near-surface electrostatic potential variation induced
by adsorption of foreign species on the surface. However, it
turns out to not be the case for the carbon-doped Bi,Ses
surface, whose TSS is thus protected against possible spin-
dependent scattering into trivial states. We observe an
upward shift of the DP by 40 £ 20 meV. This is best seen
in the constant energy contour of the surface state, displayed
atan energy of 150 meV above the DP, as shown in Figs. 4(c)
and 4(d) for the undoped and doped sample, respectively.
While this energy is below the conduction band minimum
for the undoped sample, i.e., the circular contour of the
surface state is unfilled, significant additional intensity from
the conduction band is present for the carbon-doped sample
[see also the horizontal intensity profiles along the dashed
line in Fig. 4(e)].

To uncover the reason of such a DP shift we performed
ab initio electronic structure calculations. Since carbon
doping does not lead to the appearance of trivial bands
inside the Bi,Se; band gap, one can assume that such
changes are of pure structural origin. Since the carbon
adsorption induced expansion of the top layer spacing is the
dominating structural modification, a set of surface elec-
tronic structure calculations was carried out for different
expansions, while keeping all other structure parameters
fixed at experimental values. The band structure of the
unperturbed Bi,Se;(0001) surface is shown in Fig. 5(a). It
is characterized by a spin-polarized TSS with the DP at Ep,
which resides near the valence band maximum. In agree-
ment with the ARPES measurements, an upward shift of
the DP is observed for Ad;,/d;, = 10%. The only differ-
ence with respect to the experiment is the magnitude of the
shift (100 meV), moving the DP almost to the center of the
bulk band gap [Fig. 5(b)]. Thus, the upward shift of the DP
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FIG. 5 (color online).

Band structure of Bi,Se;(0001) calculated for several expansions, Ady,/d;,. (a): Structure from SXRD,

Ady,/d, = 3%, (b): 10%, (c): 20%. Red and blue lines indicate spin up and spin down states, respectively. The shaded area

corresponds to the bulk states.
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of the carbon-doped Bi,Se; surface is directly related to the
top interlayer expansion. An upper limit of Ad,/d, =
20% is found up to which the DP is still located at Er and
the TSS spin polarization is maintained (see Fig. 5(c) and
the Supplemental Material [24]).

In summary, we have shown that the position of the DP
within the TT band gap can be controlled by surface doping.
By means of suitable adsorbate choice (in the present
work—carbon) and under specific doping conditions it is
possible to expand the first interlayer spacing of the TI
substrate in controllable fashion, thus positioning the DP in
the band gap. Other ways to control the position of the DP
have been previously proposed. The effect of local strains
at grain boundaries in Bi,Se; has been shown to influence
the position of the DP in a very recent study [29]. In contrast,
DP tuning by carbon doping is achieved homogeneously
across the macroscopic surface, which is important for
possible applications. The variation of bulk atomic compo-
sition [30,31], or preparing heterostructures, consisting of a
thin semiconducting overlayer on top of the TI substrates
[32], were also proposed to tune a DP. The former approach
requires preparation of complex ternary [30] or quaternary
[31] TI compounds, while the latter requires highly con-
trollable epitaxial growth. By contrast, the method of the DP
position control proposed in the present work does not
require any intricate growth procedure and can be applied to
the tetradymite-like TI compounds which are relatively
simple to grow. Our study suggests a new path to actively
modify the TSS by virtue of the specific surface doping
which does not degrade the TI electronic spectrum.
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