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A novel treatment of non-adiabatic couplings is
proposed. The derivation is based on a theorem by
Hunter stating that the wave function of the complete
system of electrons and nuclei can be written, without
approximation, as a Born–Oppenheimer (BO)-type
product of a nuclear wave function, X(R), and an
electronic one, ΦR(r), which depends parametrically
on the nuclear configuration R. From the variational
principle, we deduce formally exact equations for
ΦR(r) and X(R). The algebraic structure of the exact
nuclear equation coincides with the corresponding
one in the adiabatic approximation. The electronic
equation, however, contains terms not appearing in
the adiabatic case, which couple the electronic and
the nuclear wave functions and account for the
electron–nuclear correlation beyond the BO level. It is
proposed that these terms can be incorporated using
an optimized local effective potential.

1. Introduction
The Born–Oppenheimer (BO) [1,2] or adiabatic [3]
separation of the electronic and nuclear motion forms
the basis of almost any quantum mechanical study of
molecules and solids. The method is based on the large
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difference between the electronic and nuclear masses, which implies that the light electrons are
able to adapt almost instantaneously to the configuration of the much heavier nuclei. Consider a
molecule with Ne electrons and N nuclei with masses Mα and charges Zα and denote by r the set
of electronic coordinates r = r1 . . . rNe and by R the set of nuclear coordinates R = R1, . . . , RN .

The separation is effected by decomposing the complete molecular wave function, Ψmol(r, R),
in terms of a product of an electronic wave function depending parametrically on the nuclear
positions and a nuclear wave function:

Ψmol(r, R) � ΦBO
R (r)XBO(R). (1.1)

As the electrons, more or less, cannot see the nuclear motion, the electronic wave function
is chosen to be an eigenfunction of an electronic Hamiltonian derived from the molecular one
by ignoring the nuclear kinetic energy or, equivalently, by setting the nuclear mass to infinity.
Finally, following Longuet-Higgins and Messiah, the equation for the nuclear wave function
can be obtained variationally [3,4]: keeping the electronic wave function fixed, one requires
that the expectation value of the molecular Hamiltonian in terms of the adiabatic product wave
function remains stationary when the nuclear wave function is varied. In the resulting effective
nuclear Hamiltonian, in the absence of electronic degeneracies, the nuclei lie in a potential which,
to high accuracy, coincides with the electronic energy eigenvalue. Each electronic level allows
for a set of nuclear vibrational and rotational excitations but does not couple directly to any
nuclear state of this set. For many physical systems and phenomena, this separation is extremely
successful, at least whenever degeneracy or near degeneracy of the electronic Hamiltonian is
not involved. There are however other phenomena, which crucially depend on the coupling
between the electronic and the nuclear wave functions. For these phenomena, the adiabatic or
BO approximation breaks down.

One should be careful with the variational derivation of the nuclear BO equation, because
the ground state of a free molecule is a continuum state even after separating away the
centre of mass motion [5]. In principle, to use the variational principle, one should first
separate off the overall translations [6] and the rotations of the molecule and then perform
the factorization of the resulting bound wave function. This leads to complicated terms in the
resulting Hamiltonian [7–11]. In this paper, we deliberately do not separate off translations and
rotations, because our main aim is to show how one may improve upon the BO scheme, keeping
at the same time the formulae simple and transparent. One may justify the use of the variational
principle by imposing a confining potential that binds the molecular system within a very large
but finite volume. In addition, we are interested not only in the study of molecules but also
of crystalline solids, where periodic boundary conditions remove the overall translational and
rotational motions of the system.

In probability theory, the joint probability distribution p(r, R) of two sets of variables r, R can
be factorized as the product p(r, R) = p(r|R)p(R) of a conditional probability distribution p(r|R)
for the (electronic) variables r given R, times a marginal probability distribution p(R) for the
(nuclear) variables R. Hunter proposed accordingly that the molecular wave function Ψmol(r, R),
i.e. the joint probability density amplitude of electronic and nuclear degrees of freedom, could
also be decomposed exactly as a product of a conditional probability amplitude ΦR(r) of electronic
variables, given fixed values for the nuclear variables times a marginal probability amplitude X(R)
for the nuclear degrees of freedom [12]:

Ψmol(r, R) = ΦR(r)X(R). (1.2)

The BO electronic and nuclear wave functions ΦBO
R (r), XBO(R) provide excellent approximations

for ΦR(r) and X(R) but Hunter suggested that for each Ψmol(r, R) one may find a conditional and a
marginal probability density amplitude, such that the factorization is exact. Czub and Wolniewicz
discovered that for diatomic molecules, X(R) is a nodeless wave function, and hence the potential
in the Schrödinger equation determining X(R) must necessarily demonstrate spikes at the points
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were the adiabatic wave function has nodes [13]. We shall refer to the latter potential as the nuclear
non-adiabatic potential (see E(R) in equation (2.10)).

Hunter observed that this result is more general [14,15]. The proof is straightforward: take
a molecular wave function that is to a good approximation given by a single BO product,
Ψmol(r, R) = ΦBO

1,R (r)XBO(R), with the electronic part in the ground state and the nuclear wave
function in an excited state with a node at R0. As the electronic adiabatic states form a complete
set, the molecular wave function can be expanded exactly in the series

Ψmol(r, R) =
∑

n
ΦBO

n,R(r)Xn(R). (1.3)

Consequently, the diagonal of the nuclear N-body density matrix |X(R)|2 is equal to

〈Ψmol(R)|Ψmol(R)〉 =
∑

n
|Xn(R)|2, (1.4)

where 〈Ψmol(R)|Ψmol(R)〉 is the diagonal of the reduced density matrix of Ψmol(R) in which the
electronic degrees of freedom have been integrated out.

Here and in the following, integration over all electronic degrees of freedom is denoted by the
bracket symbols, while integration over the nuclear degrees of freedom is written as

∫
d3NR.

In order for 〈Ψmol(R)|Ψmol(R)〉 to have a node at R0, all vibrational states Xn(R) must have
a node at the same R0, which cannot happen. As an interesting aside, we note that Hunter’s
argument fails for nodes dictated by symmetry. For example, for identical fermionic nuclei, the
molecular wave function must be antisymmetric with respect to exchange of two nuclei, say at
positions R1, R2 and then the diagonal N-body nuclear density matrix, and consequently the
marginal probability amplitude must have nodes at (R1, R2) = (R, R).

So far, the impact of the work on the exact factorization of the molecular wave function has
been limited and these ideas have not led to new practical ways to improve upon the adiabatic
approximation. Perhaps in the early papers, attention focused too heavily on the nodeless
character of the marginal probability density amplitude, which admittedly is a non-adiabatic
coupling but probably not a very important one, because when the BO approximation is accurate,
the correction does not have a measurably significant effect and when the BO approximation
breaks down, it is not owing to the nodeless property of the wave function. More importantly,
the non-adiabatic equation determining the electronic wave function ΦR(r), to the best of our
knowledge, was never given by Hunter. Knowledge of that equation would inform us of the non-
adiabatic terms that correct the BO electronic wave function and hopefully accurate approximate
treatments of these terms would emerge. This is the goal of our paper.

There is a representability issue which perhaps was not addressed adequately: namely it is
not clear whether the marginal probability distribution always corresponds to a meaningful
nuclear wave function. For example, the decomposition that was proposed to demonstrate
the factorization (1.2) with ΦR(r) = Ψmol(r, R)/

√〈Ψmol(R)|Ψmol(R)〉 and X(R) = √〈Ψmol(R)|Ψmol(R)〉
implies that the nuclear wave function is always bosonic even when the nuclei are fermionic. This
problem can be overcome by introducing an R-dependent phase and writing

ΦR(r) = |〈g|Ψmol(R)〉|
〈g|Ψmol(R)〉

Ψmol(r, R)√〈Ψmol(R)|Ψmol(R)〉 (1.5)

and

X(R) = 〈g|Ψmol(R)〉
|〈g|Ψmol(R)〉|

√
〈Ψmol(R)|Ψmol(R)〉, (1.6)

where g(r) is a suitably chosen electronic wave function that does not depend on R. In this way,
the electronic wave function ΦR(r) (conditional probability amplitude) depends on R and for
identical nuclei is symmetric with respect to nuclear exchange. The nuclear wave function X(R)
(marginal probability amplitude) has the same symmetry properties as Ψmol(r, R) with respect to
nuclear exchange.
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Adopting the small potential mentioned earlier to confine the molecule in a very large volume,
the molecular, electronic and nuclear wave functions are all normalized to unity for convenience

∫
d3NR〈Ψmol(R)|Ψmol(R)〉 = 1, (1.7)

〈ΦR|ΦR〉 = 1 (1.8)

and
∫

d3NR|X(R)|2 = 1. (1.9)

The electronic and nuclear wave functions have the freedom of an R-dependent phase (which,
for identical nuclei must be symmetric with respect to exchange)

ΦR(r) → eiθ(R)ΦR(r), X(R) → e−iθ(R)X(R) (1.10)

because this transformation leaves Ψmol(r, R) invariant. Apart from this freedom of phase the
components X and ΦR are unique. To prove this uniqueness, we consider two representations,
ΦR · X and Φ̃R · X̃, of the exact molecular wave function, i.e.

Ψmol(r, R) = ΦR(r)X(R) = Φ̃R(r)X̃(R). (1.11)

This implies that the ratio of Φ̃R and ΦR depends on R only

Φ̃R(r)
ΦR(r)

= X(R)

X̃(R)
≡ G(R), (1.12)

where, from now on, the ratio of X(R) and X̃(R) will be denoted by G(R). Hence,

Φ̃R(r) = G(R)ΦR(r). (1.13)

Using normalization condition (1.8) for ΦR and Φ̃R, equation (1.13) leads to

1 = 〈Φ̃R|Φ̃R〉 = |G(R)|2〈ΦR|ΦR〉 = |G(R)|2. (1.14)

Hence, we conclude

G(R) = eiΘ(R), (1.15)

which proves the uniqueness of ΦR and X up to within an R-dependent phase:

Φ̃R(r) = eiΘ(R)ΦR(r) (1.16)

and

X̃(R) = e−iΘ(R)X(R). (1.17)

Note that it is condition (1.8) that requires ΦR(r) to be normalized to 1 for each separate nuclear
configuration R, which leads to the uniqueness (within a phase) of ΦR and X.

2. Non-adiabatic electronic and nuclear equations
As the parametric product ansatz (1.2) does not constitute an approximation, it should be possible
to improve significantly upon the BO level of accuracy, still using a product wave function, if
we optimize the electronic wave function in equation (1.2) variationally, under normalization
constraint (1.8), rather than choose it a priori to be an eigenstate of the BO electronic Hamiltonian.
Naturally, we expect that in the non-adiabatic scheme, the electronic wave function will be
coupled to the nuclear state.
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The molecular Hamiltonian has the form

Hmol = HBO
R −

N∑
α=1

h̄2∇2
α

2Mα
, (2.1)

where ∇2
α is the Laplacian with respect to Rα and HBO

R is the electronic Hamiltonian

HBO
R = − h̄2

2m

Ne∑
j=1

∇2
rj

+ 1
2

Ne∑
i,j=1
i �=j

1
rij

−
Ne∑
j=1

N∑
α=1

Zα

|rj − Rα | + 1
2

N∑
α,β=1
α �=β

ZαZβ

Rαβ
. (2.2)

The nuclear Coulomb energy (last term) is independent of r and represents a constant shift of the
electronic energy.

In order to obtain the equations determining the electronic and the nuclear wave functions,
ΦR(r) and X(R), we have to vary the expectation value of the Hamiltonian Hmol with respect
to ΦR(r) and X(R), under normalization constraints (1.8) and (1.9). The latter are incorporated
through the use of Lagrangian multipliers Λ′(R), E. Note that we have infinitely many constraints
for the normalization of the electronic wave function, one for each R, and we need as many
Lagrangian multipliers Λ′(R):

−
∫

d3NRΛ′(R)(〈ΦR|ΦR〉 − 1) (2.3)

and

− E
∫

d3NR(|X(R)|2 − 1). (2.4)

A few words about notation—if the gradient operator ∇α , or the Laplacian ∇2
α lies within

parentheses or between brackets, as in 〈ΦR|∇αΦR〉, it is implied that it acts only inside the brackets
or parentheses. Note that when we use square brackets, as in [−ih̄∇α ± Aα], the action of ∇α is not
confined within the brackets. Direct optimization of the electronic and nuclear wave functions
under constraints (2.3) and (2.4) yields the non-adiabatic equations

[
HBO

R −
N∑

α=1

h̄2∇2
α

2Mα
+

∑
α

X∗(R) (−ih̄∇αX(R))
Mα |X(R)|2 · (−ih̄)∇α

]
ΦR(r) = Λ(R)ΦR(r)

and

[ N∑
α=1

[−ih̄∇α + Aα(R)]2

2Mα
+ 〈ΦR|HBO

R |ΦR〉 +
N∑

α=1

h̄2〈∇αΦR|∇αΦR〉
2Mα

−
N∑

α=1

Aα(R)2

2Mα

]
X(R) = EX(R),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.5)

where Λ(R) = Λ′(R)/|X(R)|2 and Aα(R) is the vector-potential-like real quantity

Aα(R) = 〈ΦR| − ih̄∇αΦR〉. (2.6)

To make further progress, we define an electronic energy as

E(R) =
〈
ΦR

∣∣∣∣∣HBO
R +

N∑
α=1

[−ih̄∇α − Aα(R)]2

2Mα

∣∣∣∣∣ ΦR

〉
(2.7)

which, by equation (2.6), can be written as

E(R) = 〈ΦR|HBO
R |ΦR〉 +

N∑
α=1

h̄2〈∇αΦR|∇αΦR〉
2Mα

−
N∑

α=1

Aα(R)2

2Mα
. (2.8)
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After some straightforward algebra, equations (2.5) and (2.6) can be expressed in terms of this
electronic energy as{

HBO
R +

N∑
α=1

[−ih̄∇α − Aα(R)]2

2Mα
+

N∑
α=1

1
Mα

[
X∗(R)(−ih̄∇αX(R))

|X(R)|2 + Aα(R)
]

·[−ih̄∇α − Aα(R)]

}
ΦR(r) = E(R)ΦR(r) (2.9)

and [ N∑
α=1

[−ih̄∇α + Aα(R)]2

2Mα
+ E(R)

]
X(R) = EX(R). (2.10)

While, from the numerical point of view, this form of the equations is clearly not advantageous,
the new form reveals some other interesting aspects. First of all, equations (2.9) and (2.10)
are manifestly form-invariant under gauge transformation (1.10). In particular, the electronic
energy (2.7) which appears as ‘eigenvalue’ in (2.9) is gauge invariant. The third term on the
left-hand side of equation (2.9), while essential for the coupling between X and ΦR, does not
contribute to the energy E(R), i.e. when equation (2.10) is multiplied from the left with ΦR(r)∗
and integrated over r, this term drops out. One may confirm directly that the solution of the non-
adiabatic equations (2.5) and (2.6) is exact by showing that if ΦR(r) and X(R) satisfy (2.5) and (2.6),
then their product will be an eigenstate of Hmol

HmolΦR(r)X(R) = EΦR(r)X(R). (2.11)

If the phase of the electronic wave function ΦR(r) depends only on r, and if the dependence on
R is continuous and differentiable, then the vector potential Aα(R) vanishes and (2.6) simplifies to[

−
N∑

α=1

h̄2∇2
α

2Mα
+ 〈ΦR|HBO

R |ΦR〉 +
N∑

α=1

h̄2〈∇αΦR|∇αΦR〉
2Mα

]
X(R) = EX(R). (2.12)

The algebraic structure of non-adiabatic nuclear equations (2.6), (2.10) or (2.12) coincides with
the nuclear equation one encounters in the adiabatic approximation. However, in the latter, the
electronic wave function is the BO one, satisfying

HBO
R ΦBO

R (r) = EBO(R)ΦBO
R (r), (2.13)

with EBO(R) = 〈ΦBO
R |HBO

R |ΦBO
R 〉, while in non-adiabatic nuclear equations (2.6), (2.10) or (2.12), the

electronic wave function ΦR(r) is the non-adiabatic one satisfying (2.5) or (2.9).
The variational derivation of equation (2.6) guarantees that even in the approximate adiabatic

scheme, the lowest energy eigenvalue, denoted by EBO, is rigorously an upper bound to the exact
ground state energy of the system

E < EBO, (2.14)

as E is the minimum of the molecular Hamiltonian in a Hilbert space which is wider than the
Hilbert space of the adiabatic states. The inequality holds even when the electronic non-adiabatic
equation is derived in a constrained way, as in the following section on the optimized effective
potential (OEP) method treatment of the non-adiabatic terms. It is interesting to note that

〈ΦR|HBO
R |ΦR〉 > EBO(R), (2.15)

as EBO(R) is, for each R, the minimum of the expectation value of HBO
R .

A necessary consequence of (2.14) and (2.15) is that

N∑
α=1

h̄2

2Mα

∫
d3NR|X(R)|2

(
〈∇αΦR|∇αΦR〉 − 〈∇αΦBO

R |∇αΦBO
R 〉

)
< 0, (2.16)

where X(R) is the lowest non-adiabatic nuclear state. Observe that all terms in the inequality
are non-negative. The inequality indicates that ‘on average’ for the non-adiabatic electronic state
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that corresponds to the lowest nuclear state 〈∇αΦR|∇αΦR〉 < 〈∇αΦBO
R |∇αΦBO

R 〉. So, ΦR can be
expected to change less rapidly than ΦBO

R as a function of R. It is worthwhile to remember
that when a nucleus samples a region of a degeneracy or an avoided crossing of electronic
levels, the concept of the adiabatic surface loses its meaning and a visible indication of such a
situation is that the potential energy depends strongly on the nuclear position. Small changes in
R result in large changes in the wave function and potential. A lot of effort has been invested
in constructing a different basis in the space of (near) degenerate electronic wave functions with
energies that would behave smoothly close to the (avoided) level crossing. A convenient choice
is the diabatic basis [16], defined as the basis that diagonalizes the off-diagonal matrix elements
〈ΦR,m|∇αΦR,n〉 [16,17]. It is known, however, that rigorously such a basis does not exist in general
[17,18]. The non-adiabatic electronic wave functions and energies may offer a physical solution to
this problem. Within the adiabatic approximation, there are cases when the vector-like potentials
Aα cannot all be made to vanish (for example, when adiabatic electronic levels become degenerate
at a point R), leading to a pseudo-magnetic field in (2.6) and a geometric phase [19]. An interesting
question is whether the geometric phase is a consequence of the approximate nature of the
adiabatic approximation, and consequently whether it would vanish in the exact non-adiabatic
scheme. The answer to this question is presently not known. Non-analyticities appearing in the
M → ∞ limit [20] may play a role in this context. If the geometric phase is not an artefact of
the adiabatic approximation but a result of parametric decomposition (1.2) of the molecular wave
function which, by itself, is not an approximation, then the framework presented here will provide
a way of determining the ‘exact Berry phase’.

3. Approximations for the electronic non-adiabatic states
The exact non-adiabatic electronic equation is naturally very hard to solve and one has to resort to
approximation techniques. A perturbative treatment of the non-adiabatic terms in the electronic
equation is straightforward to apply if we keep the nuclear wave function X(R) fixed. However,
when the non-adiabatic terms are large (which is the case of interest here), the expansion may
converge very slowly, or not converge at all. Another method to deal with the non-adiabatic
electronic equation, which seems particularly promising, is to seek for the local R-dependent
potential VR(r) that best approximates the effect of the non-adiabatic terms in (2.5), in a manner
analogous to the OEP method [21–23].

Remember that the non-adiabatic equation was derived under the constraint of normalization
of electronic wave function (1.8). This was the most general way of requiring that the electronic
wave function depends parametrically on the nuclear positions. A more restrictive but perhaps
more physical way is to impose that the electronic wave function must be an eigenstate of a
Hamiltonian which is the sum of HBO

R and an electronic potential VR that depends on the nuclear
positions. The variationally best potential is determined by making the expectation value of the
molecular Hamiltonian (2.1) stationary. The optimal VR will in general be an electronic Ne-body
potential. A further approximation, to make the problem tractable, is to restrict to (local) one-
body potentials. Hence, we optimize the electronic wave function ΦR(r) under the condition that
it satisfies the equation ⎡

⎣HBO
R +

Ne∑
j=1

VR(rj)

⎤
⎦ΦR(r) = E(R)ΦR(r). (3.1)

In this way, the expectation value of the molecular Hamiltonian (2.1) becomes a functional of the
effective non-adiabatic potential, 〈Hmol〉 = E[VR].

Varying the effective potential, we obtain the functional derivative of E[VR] with respect to VR

1
|X(R)|2

δE[VR]
δVR(r)

= 〈ΦR|ρ̂(r)ĜRV̂R|ΦR〉 +
N∑

α=1

h̄2

2Mα
〈ΦR|ρ̂(r)ĜR|∇2

αΦR〉 + c.c.

+
N∑

α=1

h̄2

2Mα

(∇αX(R))
X(R)

· 〈ΦR|ρ̂(r)ĜR|∇αΦR〉 + c.c., (3.2)
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where
ĜR =

∑
n

′ |ΦR,n〉〈ΦR,n|
En(R) − E(R)

. (3.3)

Summation is over all eigenfunctions of HBO
R + VR, except ΦR. For compactness, we use

in (3.2) and (3.3) second-quantization notation, ρ̂(r) is the electron charge density operator and
V̂R = ∫

d3xVR(x)ρ̂(x). Obviously, ĜR|ΦR〉 = 0.
The OEP we seek corresponds to a stationary point of E[VR], i.e. the functional derivative

vanishes
δE[VR]
δVR(r)

= 0. (3.4)

Solving the OEP equation (3.4) to obtain the potential can be very expensive. The
approximation proposed by Krieger, Li and Iafrate [24,25] (KLI) can be used to simplify the
equation considerably. When the electronic state is a Slater determinant of Kohn–Sham spin-

orbitals ϕ
j
R,σ , one obtains the spin-dependent KLI effective potential

2VR,σ (r)ρσ (r) = 2
∫

dr′VR,σ (r′)
∑

j

|ϕj
R,σ (r)|2|ϕj

R,σ (r′)|2

−
∑
α

h̄2

2Mα

∑
j

ϕ
j
R,σ

∗
(r)∇2

αϕ
j
R,σ (r) +

∑
α

h̄2

2Mα

∑
j

|ϕj
R,σ (r)|2〈ϕj

R,σ |∇2
αϕ

j
R,σ 〉 + c.c.

−
∑
α

h̄2

Mα

(∇αX(R))
X(R)

·
∑

j

[ϕj
R,σ

∗
(r)∇αϕ

j
R,σ (r) − |ϕj

R,σ (r)|2〈ϕj
R,σ |∇αϕ

j
R,σ 〉] + c.c. (3.5)

This equation can be solved within the ordinary Kohn–Sham self-consistency loop: the potential
VR,σ (r) to be used in the next iteration is obtained by plugging the Kohn–Sham orbitals and
the VR,σ (r) of the previous iteration in the right-hand side of equation (3.5).

We have solved the non-adiabatic OEP equation for the simplest system that contains non-
adiabatic couplings, namely the hydrogen ion H+

2 . Using the BO scheme, one obtains an excellent
approximation for the ground state wave function, Ψ (r, R) = ΦBO

R (r)XBO(R). To test our method,
we used the inverse BO separation, i.e. we wrote Ψ (r, R) = φiBO

r (R)χ iBO(r), where φiBO
r (R) is the

conditional probability density amplitude for the relative nuclear coordinate, when the electron is
frozen at r, and χ iBO(r) is the marginal probability density amplitude for the electron, moving in
the potential surface of the nuclei. The inverse BO separation ignores terms of the order M/m and
is hence very poor. Including the non-adiabatic correction terms (in this case, the non-adiabatic
terms can be transformed to have the form of a potential, and hence the OEP method is exact), we
found that the solution converged numerically to the correct wave function one obtains doing the
BO separation in the orthodox way.

4. Summary
We have revisited the adiabatic/BO separation of the electronic and nuclear degrees of freedom
in molecules, aiming to improve accuracy beyond the adiabatic level, but keeping at the same
time the language and concepts of the adiabatic approximation which form the basis of almost
all studies of molecular systems. We have derived a non-adiabatic correction for the electronic
equation, which couples in a self-consistent way the electronic and nuclear wave functions.
This correction has the form of an effective potential. The implementation of this correction to
electronic structure codes that already use the OEP method to account for electronic exchange
and correlation seems particularly promising.
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