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A topological insulator is realized via band inversions driven by the spin-orbit interaction. In the case of
Z2 topological phases, the number of band inversions is odd and time-reversal invariance is a further
unalterable ingredient. For topological crystalline insulators, the number of band inversions may be even
but mirror symmetry is required. Here, we prove that the chalcogenide Bi2Te3 is a dual topological
insulator: it is simultaneously in aZ2 topological phase withZ2 invariants ðν0; ν1ν2ν3Þ ¼ ð1; 0 0 0Þ and in a
topological crystalline phase with mirror Chern number −1. In our theoretical investigation we show in
addition that the Z2 phase can be broken by magnetism while keeping the topological crystalline phase. As
a consequence, the Dirac state at the (111) surface is shifted off the time-reversal invariant momentum Γ̄;
being protected by mirror symmetry, there is no band gap opening. Our observations provide theoretical
groundwork for opening the research on magnetic control of topological phases in quantum devices.
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Introduction.—Z2 topological insulators are band insula-
tors featuring surface states that are spin polarized and cross
the fundamental band gap [1,2]. This is a consequence of an
odd number of inversions of bulk bands that are driven by
the spin-orbit interaction alone or in combination with
crystal lattice distortions [3–5] or chemical disorder [6,7].
The odd number of bulk-band inversions distinguishes aZ2

topological insulator phase from a conventional band
insulator phase, as has been proven for the Z2 topological
insulators BixSb1−x and the chalcogenides Bi2Se3, Sb2Te3
and Bi2Te3 [6,8,9]. The Dirac surface state of a Z2

topological insulator is located at a time-reversal invariant
momentum (TRIM) of the two-dimensional Brillouin zone.
Since it is protected by time-reversal symmetry, the surface
state is robust against time-reversal-invariant perturbations
(e.g., nonmagnetic adatoms).
Narrow band gap semiconductors, like SnTe, show an

even number of band inversions [10] and, thus, do not
belong to the Z2 topological class (ν0 ¼ 0). However, they
show a Dirac surface state that is protected by crystal
symmetry, rather than by time-reversal symmetry. Hence,
they belong to the class of topological crystalline insulators
[11]; their mirror Chern number is −2 [10,12]. The two
Dirac surface states are located within a mirror plane
perpendicular to the surface but not necessarily at a
TRIM of the two-dimensional Brillouin zone.
An insulator that belongs simultaneously to theZ2 phase

and to the topological crystalline phase—a dual topological
insulator—would allow us to manipulate its topological
phase, and consequently its conducting Dirac surface state,
by magnetism, either by an external magnetic field or by
doping with magnetic atoms. Applying a magnetic field
perpendicular to amirror plane of the crystal latticewould on
one hand break time-reversal symmetry and, as a

consequence, destroy theZ2 topological phase. On the other
hand, themirror symmetry is maintained and the topological
crystalline phase is kept. The Dirac surface state that is still
protectedbymirrorsymmetrywouldbeshiftedoff theTRIM,
without opening of a band gap (Fig. 1). Applying amagnetic
fieldwith a componentwithin themirrorplanewoulddestroy
both the Z2 phase and the topological crystalline phase; a
band gap will open up in the Dirac state, leading to a
conventional insulator phase [13].
In this Letter, we prove that the exemplary chalcogenide

Bi2Te3 is such a dual topological insulator: besides being in
its well-established Z2 phase, it is simultaneously in the
topological crystalline phase. Teo et al. have predicted that
Bi1−xSbx is a dual topological insulator [6]. On top of this,
we show by theoretical electronic structure calculations that
the above sketched scenario of magnetic control of topo-
logical phases holds. Furthermore, Bi2Te3 has Z2 invari-
ants of ðν0; ν1ν2ν3Þ ¼ ð1; 0 0 0Þ; consequently, a Dirac
surface state would exist on any crystal truncation plane.
In other words, a sphere made of Bi2Te3 would show a
Dirac state anywhere on its surface. In contrast, a topo-
logical crystalline insulator would show a Dirac state only
in surface planes normal to the mirror plane. Hence, a
Bi2Te3 sphere in a magnetic field perpendicular to the
mirror plane would host Dirac states only on circles that lie
within the mirror plane.

Z2 invariant and mirror Chern number.—To prove that
Bi2Te3 is a dual topological insulator we first calculate the
Z2 invariant and the mirror Chern number for the bulk
system, using a first-principles-based tight-binding method
(see the Supplemental Material [14]). The Z2 invariants are
computed to ðν0; ν1ν2ν3Þ ¼ ð1; 0 0 0Þ, in agreement with
earlier calculations [8,15]. For the computation of the
mirror Chern number [6], we consider a mirror plane
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perpendicular to the (111) surface [like for the (001) surface
of SnTe [10,16]; left in Fig. 2]. The mirror Chern number
equals −1 and is interpreted as follows. On one hand, its
modulus gives the number of nonequivalent Dirac surface
states, as has been established in Ref. [6]; indeed,
Bi2Te3ð111Þ hosts a single Dirac state. On the other hand,
its sign gives the chirality of the spin texture of the Dirac
surface state: the spin polarization of the Dirac states rotates
clockwise about the surface normal at energies above the
Dirac point. Already these findings prove that Bi2Te3 is a
dual topological insulator, that is both a Z2 topological
insulator and a topological crystalline insulator.
Now we show that the Z2 topological phase can be

broken while keeping the topological crystalline phase. For

this purpose we mimicked an external magnetic field by
adding a Zeeman term to the tight-binding Hamiltonian. In
this case, time-reversal symmetry is broken [17] and a Z2

invariant cannot be defined. If the magnetic field (i.e., an
axial vector) is perpendicular to the mirror plane, the
reflection symmetry is maintained and the mirror Chern
number is still computed to −1, proving the topological
crystalline phase. If the magnetic field lies within the mirror
plane, both time-reversal and mirror symmetry are broken:
neither the Z2 invariant nor the mirror Chern number can
be defined in this case.
These findings suggest that the topological character

of Bi2Te3 can be controlled by magnetism: from a
dual topological insulator (no magnetic field) via a
solely topological crystalline insulator (magnetic field
perpendicular to mirror plane) to a conventional insulator
(magnetic field within mirror plane).

Surface electronic structure.—The next step is to show how
the Dirac surface state of Bi2Te3 is affected by the
topological character. We computed the electronic structure
of Bi2Te3ð111Þ, using the tight-binding method and a
renormalization scheme for semi-infinite systems [18].
Without magnetic field, the well-known Dirac surface state
with its unique spin texture [15,19] has its Dirac point
located very close to the valence band in the pocket at Γ̄, the
center of the surface Brillouin zone (right in Fig. 2). This
electronic state is mostly affected by magnetism in an (E, k)
region close to its Dirac point; hence, a zoom into this
region is indispensable (rectangle in Fig. 2). In the
following, we present exemplary results for a magnetic
field with 0.03 eV Zeeman energy.
For a magnetic field B⃗ perpendicular to the mirror plane,

the surface state is shifted off the TRIM by δk ¼ 0.01 Å−1
(Fig. 3); this displacement lies within the mirror plane (here:
ky). There is no band gap opening [compare (e) and (f) in
Fig. 3]; the Dirac point “survives,” which indicates a
topological nontrivial phase. In contrast, the dispersion
along the magnetic field (here: kx, i. e., normal to the

FIG. 1 (color online). Variation of a Dirac surface state’s dispersion with respect to the topological phase (schematic): without
magnetic field (left, B⃗ ¼ 0: dual topological insulator), with magnetic field perpendicular to a mirror plane (center, B⃗⊥ mirror plane:
topological crystalline insulator), and with magnetic field within the mirror plane (right, B⃗∥ mirror plane: conventional insulator). The
dispersions calculated from Fu’s model [20] are shown in perspective view. The inset displays the surface Brillouin zone. The M̄-Γ̄-M̄
direction lies within a mirror plane.

FIG. 2 (color online). Left: perspective view of Bi2Te3. Each of
the quintuple layers shown consists of twoBi atoms (largemagenta
spheres) and three Te atoms (small brown spheres). The shaded
green area depicts the yzmirror plane of the crystal (z along [111]).
Right: Dirac surface state in Bi2Te3ð111Þ, obtained from tight-
binding calculations. The spectral density of the topmost quintuple
layer is shown as color scale (in states per eV) along a K̄-Γ̄-M̄ path
of the two-dimensionalBrillouin zone (inset).Theyellow rectangle
highlights the (E, k) area addressed in Fig. 3.
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mirror plane) is gapped, with an energy splitting of about
34 meV [(b) in Fig. 3].
For B⃗ within the mirror plane (here: normal to the

surface, i.e., along the z direction), Bi2Te3 becomes a
conventional insulator: a band gap opens in the entire
Brillouin zone [panels (d) and (h) in Fig. 3]. The gap width
is smallest at the “avoided Dirac point” at Γ̄, with a
magnitude of 9 meV.
For B⃗ along the y direction (i.e., within both the surface

plane and the mirror plane), a tiny gap shows up, with a
width of 0.3 meV [panel (c) in Fig. 3]. Hence, also in this
setup, Bi2Te3 is in principle a conventional insulator;
however, the gap width is much smaller than the thermal
energy of 25 meVat room temperature. Thus, this band gap
is not relevant in device applications. A closer analysis
reveals that this gap is due to spin-orbit coupling, while that
for B⃗∥z⃗ is attributed to exchange splitting.
These electronic structure calculations for the (111)

surface fully confirm the considerations based on the
topological invariants. We provide further qualitative sup-
port by a model Hamilton operator for a two-dimensional
electron gas [20] that has been extended to account for
magnetism.

Model calculations.—To investigate the effect of the
topological character on the Dirac state we derived a
k⃗ · p⃗ model Hamilton operator [21]; magnetism is mim-
icked by a Zeeman term (see Supplemental Material [14]).
This operator without the Zeeman term agrees within third
order of the wave vector components with that derived by
Fu [20].
The model Hamilton operator illustrates in the case of

zero magnetic field the different dispersions of the Dirac
state along the two different high symmetry lines Γ̄-M̄ and
Γ̄-K̄ in the surface Brillouin zone, cf., the warping in Figs. 1
and 2. The spin structure of the Dirac state, especially the
out-of-plane component, fits to experimental findings
[9,22]. If magnetism is taken into account, the Hamilton
operator is not invariant under time-reversal and one
expects a gap to open up at the Dirac point (Fig. 1).
However, for a magnetic field pointing perpendicular to a
mirror plane, there is no gap but the Dirac point is shifted
within the mirror plane. These findings are in line with
the tight-binding calculations and corroborate the dual
topological character of Bi2Te3.
Because the magnetism-induced band gaps are small, the

contours of the Dirac surface state in constant energy cuts

FIG. 3 (color online). Dispersion of the Dirac state at Bi2Te3ð111Þ for different magnetic configurations. Only a small part of the two-
dimensional Brillouin zone (indicated in Fig. 2) is displayed (top row: kx; bottom row: ky; the respective zeroes are indicated by vertical
dash-dotted lines). Without magnetic field [B⃗ ¼ 0, (a) and (e)], Bi2Te3 is in its dual topological phase (Dirac point at k⃗∥ ¼ 0). For an in-
plane magnetic field B⃗∥x⃗ [(b) and (f)] it stays in its topological crystalline phase; the inset in (f) zooms into the Dirac point shifted along
ky. For both B⃗∥y⃗ [(c) and (g)] and B⃗∥z⃗ [(d) and (h)] the topological phase is trivial: there is no Dirac point [cf. the zoom into the tiny band
gap in (c)]. The color scale, in states per eV, displays the spectral density of the topmost quintuple layer. In regions in which the Dirac
state hybridizes with bulk electronic states, the spectral density becomes blurred.
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may be used as a signature for a shift of the Dirac point.
These contours can be investigated in very high resolution
photoelectron spectroscopy [23]. For B⃗ ¼ 0, the circular
contours at energies close to the Dirac point become
hexagonally warped at increased energies (Fig. 4a).
These ‘snowflake’ shapes are distorted for in-plane mag-
netic fields [(b) and (c)] and show in addition centers
shifted in direction perpendicular to B⃗.

Concluding remarks.—Our investigations prove theoreti-
cally that the topological character of dual topological
insulators can be manipulated by magnetism: from the dual
“Z2 plus crystalline” phase via the topological crystalline
phase to the conventional insulating phase. The associated
opening of a band gap in the Dirac state could be exploited
in device applications. Although our study provides strong
support for this scenario—by means of model calculations
and semi-empirical calculations for the realistic system
Bi2Te3—experimental verification is necessary, for exam-
ple by means of photoelectron spectroscopy [24]. An
alternative is Landau level spectroscopy [25] which has
been applied to the Dirac surface state of Bi2Se3 [26] and to
BiTeI [27].
Considering transport measurements, the dual topologi-

cal character of Bi2Te3ð111Þ thin films suggests a new
setup for the quantum anomalous Hall effect, as has been
proposed by Liu et al. [28]. So far, it was believed the
quantum anomalous Hall effect requires an external mag-
netic field perpendicular to the film to achieve an insulating
state [29,30]. As shown by Liu and co-workers, an in-plane
magnetic field also results in a nonzero Hall conductance,
provided the field is not perpendicular to a mirror plane. If
the field is in-plane and perpendicular to a mirror plane,
Bi2Te3 is a topological crystalline insulator—shown in this
Letter—and, as a consequence, the Dirac surface state is
not gapped and the Hall conductance vanishes.
In this Letter, we consider magnetism brought about by

an external magnetic field, resulting in small band gaps in
the Dirac surface state (Fig. 3). In view of applications,
larger gap widths are obtained by doping the topological

insulator with magnetic constituents [31,32]. By control-
ling the directions of the magnetic moments by an external
magnetic field, the topological character can be varied from
topologically crystalline to trivial, provided the doping
maintains the mirror symmetry.
This work focuses on Bi2Te3; calculations of the

topological invariants for the other chalcogenides
—Sb2Te3 and Bi2Se3—prove that these are also dual
topological insulators. This is expected for they show
the same crystal symmetry and the same topology of the
bulk electronic structure (e.g., the band inversion at the
Brillouin zone center).
A question arises whether there exist, besides the

chalcogenides, other dual topological insulators. One might
expect that each Z2 topological insulator with band
inversions in a mirror plane could be a dual topological
insulator. In a detailed theoretical investigation, Teo et al.
have shown that Bi1−xSbx (x > 0.03) is a strong topological
insulator with Z2 invariants (1;1 1 1) and mirror Chern
number −1 [6].
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