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Potential functional approximations are an intriguing alternative to density functional approximations. The
potential functional that is dual to the Lieb density functional is defined and its properties are reported. The
relationship between the Thomas-Fermi theory as a density functional and the theory as a potential functional
is derived. The properties of several recent semiclassical potential functionals are explored, especially regarding
their approach to the large particle number and classical continuum limits. The lack of ambiguity in the energy
density of potential functional approximations is demonstrated. The density-density response function of the
semiclassical approximation is calculated and shown to violate a key symmetry condition.
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I. INTRODUCTION AND SUMMARY OF RESULTS

Kohn-Sham (KS) density functional theory (DFT) [1] has
been a useful approach to dealing with electronic structure
problems, with more than 10 000 papers per year currently
published. The only approximation needed (in the nonrela-
tivistic Born-Oppenheimer limit) is to the elusive exchange-
correlation (XC) energy as a functional of the (spin) densities.
While tremendous progress has been made in constructing
clever approximations [2–5] over the last half-century, such
approximations are generally unreliable and unsystematic and
do not produce error estimates [6].

An alternative approach, and one that fits far better with tra-
ditional approaches to quantum mechanics, is to consider the
electronic-structure problem as a functional of the one-body
potential [7] rather than of the one-body density. However,
useful approximations beyond the local approximation [1,8,9]
are far more subtle and complex to construct, so almost no
research has been done in this area, at either the formal or the
practical level. Notable exceptions are the density-potential
functional formulation of Englert [10] and the pioneering
work by Yang, Ayers, and Wu [11], which pointed out the
duality of density and potential functionals and thus produced
a deeper understanding of the optimized effective potential
method. More recently, Gross and Proetto [12] emphasized the
relevance of the variational principle to potential functional
theory (PFT). Our own recent work [13] is focused on the
fundamentals of approximate PFT and was motivated by recent
semiclassical potential functional approximations (PFAs) for
simple model systems [14,15].

In the present work, we explain in detail the differences
between potential and density functionals, show that certain
well-known difficulties of DFT are avoided, and demonstrate
the accuracy achievable in PFT calculations (but only for a
model system, for which accurate PFAs have been derived
[14,15]). First, we give a detailed account of the exact
theory and compare it with DFT. In PFT, just as in quantum
mechanics, we work within a Hilbert space with a well-defined
ground-state wave function and energy a priori and therefore
avoid the notoriously subtle issue of density-potential mapping
that is required in DFT. Another difference from DFT is
that, in PFT, there are two distinct ways of obtaining the
total energy of an interacting system: via a direct evaluation

of the functional approximations or variationally through a
minimization over trial potentials. We present a previously
derived [13] expression for the universal potential functional
that yields the total energy at the variational minimum (without
having to do an actual minimization), if a key symme-
try condition on the density-density response function is
fulfilled.

Levy [16] and Lieb [17] extended the domain of the
universal functional given in the original work of Hohenberg
and Kohn (HK) [18]. The construction of the Lieb density
functional involves a bifunctional of the density and potential.
What is the analog in PFT? In Sec. II, we repeat this exercise
in PFT to explicitly show that the naive expression for the
universal potential functional suffices.

In practice, our results for the interacting case are not yet
useful for an actual numerical calculation, because they require
knowledge of the interacting density as a functional of the
external one-body potential [12]. But all our results apply to a
noninteracting system in some external one-body potential. As
a result, we obtain an explicit expression for the noninteracting
kinetic energy as a functional of the potential. This expression
has the powerful feature that only the noninteracting density
needs to be known as a functional of the external one-body
potential to fully determine the noninteracting kinetic energy.

Conflating the results for the noninteracting case with the
KS scheme for exchange and correlation allows us to solve
the interacting many-body problem in a much more efficient
way than in KS-DFT, because there is no need to resort to the
KS orbitals. In fact, the KS potential becomes a functional
of the external one-body potential and is determined via
an alternative self-consistent cycle depicted in Sec. III. In
principle, all this is exact; a practical realization requires
nothing but a sufficiently accurate approximation to the
noninteracting density as a functional of the external one-body
potential.

To illustrate how all this works and contrast it with DFT, in
Sec. IV, we reconstruct the simplest approximation, Thomas-
Fermi (TF) theory. We show how it can be constructed in either
the potential functional or the density functional formalism.
The logic and derivations are completely different, but the
final equations are the same. Thus TF theory can be seen as
the forerunner of exact PFT just as easily as the forerunner of
exact DFT.
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The early attempts at density functional construction for
the kinetic [19] and the exchange [20] energy begin with
the local approximation and improve on it via a gradient
expansion [1,18]. However, these approximations fail for
localized systems, such as atoms, molecules, or even some
bulk solids. This is due to the presence of evanescent regions
that are separated by turning point surfaces, i.e., where the
Fermi energy cuts the potential energy surface. In an earlier
account [14] we explain how this failure can be understood by
considering the expansion of the total energy in the large-N
limit, where N denotes the number of particles. This analysis
also explains why generalized gradient approximations were
eventually introduced. Furthermore, our analysis suggests that
PFAs provide a systematic approach to functional construction.
The expansion of the total energy of neutral atoms with respect
to the atomic number [21,22] is probably the most prominent
example of such expansions. Considering how accurately
the coefficients of such expansions are reproduced by an
approximation also gives a measure of the accuracy of a given
approximation: we call an approximation asymptotically exact
to the pth degree (AEp) if it yields the first p coefficients
exactly. The zeroth-order coefficient is reproduced by a local
approximation, i.e., TF theory. A powerful feature of such
asymptotic expansions is that they yield very accurate results
even for small N , if the first few coefficients are known.

PFAs beyond the simple TF approximation have been
derived [14,15] for a class of simple model systems in one
dimension. In Sec. V we exemplify the accuracy of PFAs by
calculating the expansion of the total energy in the large-N
limit for a generic, smooth one-body potential. Another limit
in which TF theory becomes exact is the classical continuum
limit, which we introduced as a device to derive the leading
corrections to the TF density approximation [15]. We also
assess the accuracy of existing PFAs in the classical continuum
limit. In the course of this analysis we point out another
difficulty with DFT that is not present in PFT. Functional
construction in DFT is based on approximations to the XC
energy. However, this causes an intrinsic ambiguity in the
energy density, because any term whose integral over space
vanishes—such as �f (n(r))—might be hidden in its definition
[23]. This issue has been coined as the “gauge” ambiguity in
energy densities for density functionals [24–26]. In PFT the
energy densities are approximated directly. Therefore such an
intrinsic ambiguity does not exist for potential functionals.
Consequently, PFAs can be compared pointwise in space to
evaluate their accuracy. We illustrate this with our kinetic
energy PFA [13] by calculating bulk and surface energies for
a simple case.

We contrast the direct and variational method of calculating
the total energy in PFT for a simple model system in Sec. VI.
We assess under what conditions the direct evaluation suffices
and, thereby, examine the symmetry condition on the density-
density response function for existing PFAs. The outcome
of this analysis is a PFA to the density-density response
function for noninteracting, spinless fermions in an arbitrary
one-dimensional, smooth potential in a box.

In the Appendixes we show that the direct and variational
evaluations of potential functional TF theory are equivalent.
We also show what happens as box boundaries, needed in some
formal constructions, are taken far away.

II. EXACT STATEMENTS

In this section, we compare and contrast PFT and DFT; this
section deals with the exact theory.

A. Basic definitions

Begin with the variational principle in quantum mechanics
by minimizing over N -particle wave functions � that are
antisymmetric, are normalized, and have finite kinetic energy:

E[v] = min
�

(〈�|T̂ + V̂ee + V̂v|�〉), (1)

where T̂ is the kinetic energy operator, V̂ee the electron-
electron repulsion, and V̂v an external one-body potential,
explicitly denoting the potential as a subscript.

The heart of DFT is the HK theorem [18] which states,
among other things, that the ground-state energy of an
interacting electronic system can be found from

E[v] = min
n

{
F̃ [n] +

∫
d3rn(r)v(r)

}
, (2)

where F̃ [n] is a universal functional of the one-electron density
n(r), because it is independent of v(r). (We use a tilde to
denote density functionals.) A useful way to define F̃ [n] is
via the constrained search procedure of Levy [16,27] and Lieb
[17,28]:

F̃ [n] = min
�→n

〈�|T̂ + V̂ee|�〉, (3)

which follows from Eq. (1) by writing the minimization in a
two-step procedure, where the search is performed over all �,
yielding the density n(r). The original work [18] was limited to
nondegenerate ground states and assumed that most reasonable
densities would be ground-state densities of some interacting
electronic problem. The constrained search approach is a
natural way around these difficulties.

But consider instead [11]

F [v] = 〈�[v]|T̂ + V̂ee|�[v]〉, (4)

where �[v] is the ground-state wave function of potential v(r).
Clearly, � is independent of any constant in the potential, and
all potential functionals are functions of the particle number
N (for ease of notation, we do not denote this explicitly). We
define it only for those potentials on which we wish to do
quantum mechanics; a practical choice is the Hilbert space
L3/2 + L∞, where we have a well-defined ground-state wave
function and energy [29]. If, in addition, we denote the ground-
state density as a functional of the potential, n[v](r), and the
dual density functional, ṽ[n](r), then

F̃ [n] = F [ṽ[n]], F [v] = F̃ [n[v]]. (5)

In PFT, we can evaluate the ground-state energy directly,

E[v] = F [v] +
∫

d3r n[v](r) v(r), (6)

or we can derive a variational principle in PFT by minimizing
the expectation value of the total energy over trial potentials
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v′,

E[v] = min
v′

(〈�[v′]|T̂ + V̂ee + V̂v|�[v′]〉). (7)

With the universal potential functional [11] defined in Eq. (4),
we obtain

E[v] = min
v′

{
F [v′] +

∫
d3r n[v′](r) v(r)

}
, (8)

where in the exact case the minimizing trial potential is the true
external potential v(r). Because the right-hand functional is
minimized, stationarity requires that the functional derivative
vanish, i.e.,

δF [v]

δv(r)
= −

∫
d3r ′ v(r′) χ [v](r′,r), (9)

where χ (r,r′) = δn[v](r)/δv(r′) is the density-density re-
sponse function. This is an important exact relation between
F [v] and n[v](r). Unfortunately, the relation is between
functional derivatives, not the functionals themselves.

However, we can functionally integrate in several ways.
The simplest is to use a coupling constant in the one-body
potential:

vλ[v](r) = (1 − λ) v0(r) + λ v(r), (10)

where 0 � λ � 1, and v0(r) is some reference potential. Em-
ploying the integral form of the Hellmann-Feynman theorem,
we obtain

E[v] = E0 +
∫ 1

0
dλ

∫
d3rn[vλ[v]](r) �v(r), (11)

where �v(r) = v(r) − v0(r) is the difference between the true
and the reference potential. Choosing a constant reference
potential, here v0(r) = 0, the universal functional becomes

F cc
n [v] =

∫
d3r {n̄(r) − n[v](r)} v(r), (12)

where n̄(r) = ∫ 1
0 dλn[vλ](r) denotes the average of the density

over the coupling constant. We call F cc a ffunctional of
n[w](r), because it maps a functional (here n[w](r), where
w denotes a function of r) to another functional, the universal
potential functional (see Appendix C for further discussion).
The gist of Eq. (12) is that knowledge of the potential
functional n[v](r) uniquely determines the universal functional
F cc [13].

The exercise of checking thatF cc as constructed by Eq. (12)
satisfies Eq. (9) will prove useful. We take the functional
derivative of Eq. (12) with respect to the potential v(r). This
yields

δF cc

δv(r)
= −n[v](r) −

∫
d3r ′ v(r′) χ [v](r′,r)

+
∫ 1

0
dλ

∫
d3r ′ χ [vλ[v]](r′,r)

dvλ[v](r′)
dλ

+
∫ 1

0
dλ

∫
d3r ′n[vλ[v]](r′)

d

dλ

δvλ[v](r′)
δv(r)

, (13)

which satisfies Eq. (9) if, and only if,

n[v](r) =
∫ 1

0
dλ

∫
d3r ′

{
χ [vλ[v]](r′,r)

dvλ[v](r′)
dλ

+ n[vλ[v]](r′)
d

dλ

δvλ[v](r′)
δv(r)

}
. (14)

This condition is true, in turn [13], if, and only if, the density-
density response function is symmetric under exchange of
coordinates:

χ [v](r,r′) = χ [v](r′,r), (15)

which is an important condition on n[v](r) and is satisfied by
the exact density-density response function, by virtue of its
being a second derivative of the ground-state energy.

B. The dual of the Lieb functional

A more general form of the universal density functional was
constructed by Lieb [17] using the Legendre transform of the
energy. Its domain was extended to include any nonnegative
densities that integrate to a given particle number and is a
bifunctional of a potential and a density. This bifunctional is
not used in PFT, and in fact, the entire procedure is unnecessary
in PFT, because a detour via a density-potential mapping is
unneeded. However, we show here its dual in PFT, to illustrate
the differences between potential and density functionals and
to make clear the distinction from the Lieb construction.

Lieb begins by defining a bifunctional of any pair n and v:

L[n,v] = E[v] −
∫

d3r n(r) v(r). (16)

Lieb’s density functional is then defined as [17,30]

F̃L[n] = sup
v

L[n,v] . (17)

How is this related to the potential functional definition of the
universal functional? Define the PFT dual of L[n,v]:

L̃[n1,v2] = Ẽ[n1] −
∫

d3r n[v2](r) ṽ[n1](r), (18)

where ṽ[n](r) denotes the ground-state potential as a functional
of n(r). Starting from the variational principle, we find

〈�[v2]|T̂ + V̂ee + V̂v1 |�[v2]〉 � E[n1], (19)

leading to

F [v] = sup
n

L̃[n,v], (20)

because in the exact theory F [v] = F cc
n [v]. This is the com-

plement to Lieb’s definition of the universal density functional
in the context of PFT, but the much simpler definition of
Eq. (4) suffices.

We note that there is another functional formulation of the
electronic structure problem that was worked out by Englert
[10], where the total energy is considered as a functional of
the effective one-body potential veff(r), density, and (negative)
chemical potential ζ simultaneously; i.e.,

Ē[veff,n,ζ ] = Ē1 + Vee[n] − ζN

−
∫

d3r ′ n(r′)[veff(r′) − v(r′)], (21)
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FIG. 1. Illustration of the relation between the universal function-
als in DFT (left) and PFT (right).

where Ē1 = T [n] + ∫
d3r ′n(r′)[veff(r′) + ζ ]. This is different

from either Lieb’s density functional in Eq. (20) or the potential
functionals defined in Eqs. (4) and (8). For example, within
TF theory it can be shown that Eq. (21) yields the ground-state
energy as the absolute maximum when a search over veff

and ζ is performed [31]. However, this only appears to
be a contradiction with our formulation in Eq. (8), where
the ground-state energy is the minimum of a search over
trial potentials. Indeed this is consistent with both Lieb’s
formulation and our approach. Simply speaking, this formal
difference from Englert’s work originates from the explicit
inclusion of the dependence on the particle number N in the
total energy functional, in contrast to our definition.

To summarize this introduction to the exact theory, we
illustrate the relation between DFT and PFT in Fig. 1. AT the
left we depict how the ground-state energy for the potential
v is determined in DFT via F̃ [n] by minimizing over trial
densities. In PFT, on the other hand, the ground-state energy
is found either directly, with the given functionals F [v] and
n[v] via Eq. (6), or variationally, by sole knowledge of n[v]
via F cc

n [v].

C. Noninteracting systems

Consider a system of fermions in some external potential
v(r) which do not interact with one another. We use the
subscript s to denote quantities and functionals for such a
system, and F [v] reduces to TS[v]. The variational principle
simplifies to

E[v] = min
v′

{
TS[v′] +

∫
d3r nS[v′](r) v(r)

}
, (22)

and the coupling-constant expression is

T cc
S,nS

[v] =
∫

d3r {n̄S(r) − nS[v](r)} v(r). (23)

The consquence of Eq. (23) is that only the knowledge of
the noninteracting density, nS[v], is required to determine the
noninteracting kinetic energy TS.

An alternative expression is given in terms of the virial
theorem for the noninteracting kinetic energy [32]:

∇2tS(r) = −d

2
∇{n(r) ∇vS(r)}, (24)

where d is the dimensionality of space and tS(r) the kinetic
energy density, such that TS = ∫

d3rtS(r).

D. Kohn-Sham scheme

So far we have discussed the potential functional analog
of HK-type DFT, where knowledge of the density suffices
to determine the total energy of either an interacting or a
noninteracting system by evaluation of the corresponding
potential functionals, such as the universal functional and the
functional for the noninteracting kinetic energy on the density.

But also the noninteracting case can be utilized to yield
the total energy of an interacting system of electrons. This is
achieved via the celebrated KS scheme. In what follows we
describe how PFT could be employed in the KS construct. The
interacting system is mapped onto a noninteracting system,
requiring that both have the same density. This mapping is
achieved by the KS potential,

vS(r) = v(r) + ṽH[nS[vS]](r) + ṽXC[nS[vS]](r), (25)

mimicking all many-body interactions among the electrons in
the usual KS-DFT sense via the Hartree and XC potentials:

ṽH[n](r) = δŨ [n]

δn(r)
=

∫
d3r ′ n(r′)

|r − r′| , (26)

ṽXC[n](r) = δẼXC[n]/δn(r). (27)

With a potential functional to the noninteracting density
nS[vS](r), which is identical to the interacting density n(r)
for the exact KS potential vS(r), Eq. (25) can be solved by
standard iteration techniques, bypassing the need to solve
the KS equations. The process of a KS-PFT calculation is
illustrated in Fig. 2. A given nS[vS] eliminates the need to
solve any differential equation in each iteration.

At the end of this iterative process we determine the total
energy of the interacting electronic system via

E[v] = T cc
S,nS

[vS] + Ũ [nS[vS]]

+ ẼXC[nS[vS]] +
∫

d3rnS[vS]v(r). (28)

Both the Hartree and the XC contribution can be evaluated
readily for a given nS[vS](r). The only missing ingredient for
evaluation of Eq. (28) is the noninteracting kinetic energy.
But we can use our result from the previous section. The
noninteracting kinetic energy of the KS electrons is given via
Eq. (23), where in that expression the external potential v(r)
becomes the KS potential vS(r); i.e.,

T cc
S,nS

[v] =
∫

d3r {n̄S(r) − nS[vS](r)} vS(r). (29)

The knowledge of nS[vS](r), which produces the corre-
sponding vS(r) self-consistently, suffices to determine the
noninteracting kinetic energy of the KS system.

III. APPROXIMATIONS

In practice, the HK type of DFT requires an approximation
to the universal functional, F̃ A[n], where the superscript A
denotes an approximation such as that used in TF theory, as
discussed in the next section. Via the variational principle we
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FIG. 2. (Color online) Self-consistent cycle in a PFT calculation
within the KS scheme: In contrast to a KS calculation in DFT, here,
in PFT, there is no need to solve the KS equations. The iteration
begins by guessing a KS potential and obtaining the initial density
via n

(0)
S (r) = nS[v(0)

S ](r). Evaluating Eq. (25) on the initial density,
n

(0)
S (r), yields the KS potential of the next iteration, v

(1)
S (r). The

corresponding density is obtained by n
(1)
S (r) = nS[v(1)

S ](r), which is
needed to compute the KS potential of the next iteration. This process
is continued until convergence is achieved.

then obtain a relation that determines the density for a given
v(r):

δ

δn(r)

(
F̃ A[n] +

∫
d3r {v(r) − μ} n(r)

)
= 0, (30)

where the Lagrange multiplier μ is identical to the chemical
potential. This yields an integrodifferential equation in n(r)
which is typically solved self-consistently, producing nA(r),
whose details depend on the choice of the approximation
F̃ A[n].

On the other hand, PFT works in a very different way. In
the most general case, we have an approximation to the pair
{n[v](r),F [v]} to obtain the total energy of the many-body
quantum system directly via Eq. (6); in the direct evaluation
we need a PFA to both the density and the universal functional
as a functional of the external one-body potential. This was
the approach used in Refs. [14,15], but it does not take
advantage of the exact conditions derived in Ref. [13]. The
semiclassical approach developed in those works [14,15]
yields more accurate densities than kinetic energies, due to
the need to take two spatial derivatives to calculate the kinetic
energy and, furthermore, is much easier for densities than
kinetic energies, because expansions need only be performed
to a lower order [15].

To take advantage of the results in the previous section,
we now discuss their logic when applied to approximate
calculations. If a pair of approximations {F A,nA} satisfies

Eq. (9) at v(r), then Eqs. (6) and (8) yield identical results. Then
no minimization procedure is needed. But this is not guaran-
teed a priori in approximate PFT. Thus, there seem to be two
obvious disadvantages of PFT. First, we need to approximate
the density and the universal functional separately. Second, to
take advantage of Eq. (8), we need to know whether a given
pair {nA[v](r),F A[v]} satisfies the variational principle.

The functional integration in terms of the coupling con-
stant [13] removes one of these problems. With a PFA to
the density, nA[v](r), the conjugate approximation for the
universal functional follows from Eq. (12) and reads

F cc
nA [v] =

∫
d3r{n̄A(r) − nA[v](r)} v(r). (31)

The important point to note is that only one approximation,
namely, nA[v](r), is required to uniquely determine an approx-
imation to the universal functional. As a result, we obtain the
reverse of the common procedure in DFT: In variational PFT
we first specify which PFA we use for nA[v](r), which then
determines the corresponding F A[v] via Eq. (31).

But this does not automatically cure the second problem.
An approximate pair constructed in this way does not auto-
matically satisfy the variational principle. It is not even clear
which method of calculation (direct or by use of the variational
principle) would yield a more accurate answer for a given PFA
to the density. However, the previous section shows that a
sufficient condition is the symmetry condition in Eq. (15),
which guarantees identical results, eliminating the need to
perform the minimization.

The utility of this approach for calculations on interacting
systems is probably limited in practice, for the same reason
that TF theory is largely abandoned in favor of the KS scheme.
Pure PFT requires a sufficiently accurate approximation to the
density of interacting electrons as a functional of the external
one-body potential, to produce approximate energetics that
are accurate enough to bind molecules and generally compete
for accuracy with KS calculations using the present XC
approximations.

A much more likely application of these results is for
noninteracting electrons in a KS potential. All previous general
statements for the interacting case analogously apply to
the noninteracting case. First, recall the standard procedure
in KS-DFT: The XC energy is approximated, and the KS
equations are solved self-consistently. In KS-PFT, however, we
additionally need a PFA to the noninteracting density, which
is a less complicated object to approximate than its interacting
counterpart. Then the self-consistent cycle, shown in Fig. 2, is
solved; any existing density functional approximation to the
XC energy can be employed in Eq. (25). The total energy
of the many-body quantum system is finally extracted from
Eq. (28), where the noninteracting kinetic energy of KS elec-
trons is calculated via the conjugate approximation to Eq. (23):

T cc
S,nA

S
[v] =

∫
d3r

{
n̄A

S (r) − nA
S [v](r)

}
vS[v](r). (32)

Note that the only approximation needed to perform this
self-consistent KS-PFT calculation is nA

S [v](r) (besides the
approximation to EXC, which is also required in KS-DFT); this
scheme is more efficient by several orders of magnitude than
a standard KS-DFT calculation, because the KS equations
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never have to be solved. However, the applicability of KS-PFT
crucially depends on the accuracy of nA

S [v](r); a major
fraction of the total energy is kinetic, such that only tiny errors
are allowed. Nevertheless, highly accurate approximations to
nA

S [v](r) that satisfy this restriction have already been derived
for model systems [14,15], and approximations for more
realistic external potentials are in development [33,34].

IV. THOMAS-FERMI THEORY: AN ILLUSTRATION

In this section we show how PFAs work. We use TF
theory for this illustration, because its simplicity in treating the
electron-electron interaction makes the presentation explicit.
First, we recall the usual density functional formulation
of TF theory for interacting electrons. Then we formulate
its potential functional counterpart and confirm that both
approaches yield the same result.

A. Density functional approximation

In the density functional formulation, we need simply an
approximation to F [n], which, in TF theory, is

F̃ TF[n] = T̃ TF
S [n] + Ũ [n], (33)

which is the sum of the local approximation for the kinetic
energy of a noninteracting uniform gas,

T̃ TF
S [n] = 3

10
(3π2)2/3

∫
d3r n(r)5/3, (34)

and the Hartree energy,

Ũ [n] = 1

2

∫
d3r n(r) ṽH[n](r), (35)

where

ṽH[n](r) = δU

δn(r)
=

∫
d3r ′ n(r′)

|r − r′| . (36)

This yields the TF energy functional:

ETF[v] = min
n

{
F̃ TF[n] +

∫
d3r n(r) v(r)

}
. (37)

To find the minimizing density, we functionally differentiate,
yielding a Euler equation for the self-consistent TF density:

nTF(r) = 1

3π2
{2[μ − v(r) − ṽH[nTF](r)]}3/2. (38)

The density is taken to vanish whenever the argument on
the right is negative, and the chemical potential chosen via
normalization, ∫

d3r nTF(r) = N. (39)

Finally, we note that this can always be interpreted in terms of
the KS scheme. The TF theory ignores XC contributions, so
that

ṽTF
S [n](r) = v(r) + ṽH[n](r), (40)

and the density satisfies

nTF(r) = 1

3π

(
2
{
μ − ṽTF

S [nTF](r)
})3/2. (41)

B. Potential functional approximations

We now show how TF theory can be derived as a PFA.
Although the final equations are identical, their derivation is
very different.

Because interaction effects are less explicit in PFT, we begin
with an analysis of the noninteracting case. All PFAs start with
the density as a functional of the potential. For plane waves of
an extended system with constant potential v, one finds

nS(v) = 1

3π2
[2(μ − v)]3/2. (42)

This then leads to the TF approximation in PFT for noninter-
acting electrons in v(r):

nTF
S [v](r) = 1

3π2
{2[μ − v(r)]}3/2. (43)

The same plane waves yield a kinetic energy density in the
box,

tS(v) = 1

10π2
[2(μ − v)]5/2, (44)

which produces the TF PFT for TS:

T TF
S [v] = 1

10π2

∫
d3r {2[μ − v(r)]}5/2. (45)

In fact, insertion of Eq. (43) into Eq. (45), eliminating
v(r), produces the usual TF DFT [29]. Thus the duality
shows that knowledge of the density functionals produces the
corresponding potential functionals, and vice versa:

T TF
S [v] = T̃ TF

S [nS[v]], T̃ TF
S [nS] = T TF

S [ṽ[nS]]. (46)

Armed with this pair of approximations, we can perform
either a direct evaluation,

ETF
dir [v] = T TF

S [v] +
∫

d3r nTF
S [v](r) v(r), (47)

or a minimization,

ETF
var[v] = min

v′

{
T TF

S [v′] +
∫

d3r nTF
S [v′](r) v(r)

}
; (48)

and we do not know a prioriif these yield the same result. In
Appendix A we show that for TF theory, in fact, Eqs. (47) and
(48) are equivalent.

Alternatively, we can use our density PFA to construct a
kinetic energy functional via Eq. (23). Applying this leads to

T cc
S,nTF

S
[v] =

∫
d3r

{
n̄TF

S (r) − nTF
S [v](r)

}
v(r), (49)

which is identical to T TF
S [v]. This can be shown in the following

way: Begin with Eq. (47) and show that it yields the same
energy when Eq. (49) is used; i.e., we want to show the equality

ETF
dir [v] = T cc

S,nTF
S

[v] +
∫

d3rnTF
S [v](r)v(r). (50)

Introducing a coupling constant as in Eq. (10) [with v0(r) = 0],
we can write

ETF
dir [v] =

∫ 1

0
dλ

dETF
dir [vλ[v]]
dλ

. (51)
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We further take advantage of the fact that the Hellmann-
Feynman theorem is satisfied in TF theory [35], yielding

dETF
dir [vλ[v]]
dλ

=
∫

d3rnTF
S [vλ[v]](r)v(r). (52)

Inserting this into Eq. (51) yields the equality in Eq. (50) via the
definition in Eq. (49) and proves the equivalence of T cc

S,nTF
S

[v]

and T TF
S [v]. Thus, from our general proof, we know that iff

our density PFA satisfies the symmetry condition in Eq. (15),
then direct evaluation yields the same result that minimization
does, so that we can dispense with minimization. In Sec. VI,
we prove just that in one dimension, but the proof is trivial to
generalize to three.

From a different perspective, if we did not know T TF
S [v], our

coupling-constant procedure generates the correct formula.
But full TF theory is about interacting particles, and uses

the Hartree approximation to treat the interaction. To generate
this in PFT, write the interacting density in terms of the KS
potential,

nTF[v](r) = 1

3π
(2{μ − vS[v](r)})3/2, (53)

and write the Poisson equation in reverse,

nTF[v](r) = − 1

4π
∇2vH[v](r), (54)

where

vS[v](r) = v(r) + vH[v](r). (55)

Together, Eqs. (53) and (54) produce the implicit v dependence
of vH(r) and, so, define the TF PFA for the density of interacting
electrons. In fact, use of the equation for the potential is how
TF equations are usually solved for atoms [36–38]. In practice,
we solve Eq. (55) as illustrated in Fig. 2. The iteration starts
by setting vH(r) = 0 in Eq. (55), evaluating nTF

S [v](r) via
Eq. (53), and finding the resulting vH[v](r) in Eq. (54), which
is then used to determine the KS potential of the next iteration
cycle via Eq. (55), yielding the corresponding density via
Eq. (53), which, inserted into the left-hand side of Eq. (54),
yields the Hartree potential for the following iteration. This
process is continued until convergence. Finally, the converged
KS potential and density are found.

Then we apply our coupling-constant trick and use as the
kinetic energy functional the TF analog of Eq. (32); i.e.,

T cc
S,nTF

S
[v] =

∫
d3r

{
n̄TF

S (r) − nTF
S [v](r)

}
vS[v](r). (56)

This is almost identical to Eq. (49), with the only difference
that v(r) is replaced by vS[v](r), which is determined self-
consistently as just described. This leads to the following PFA
to the universal functional:

F cc
nTF

S
[v] = T cc

S,nTF
S

[v] + U [v], (57)

which is equivalent to F TF[v]. Again, we can check duality:

U [v] = Ũ [nTF[v]], Ũ [n] = U [ṽTF[n]]. (58)

Given its symmetry, it does not disturb the symmetry condition,
so that direct evaluation remains sufficient, even in the
interacting case.

V. ASYMPTOTIC ANALYSIS

In this section we apply the theory of the previous sections
to recent suggestions for PFAs. We restrict the following
discussion to noninteracting, spinless fermions in a one-
dimensional, smooth potential with box boundaries, because
for this class of potentials an accurate PFA to the density
has already been derived [14,15] and is of convenient analyt-
ical form. The derivation produced nsc

S [v](x) = nsm
S [v](x) +

nosc
S [v](x), where the first term is a smooth, TF-like piece

and the second an oscillating, quantum correction, which are
defined as

nsm
S [v](x) = k

π
, (59)

nosc
S [v](x) = − sin 2θ

2τL k sin α
, (60)

where we drop the dependency on x to preserve a concise
notation. The quantities in Eq. (59) are the Fermi wave vector

k =
√

2[εF − v(x)], (61)

the classical phase

θ =
∫ x

0
dx ′ p, (62)

where p = √
2(εF − v(x ′)), and the classical time for a particle

with energy εF to travel from 0 to x or L,

τ =
∫ x

0
dx ′/p, τL =

∫ L

0
dx/k, (63)

and the abbreviation α = πτ/τL. Note that all quantities in
Eq. (59) are evaluated at the Fermi energy εF.

In Ref. [13] we demonstrated that, for generic external
potentials which are sufficiently smooth (such that the basic
assumption of the WKB approximation is valid), our coupling-
constant method combined with the semiclassical density PFA
(derived in Ref. [14]) yields highly accurate total energies,
almost indistinguishable from the exact answer already for
any N � 2. In the following we analyze the accuracy of those
PFAs, both in terms of energy and in real space. Then we
explain the source of the observed accuracy via an asymptotic
analysis in the large-N and the classical continuum limit [15].
Furthermore, we calculate the contributions to the asymptotic
correctness coming from distinct regions—the interior and the
edge; these are analogs of the surface and the bulk of a real
solid. In the following we present only the essence of our
analysis. We refer the interested reader to the Supplemental
Material [39] for further numerical details.

A. Large-N asymptotic expansion of energies

We analyze the asymptotic behavior of the total energy in
the large-N limit to assess the accuracy of approximations.
We examine the behavior of two PFAs: the independent
semiclassical approximation (ISA) and the density-driven
semiclassical approximation (DSA).

The first consists of two independent semiclassical approx-
imations: one for the density, first derived in Ref. [14], and the
other for the kinetic energy density. This derivation requires
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TABLE I. Exact total energy and errors in the TF approximation,
ISA, and DSA for N particles in the external potential v(x) =
−8 sin2 (πx), where 0 � x � 1.

EA − E

N E TF ISA DSA

1 −1.1615 −1.603 −0.1825 −0.0221
2 14.510 −9.554 −0.1200 0.0054
4 129.95 −40.78 −0.0357 0.0011
8 972.65 −162.5 −0.0098 0.0002
16 7316.4 −642.8 −0.0026 2 × 10−5

24 24 082 −1438 −0.0010 7 × 10−6

expansion to a higher order in h̄, and yields an asymptotically
correct expansion in the interior, but fails near an edge. This
failure was patched to the asymptotically correct solution
near the edge in Ref. [14], in order to produce a uniformly
asymptotic approximation. A better patching scheme was
developed in Ref. [15].

The second PFA, denoted the DSA, was first derived in Ref.
[13], using the coupling-constant construction studied here.
The advantage is that one needs only the semiclassical formula
for the density alone, which is uniformly asymptotic, and so the
kinetic energy density derived from it by functional integration
via the coupling-constant method should automatically be
uniformly asymptotic. An obvious question is its performance
relative to the ISA, especially the behavior of both near the
edge of the box.

In Table I, we list total energies for several N values for a
generic external potential v(x) = −8 sin2 πx, 0 � x � 1. The
incredibly rapid convergence of the DSA to the exact energy as
N grows is readily apparent. We can understand and quantify
this as follows: Expanding the total energy in powers of N

yields

E(N )/N3 = c0 + c1/N + c2/N
2 + c3/N

3 + c4/N
4 + · · · .

(64)

We characterize the accuracy of an approximation [14] by
measuring the deviation from these exact coefficients. We
perform this analysis explicitly for the generic external po-
tential, assuming that the qualitative features are independent
of the specific potential, once it is reasonably smooth. In
Fig. 3, we plot E(N )/N3 both exactly and for the various
approximations.

Because of the box boundary conditions, the energies
approach those of a flat box as N grows, and in fact, the
leading two coefficients are just c0 = π2/6 and c1 = π2/4,
respectively. Remarkably, the TF approximation is only AE0,
i.e., it errs in the value of c1, as it does not recover the flat box
results exactly [14]. But the semiclassical corrections yield a
great improvement over TF theory. To analyze them, we define
the residual energy, �E = E − Eflat, where the flat box result
is known analytically. Then

�E(N ) = c′
2 N + c3 + c4/N + · · · , (65)

where c′
2 = (c2 − π2/12). We find that the ISA correctly

reproduces c′
2 = −4, but makes a small error in c3 (about

0.25%). Thus this approximation is AE2, as discussed in
Ref. [14], and is almost AE3.
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FIG. 3. (Color online) Numerical confirmation of the leading
coefficient c0 of Eq. (64) from the exact calculation, ISA, and DSA
for v(x) = −8 sin2 (πx), where the maximum number of particles
considered is N = 32.

But the new approximation, the DSA, using only the density
formula and coupling-constant integration, is at least AE4. It
is beyond our numerical accuracy to determine c5 sufficiently
accurately, although it appears that even this coefficient may
be exact within the DSA. Thus, by reproducing two more
terms in the asymptotic expansion exactly, we get tremendous
improvements in accuracy, even at N = 1. This illustrates
the potential of the coupling-constant method to generate
incredibly accurate approximations.

B. Classical continuum limit of energies

An alternative limit in which TF also becomes exact was
described in Ref. [15]. We define the approach to the classical
continuum limit by increasing the number of particles in a
system from its original value N to N ′ > N , while simulta-
neously replacing h̄ with γh̄, where γ = N/N ′. As N ′ → ∞,
the energy differences between discrete eigenvalues becomes
infinitesimal and a continuum is formed. The advantage of
this limit, as opposed to large N , is that it approaches the TF
solution of the original problem with N particles, rather than
approaching the N → ∞ problem of the previous section.

Expanding the total energy in powers of γ about 0 yields
the expansion

E(γ ) = ETF (1 + b1 γ + b2 γ 2 + · · · ), (66)

where

bp = 1

p!

dpE

dγ p

∣∣∣∣
γ=0

/
ETF. (67)

Such an expansion is expected to be asymptotic rather than
convergent. We also define E(p) as the sum up to the pth order
of such terms. We find, for N = 1, that while E(2) is more
accurate than lower order truncations, E(3) overshoots. For
N > 1, all successive terms up to third order always improve
accuracy.

Under this γ scaling, the TF approximation is independent
of γ . We find that both PFAs, the ISA and DSA, reproduce
b1 exactly, but neither yields b2. This is not surprising, as
these approximations were derived only to yield the leading
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corrections to TF in this limit. For N = 1, we find that
neither approximation yields particularly accurate expansion
coefficients and that their absolute errors for the coefficients
are comparable. Regardless, these errors in the coefficients do
not translate into an inaccurate energy; as we have shown in the
previous section, the DSA energy is very accurate for N = 1.
As N grows, the errors in the coefficients rapidly shrink, but
from analysis of the coefficients alone, the DSA would appear
to be no more accurate than the ISA. As shown in the previous
section, however, the DSA is far more accurate and converges
more rapidly than the ISA with increasing N . Therefore the
asymptotic expansion in γ is not useful for understanding the
improved accuracy of the DSA relative to the ISA.

C. Analysis in real space

In density functional approximations, a difficult and vexing
issue is the ambiguity of the energy density of an approximate
density functional for an energy [24,25]. For example, one
can always add the Laplacian of the density to the energy
density of even a local approximation without changing the
functional, since that addition integrates to 0 as long as the
density vanishes on the boundary. This difficulty complicates
any pointwise comparison between approximate functionals
[40] and has hampered our ability to construct improved
approximations, especially local hybrids [24,41].

A great advantage of PFT is that this ambiguity does not
exist: PFAs approximate a given choice of exact energy density
and, so, can be compared pointwise. There is no “gauge”
ambiguity [26].

In Fig. 4, we illustrate this for a single particle in a single
well of depth 8. The ISA approximates one definition of the
kinetic energy density, while the DSA approximates another.
But in each case, they can be compared for accuracy pointwise
to the respective exact curve. Again, we see that the DSA
is more accurate everywhere. Its maximum errors are much
smaller than those of the ISA, and the average errors are also
much smaller.

To check this idea, we have seen above that both semi-
classical PFAs show higher order asymptotic exactness than
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FIG. 4. (Color online) Comparison of the ISA kinetic energy
density [lower dash-dotted (green) line] with its exact counterpart
[lower dotted (green) line] and of the DSA kinetic energy density
[upper dash-dotted (red) line] with its exact counterpart [solid (red)
line] for one particle in v(x) = −8 sin2 (πx). The lower panel shows
the errors, with average errors indicated by straight dash-dotted lines.

the TF approximation. We now ask if these improvements
are visible in separate spatial regions, not just for quantities
integrated over the entire system. In particular, we know that
the limit as γ → 0 is different for fixed values of x (interior)
than for fixed values of γ x, the edge (or surface) region [15].
But the semiclassical density approximation is supposed to
be uniformly asymptotic, i.e., to have the same degree of
AE for each region separately. To test this, we must define
a dividing line between the interior and the edge. We choose
the half-phase point xπ/2, defined by the following condition
on the classical phase [14]:

θ (xπ/2) = π/2. (68)

This is our measure to split the box into an interior (L/2 −
|L/2 − x| > xπ/2) and edges (the rest).

This condition has been used for the boundary-layer
analysis of the ISA in Ref. [15]. As N grows, xπ/2 ∼ 1/N ;
or as γ → 0, xπ/2 ∼ γ . We define a surface kinetic energy
as the energy in this region and analyze the accuracy of our
approximations for this quantity.

The energy from distinct regions follows the same expan-
sions as Eqs. (64) and (66), but with different coefficients cint

p ,

c
edge
p , bint

p , and b
edge
p . As N grows, the boundary between the

edge and the interior—the half-phase point xπ/2—is shifted
towards the edge, such that in the limit N → ∞ the edge
region vanishes and the interior extends over the entire length
of the system. The same is true for the classical continuum
limit. Hence, the leading order coefficient of both expansions
close to the edge vanishes; i.e., c

edge
0 = 0 and b

edge
0 = 0. Also,

note that we need to distinguish between two exact results
when splitting up the energy into contributions from different
spatial regions. This is due to the fact that we use two different
definitions of the kinetic energy density. The ISA stems from
the Laplacian definition, whereas the DSA yields a different
definition as illustrated in Fig. 4. However, the difference
in the energy values between these definitions vanishes with
increasing N ; therefore we report only exact regional energies
using the Laplacian definition, but note that the errors of
DSA are calculated with respect to the exact energy density
defined by the coupling-constant method for each region.
First, we consider the total energies of the interior given in
the E columns in Table II. We plot Eint(N )/N3 in Fig. 5,
illustrating the large-N limit, in which the energy expansion in
the interior approaches π2/6. This analysis also yields that the
ISA correctly reproduces c0, cint

1 = 1.313, and cint
2 = −4.492

but fails to yield cint
3 (with the small error of about 0.1%). On

the other hand, the DSA exactly reproduces the coefficients up
to at least cint

4 .
Next we consider the edge region, for which the energy

contributions and errors of approximations are listed in the TF,
ISA, and DSA columns in Table II. As the size of this region
vanishes in the limit N → ∞, the leading term in the large-N
expansion falls off linearly with N . This is illustrated in
Fig. 6. In analogy to the interior, the ISA correctly yields
c

edge
1 = 1.147 and c

edge
2 = 1.16 but makes a mistake for c

edge
3 ,

by about 0.5%. The DSA, however, yields exact coefficients
up to at least c

edge
4 and probably also for higher order

contributions. The numerical accuracy of our analysis is not
high enough to give a definite answer beyond this order.
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TABLE II. Exact total energy and errors of approximations (TF, ISA, and DSA) in the interior and close to the edge for N particles in the
external potential v(x) = −8 sin2 (πx), where 0 � x � 1.

Interior Edge

EA − E EA − E

N E TF ISA DSA E TF ISA DSA

1 −0.6721 −1.081 −0.1051 0.0076 −0.4891 −0.5219 −0.0774 −0.0297
2 9.631 −8.215 −0.1505 0.0068 4.876 −1.3361 0.0304 −0.0014
4 108.5 −41.28 −0.0666 0.0012 21.41 0.5091 0.0308 −6 × 10−5

8 891.2 −178.9 −0.0199 0.0002 81.23 16.49 0.0101 −1 × 10−6

16 7004 −738.7 −0.0054 2 × 10−5 310.8 96.16 0.0028 −2 × 10−8

24 23 391 −1677 −0.0025 7 × 10−6 686.9 239.2 0.0013 −3 × 10−9

In conclusion, we could demonstrate that even when we
consider energy contributions from separate spatial regions,
the ISA is AE2, whereas the DSA is at least AE3. Furthermore,
this analysis shows that the accuracy achieved by both
approximations over the entire system is not due to error
cancelations in different spatial regions; it is caused by virtue
of both approximations capturing the large-N asymptotic
expansion in separate spatial regions sufficiently accurately.

VI. THE IMPORTANCE OF BEING SYMMETRIC

In this section we contrast the direct method of calculating
the total energy in PFT given by Eq. (6) with the variational
method in Eq. (8). Determining the total energy variationally
as in Eq. (8) is sensible only for calculations that involve
approximations. In the exact case the total energy is always
minimized by the true external potential of the given problem.
We also demonstrate that the particular PFA to the density,
nsc

S [v](x), derived in Ref. [14], violates the symmetry condition
of Eq. (15). Consequently, when we perform a search over trial
potentials, the minimum energy is not given at v′(x) = v(x) as
predicted by the variational principle.

To illustrate this we consider N noninteracting, spin-
less fermions in an external, one-body potential v(x) =
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FIG. 5. (Color online) Numerical extraction of leading coeffi-
cients in Eq. (64) in the interior from the exact calculation, ISA,
and DSA for v(x) = −8 sin2 (πx), where the maximum number of
particles considered is N = 24.

−8 sin2(πx) in a box, where 0 < x < 1. We perform a
variational calculation of the total energy, where we evaluate
Eq. (8) in an extremely limited class of trial potentials v′(x) =
v(x) − �D sin2(2πx). The result is illustrated in Fig. 7
for N = 1 and N = 2. The solid black curve depicts the exact
calculation with the minimum located at �D = 0. The dotted
(green) curve corresponds to the ISA, which might not even
have a minimum, because two independent approximations,
nA

S [v] and T A
S [v], are employed. The dashed (red) curve is the

DSA, which, despite being more accurate, also minimizes not
at the true external potential, but at �D = 1.2 for N = 1 and
at �D = 1.3 for N = 2. Furthermore, in Table III we list the
total energies given by the exact calculation and absolute errors
of several approximations (TF, ISA, and DSA) obtained from
the direct evaluation for increasing N . Additionally, we list
the absolute errors of the DSA from the variational calculation
along with the effective depth �D of the minimizing trial
potential. This analysis shows that a minimization over some
trial potentials can yield a more accurate result at a trial
potential different from the true external potential but that
this is not always the case; for example, the DSA in Fig. 7
for N = 2 yields a more accurate energy at its variational
minimum than at �D = 0. However, for N = 1 the energy
of the DSA at the variational is less accurate. Furthermore,
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FIG. 6. (Color online) Numerical extraction of the leading coef-
ficients in Eq. (64) close to the edge from the exact calculation, ISA,
and DSA for v(x) = −8 sin2 (πx), where the maximum number of
particles considered is N = 24.
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FIG. 7. (Color online) Variational calculation of the total energy [solid (black) line] in comparison to the ISA [dotted (green) line] and
the DSA [dashed (red) line] of N noninteracting, spinless fermions in an external potential, v(x) = −8 sin2(πx), where the minimization is
performed over trial potentials v′(x) = v(x) − �D sin2(2πx). Lower panels show a magnification of the exact and the DSA results, illustrating
the position of the variational minima.

as N increases, the error of the DSA decreases quickly,
and its variational minimum coincides with the true external
potential as demonstrated by the variational results in Table III.
Consequently, for large N a variational minimization of the
DSA becomes obsolete, since the minimum will be given at
the external potential of the given problem. Furthermore, to
find the true global minimum (not guaranteed to exist for a
semiclassical expansion, as the DSA is), one needs to search
over all trial potentials, not just simple multiples of the external
potential, which could be achieved via a set of self-consistent
equations.

From the previous sections, we know that the DSA’s failure
to minimize at the correct potential must be caused by its
violation of the symmetry condition,

δnsc
S [v](x)

δv(x ′)

∣∣∣∣
N

= δnsc
S [v](x ′)
δv(x)

∣∣∣∣
N

. (69)

The specific PFA, nsc
S [v](x) = nsm

S [v](x) + nosc
S [v](x), consists

of a smooth (nsm
S ) and an oscillating (nosc

S ) piece [14]. To first
order in δv(x) the Fermi energy εF changes as

δεF = 1

τL

∫ L

0
dx

δv(x)

k
, (70)

TABLE III. Total energy of N noninteracting, spinless fermions
in the external potential v(x) = −8 sin2 (πx), where 0 � x � 1, and
absolute errors of the direct evaluation within the TF, ISA, and DSA.
Additionally, we list the absolute errors of the variational evaluation
of the DSA together with the minimizing trial potential.

Direct Variational

EA EA:
N E TF ISA DSA �D DSA

1 −1.161 −1.603 −0.183 −0.022 1.2 −0.038
2 14.510 −9.554 −0.120 0.005 1.3 −0.002
4 129.953 −40.778 −0.036 0.001 0.0 0.001
8 972.652 −162.496 −0.010 10−4 0.0 10−4

the smooth piece of the density yields

χ sm
S (x,x ′) = 1

πk

[
1

τL p
− δ(x − x ′)

]
, (71)

and the oscillating piece gives

χosc
S (x,x ′) = nosc(x) [a + b cot 2θ − c cot α] , (72)

with

a = 1

τL p

(
ξL

τL
− 1

p2
− 1

k2

)
+ δ(x − x ′)

k2
, (73)

b = 2

p
[β − η(x − x ′)], (74)
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FIG. 8. (Color online) PFA to the static density-density response
function for fixed average coordinate R = 0.25 [where R = (x +
x ′)/2] as a function of the relative coordinate u = x ′ − x of one
particle in the external potential v(x) = −5 sin2 πx, where 0 � x �
1. This demonstrates explicitly that Eq. (76) is not symmetric under
exchange of coordinates. In particular, we confirm that the smooth
(sm) piece given in Eq. (71) is symmetric, whereas the oscillating
(osc) piece in Eq. (72) is not.
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FIG. 9. (Color online) Exact (black) and semiclassical (sc; red)
change in density of one particle in the external potential v(x) =
−5 sin2 πx, due to a change of potential proportional to a Gaussian
of width 0.001 centered at x = 0.25. Symmetric (sc sym.; blue) and
antisymmetric (sc antisym.; green) semiclassical contributions are
also shown.

c = π

τL p

(
η(x − x ′) − β

p2
+ βξL − ξ

τL

)
, (75)

where η(x − x ′) denotes the Heaviside step function, β =
τ/τL, ξ = −(dτ/dε)|ε=εF , and ξL = −(dτL/dε)|ε=εF . As ex-
pected, the functional derivative of the smooth, TF-like piece is
symmetric under exchange of x and x ′. However, the functional
derivative of the oscillating piece is not symmetric. This is the
reason why the DSA curve in Fig. 7 does not minimize at v(x).

The fallout of this analysis is an explicit PFA to the static
density-density response function,

χ sc
S [v](x,x ′) = χ sm

S [v](x,x ′) + χosc
S [v](x,x ′), (76)

for noninteracting, spinless fermions in an external potential
v(x) confined by box boundaries, which is an interesting
result in itself. As an example we consider one parti-
cle in v(x) = −5 sin2 πx. Introducing average and relative
coordinates, i.e., R = (x + x ′)/2 and u = x ′ − x, we plot
Eq. (76) in Fig. 8; this explicitly demonstrates that Eq. (76) is
not symmetric under exchange of coordinates. Additionally,
in Fig. 9 we illustrate the symmetric and antisymmetric
contributions to the change in density δnS(x) = limf →0 (n[v +
f v](x) − n[v](x))/f calculated via Eq. (76) when the external
potential is perturbed by δv(x) = f g(x), where g(x) =
exp [−(x − x0)2/(4σ )]/(2

√
π σ ), which approaches a Dirac

δ function centered at x0 in the limit σ → 0.

VII. CONCLUSION

In this work, we have established several formal properties
of the potential functionals introduced in Ref. [13], especially
in terms of their duality to density functionals [11]. We
have also shown that the methodology of Ref. [13] can be
employed to produce potential functionals more accurate than
any that had previously existed. This higher accuracy can be at-
tributed to the “unreasonable utility of asymptotic expansions’
[21,22] because the new coupling-constant procedure

considerably improves the accuracy of the asymptotic expan-
sion in powers of 1/N , where N is the particle number.

Of course, the major drawback of this line of investigation
remains: Only in one dimension, and then only for smooth
potentials confined by box boundaries, do we have explicit
expressions that are uniformly more accurate than TF theory,
at the present time. The thrust of the present investigation
is to show how promising such approximations are and to
dangle the hope of tremendous improvement over present-day
density functional approximations, especially for orbital-free
calculations.
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APPENDIX A: CONFIRMING THE VARIATIONAL
PRINCIPLE IN POTENTIAL FUNCTIONAL

THOMAS-FERMI THEORY

We show that in noninteracting TF theory the direct
evaluation of the total energy in Eq. (47) yields the same result
as the minimization over trial potentials given in Eq. (48).
If the approximate pair {nTF

S [v′](r),F TF[v′]} satisfies the
variational principle, i.e.,

δ

δv′(r)

(
F TF[v′] +

∫
d3r {v(r) − μ} nTF

S [v′](r)

)
= 0,

(A1)

then the statement above is true. To confirm the latter, define the
local chemical potential μ̃[v](r) = μ − v(r), which is directly
related to the density via

nTF
S [v](r) = {2μ̃[v](r)}3/2

3π2
. (A2)

Take the functional derivative in Eq. (A1) using the chain rule,
e.g.,

δT TF
S

δv′(r)
=

∫
d3r ′ δT TF

S

δμ̃(r′)
δμ̃(r′)
δv′(r)

, (A3)

considering that

δμ̃(r′)
δv′(r)

= −δ(r′ − r), (A4)

where δ(r′ − r) denotes the Dirac δ function, and keeping the
chemical potential μ fixed, since it is determined at the end
of the minimization by requiring normalization. Then we find
that v′(r) = v(r), as expected.

APPENDIX B: WALLS AT INFINITY

The DSA can be applied to potentials for which v(x) → 0 as
|x| → ∞ and where v0 = 0 is chosen as a reference potential.
However, for this choice the coupling-constant integral in
Eqs. (12) and (23) might be undefined, because the particle
number may change abruptly with the coupling constant. To
assure the existence of the coupling-constant integral, we use
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FIG. 10. (Color online) Plot of e(λ) for the second level as a
function of the coupling constant λ and for different values of L

denoting the distance between the hard walls.

the formal device of introducing hard walls and taking the limit
of infinite separation at the end of the calculation.

We demonstrate this procedure for a simple case. Consider
v(x) to be a finite square well. Assume that the depth of the
square well is such that there are two bound states. When
the coupling-constant integral is performed the depth of the
well changes from its initial value at λ = 1 to 0 at λ = 0.
As the depth decreases, there is a point where the energy of
the second bound state passes through 0 and vanishes. For
values smaller than this critical value of λ the integrand of
the coupling-constant integral is not defined and therefore
cannot be applied. To cure this problem we introduce hard
walls separated by a distance L as a reference potential. Thus,
all levels in the well stay bound and the integrand is defined
for the entire range λ ∈ [0,1]. By taking the limit L → ∞
the coupling-constant calculation converges to the case where
only the original potential v(x) is present. We demonstrate this
explicitly by calculating the quantity

e(λ) = E0(L) +
∫ L/2

−L/2
dx n[vλ](x) v(x) (B1)

for the second bound state and a well depth of 40. This is the
λ-dependent integrand of Eq. (11), with E0(L) = 4 π2/(2L2)
denoting the reference energy of the second bound state in an
infinite square well; integrating e(λ) over the coupling constant
yields the orbital energy of the second bound state. We plot e(λ)
for increasing L in Fig. 10: the critical value of λ, below which
the second level vanishes, is indicated by the kneelike feature
at λ ≈ 0.5. The calculation in the simulation box converges
to the exact result of the finite square well in a continuous

FIG. 11. (Color online) Schematic illustrating the concept of a
ffunctional.

manner as the separation between the walls is made larger.
This demonstrates how, in principle, the DSA can be applied
for potentials that vanish at infinity but also shows that the
coupling-constant dependence may become quite strong.

APPENDIX C: DEFINITION OF A FFUNCTIONAL

Here we explain the meaning of the term ffunctional,
which first appears as F cc

n [v] in Eq. (12), where we introduce
the universal functional in terms of a coupling-constant
expression. Simply speaking, a ffunctional maps a functional
to a functional; e.g., F cc

n [v] takes the functional n[w](r)—the
density as a functional of some potential w(r)—and creates a
new functional of the external potential.

To understand this concept consider the schematic in
Fig. 11 and the following example: Assume a particular
ffunctional that is defined as

WG[f ] =
∫ ∞

−∞
d3r f α(r) (C1)

with α = ∫ 1
0 dλG[λq]. Now for a given functional G[q], such

as

G[q] =
∫ ∞

−∞
d3r q2(r), (C2)

for which α = ∫ ∞
−∞ d3rq2(r)/3 [assuming a well-behaved

function q(r)], the ffunctional W maps G[q] to WG[q].
However, a different choice of G[q] would have resulted in
a different WG.
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