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Abstract The geometric and the electronic struc-

tures, the magnetic moments, and the magnetocrys-

talline anisotropy energy of bcc-Fe nanowires with

z-axis along the (110) direction are calculated in the

framework of ab initio theories. In particular, we

report a systematic study of free standing nanowires

with geometries and sizes ranging from diatomic to 1

nm wide with 31 atoms per unit cell. We found that for

nanowires with less than 14 atoms per unit cell, the

ground-state structure is body-centered tetragonal. We

also calculated the contributions of the dipolar mag-

netic energy to the magnetic anisotropy energy and

found that in some cases, this contribution overcomes

the magnetocrystalline part, determining thereby the

easy axis direction. These results emphasize the

importance and competition between both contribu-

tions in low dimensional systems.

Keywords Magnetic nanowires � Magnetic

anisotropy � Magnetic phase transition � Ab initio

calculations

Introduction

The development of new experimental techniques to

synthesize well-controlled nanostructured materials

has attracted renewed interest in low dimensional and

confined systems, in the last few decades. The unique

physical properties of these systems, due to quantum

confinement, are quite interesting, and sometimes
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México, Mexico, DF, Mexico

123

J Nanopart Res (2013) 15:1524

DOI 10.1007/s11051-013-1524-6



unexpected. In particular, special attention has been

devoted to the magnetic properties of nanostructures.

Due to the enhanced magnetic moment produced by

the dimensionality reduction, a natural expectation is

to use those materials to produce better and smaller

magnetic devices.

It is well known that a key parameter for most

applications of magnetic materials is the magnetic

anisotropy, which, in turn, is responsible for the

hysteresis behavior. The energy needed to magnetize a

crystalline sample depends on the direction of the

applied magnetic field. The direction in which it takes

less energy is known as the easy axis, and it depends

on the material and the crystalline structure. There-

fore, it is essential to know the magnitude of the local

magnetic moments, as well as the energy associated to

the magnetic anisotropy, i.e., the magnetic anisotropy

energy (MAE), of a given geometric arrangement of

atoms. Under bulk conditions, the MAE is fairly small

due to the high symmetry of the crystal. On the other

hand, in nanostructured materials, the MAE is several

orders of magnitude larger (Mokrousov et al. 2006),

leading to the possibility of potential technological

applications.

In one or quasi-one-dimensional systems, the

aspect ratios (length vs width) and the geometric

arrangements are of particular relevance. This factor is

also known as the shape anisotropy. Thus, a funda-

mental problem in magnetic 1D (or quasi 1D)

materials is the calculation of the MAE to determine

how difficult (or easy) it is to magnetize the samples

along particular directions.

In general, the MAE has two main sources: the

dipolar interaction between atomic magnetic

moments, also called the shape anisotropy energy

(SAE), and the spin–orbit interaction which gives rise

to the so-called magnetocrystalline anisotropy energy

(MCAE). The latter contribution arises from the

coupling between the spin and the crystal field (i.e.,

the coupling of the electron spin with the electronic

structure produced by the crystal geometry).

Most of the theoretical studies of the MAE in 1D

magnetic systems have analyzed only the MCAE

contribution. The first calculations performed within

the tight-binding model were reported for free Co and

Fe chains and a Co chain deposited on a Pd surface

(Dorantes-Dávila and Pastor 1998). They calculated

the MCAE as a function of the chain length and found

that for Fe, the easy axis is along the wire except for

the trimer. Later, ab initio density functional calcula-

tions of the MCAE were reported for free chains of Fe

and Fe wires encapsulated in gold nanotubes (Mok-

rousov et al. 2005). They report that the easy axis of

pure Fe (along the chain axis) is changed when it is

covered by gold. Even more, in Fe nanowires (NWs)

embedded into carbon nanotubes, a change of the easy

axis is also predicted, depending on the specific

matching between the NW and the carbon nanotube

(Muñoz et al. 2010). Reports on other !D systems

include pure Co chains (Hong and Wu 2003) and Co

chains deposited in Pt (Shick et al. 2004; Újfalussy

et al. 2004). More recent calculations of the 3d, 4d,

and 5d transition metal monowires were reported, and

it was found that the easy axis direction and the MCAE

magnitude changes drastically from one chemical

element to the next one (Mokrousov et al. 2006; Tung

and Guo 2007, 2010), making it difficult to draw

general conclusions.

It is also interesting to note that it has been shown

(Tung and Guo 2007, 2010) that the dipole contribu-

tion (SAE) to the MAE, which is determined by the

geometric shape (SAE), is in some 1D and zig-zag

nanowires, as large as the electronic contribution and

cannot be neglected. In some cases, the SAE changes

the direction of the easy axis.

On the experimental side, recent advances in

atomic engineering made it possible to synthesize

1D arrays of transition metal chains on particular

substrates. It has been possible to grow Fe arrays on

W(110) and Cu(111) surfaces (Hauschild et al. 1998;

Shen et al. 1997) and measure their magnetic proper-

ties. In the former case, the easy direction of the stripes

lies in the surface plane in contrast to the latter one in

which the easy axis points in the perpendicular

direction. More recently, Co NWs were grown on a

vicinal Pt surface (Gambardella et al. 2002). They

found a very large magnetic anisotropy, as compared

to thin films and bulk Co. Furthermore, the easy axis

changes its direction as a function of the transversal

shape of the NW, and also as one goes from 1D to

quasi 2D atomic arrangements. Other technique to

grow magnetic nanowire arrays is to fill nanoporous

templates with a well-defined pore geometry (Thurn-

Albrecht et al. 2000) with magnetic materials. This

method makes use of the self-assembly morphology of

asymmetric diblock copolymers, and one can tailor the

distance between nanowires to enhance or reduce the

inter-wire interactions. Thus, to understand the
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behavior of the MAE when changing the transversal

section or size, one has to explore the MAE in NWs

thicker than a monoatomic chain.

Unfortunately, just a few theoretical studies have

addressed the structural and magnetic properties of

both, free standing and supported (or embedded) NWs,

as a function of its size or transversal shape beyond the

biatomic NW. Zelený et al. (2009) calculated within

the spin-density functional theory, Fe NWs with unit

cells made up to four atoms. They report a structural

transition from nanoribbons to nanorods, but the

MCAE was not calculated. Furthermore, Dorantes-

Dávila and Pastor (2005) performed a systematic study

of the MCAE of Fe stripes as a function of stripe width

by using a self-consistent tight-binding method. They

followed the change of properties from 1D mono-

atomic chains to 2D films, assuming square and

triangular lattices. In the case of thin stripes, an

oscillatory behavior of the easy axis is obtained.

However, since they found that the dipole contribution

is small as compared with the electronic part, they did

not take this contribution into account in their final

analysis.

The present study aims to cover this gap in free

standing Fe NWs, by calculating the structure and the

MAEs (magnetocrystalline and dipolar) in NWs with

different geometries and sizes, ranging from diatomic

unit cells up to NWs, where the number of core atoms

is close to the number of surface atoms (unit cells

containing 31 atoms).

The layout of the article is as follows. In ‘‘Method

and computational details’’ section, our computational

approach is presented. Then, in ‘‘Structural proper-

ties’’ section, (i) the model used to build the NWs is

discussed, as well as (ii) the geometric properties of

the optimized NWs. The results for the binding energy

and the magnetic moments are presented in ‘‘Binding

energy and magnetic moments’’ section. In ‘‘Magnetic

anisotropy energy’’ section, the MAEs of the different

sized NWs are discussed. Finally, our conclusions are

given in ‘‘Conclusions’’ section.

Method and computational details

The calculations were performed using the density

functional theory as implemented within the Vienna

ab initio simulation package code (Kresse and Hafner

1993, 1994; Kresse and Furthmüller 1996a, b), where

the electron wave functions are expanded in a plane

wave basis by using the Blöch theorem. Projected–

augmented-wave (PAW) type of pseudopotentials

were used (Blöchl 1994; Kresse and Joubert 1999)

with Perdew–Burke–Erhenzof (PBE) as the

exchange–correlation parametrization (Perdew et al.

1996). By using the plane wave expansion and the

periodic boundary conditions, we are able to simulate

an infinite wire. Therefore, to mimic a single NW and

avoid interactions between neighboring cells, perpen-

dicular to the NW axis, a large vacuum slab (at least

10 Å plus the wire width) was considered. We also

performed some tests for larger values, of the vacuum

slab, to ensure the reliability of our results. Further-

more, the energy cutoff of the plane waves was set at

320 eV. It is important to notice that by reducing the

distance between NWs, one can also study the

magnetic properties of nanowire arrays.

For all the structures considered here, we first

perform a careful ionic relaxation until the forces were

negligible, |F| \ 0.01 eV/Å. We tested that a higher

precision on the force limit does not produce any

noticeable improvement on the total energies. During

the ionic optimization, the cell parameter along the

cylinder axis was relaxed; this point is quite important

in the case of the thinnest NWs.

With respect to the magnetic configuration, we only

considered the ferromagnetic case which corresponds

to the ground-state for a free standing Fe NW (Kang

et al. 2005; Weissmann et al. 2006). After the total

energy minimization, the wave function and charge

density were minimized within the collinearity

assumption and without spin–orbit coupling. These

quantities were used as input for the next step, which

corresponds to a noncollinear orientation but without

the self-consistent loop. In this last step, the spins are

oriented toward the desired crystal direction and the

spin–orbit coupling correction is included (Hobbs

et al. 2000).

The total energies were calculated by using the

afore mentioned procedure, with a convergence crite-

rion of 10-7eV, in both self-consistent and nonself-

consistent loops. We used 30 K-points for all consid-

ered nanowires. To test the reliability of this approach,

we have performed fully self-consistent calculations,

for some specific cases, where the spin–orbit coupling

was included from the starting geometric optimiza-

tion. The MCAE obtained in both cases is almost the

same (within the numerical precision). Therefore, we
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decided to proceed with the less exhaustive method to

avoid highly time consuming calculations.

Structural properties

Model structure

The initial structures, before the geometric relaxation,

are built from a cylindrical cut along the (110)

direction of the bcc phase of bulk iron. The length of

the periodicity along the cylinder axis (q), in the

nonrelaxed NWs, is 4.06 Å (see Fig. 1). It is interest-

ing to note that this periodicity is close to the zigzag

carbon nanotubes, and therefore offers interesting

possibilities in the study of encapsulated NWs in these

nanotubes (Muñoz et al. 2010; Weissmann et al.

2006).

To see the role of the underlying symmetry, we also

modeled NWs with a hexagonal (0001) symmetry (the

hcp axis is along the NW axis). In this case, the

assumed nearest neighbors distance is the same as in

bcc iron. Although bulk ferromagnetic iron is bcc, the

hcp lattice is a good candidate to make NWs, due to

their high coordination-like the (111) fcc- and that the

unit cell has two layers by unit cell, similar to (110)

bcc.

We considered all the possible cylindrical nonre-

laxed arrangements with diameter less than 1 nm; i.e.,

depending on the diameter, the axis of the cylinder

may pass though Fe atoms, through the middle of a Fe-

Fe bond, etc. This procedure generates a set of NWs,

not only with different diameters, but also by obeying

different symmetry operations (like reflection and

inversion).

The original structures of both bcc and hcp NWs

have a unit cell composed of two layers. In general, the

atoms in both layers have the same geometric

arrangements but their orientations may differ. How-

ever, some NWs do not follow this trend, and have a

different number of atoms in each layer. In this report,

the unit cell size ranges from N = 2–31 atoms.

Ground-state geometric structures

In general, the calculations of NWs, thicker than one

(mono-atomic chain) or two (biatomic zigzag arrange-

ments) atoms per unit cell, reported by other authors,

were performed neglecting the structural optimization

along the periodicity axis (Weissmann et al. 2006).

However, because a large number of surface atoms are

under-coordinated, a significant stress is generated.

Thus, it is important to allow relaxation in all the

cases. We observed that the optimization of the atomic

coordination in the unit cell, modifies the cell param-

eter along the nanotube axis q, producing thereby a

higher coordination and/or stronger bonding.

In the bcc NWs, the cell height q shows an abrupt

transition when the number of atoms per unit cell

reaches the value of 14 (see circles in Fig. 2). In NWs

with unit cells made of a smaller number of atoms, q
takes a value close to 2.7 Å, and their geometry

changes to a body-centered tetragonal along the (001)

direction. The relaxed lattice parameter is a & 4Å,

i.e., the cells are wider and thinner after relaxation.

The shortest value for q corresponds to the NW with

three atoms per unit cell. The compression is driven by

the increase of the interaction between biatomic layers

(the other layers have only one atom lying between the

two atoms in neighboring layers). The NWs with 14 or

more atoms per unit cell, preserve almost their bcc

shape; the relaxation produces only minor changes.

Therefore, the observed transition is attributed to

the low coordination number of systems with less than

Fig. 1 Transversal and longitudinal views of a nanowire before

the structural optimization (bcc in this case, but the hcp NWs is

quite similar). The unit cell size along the periodic axis is

denoted by q. Each unit cell consists of two layers: one with blue
(dark) and the other with orange (clear) atoms. The angle

between the z-axis and the magnetization is denoted by h, and /
is the azimuthal angle in the plane xy. (Color figure online)
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14 atoms, which reduces the unit cell height to

increase the interaction between atoms. This reduction

of the unit cell in the axis direction changes the

symmetry from body-centered-cubic to body-centered

tetragonal.

Assuming a hcp starting structure (with two prede-

fined lattice parameters a and q), the only NWs that

maintain this structure are those with 6, 12, and 24

atoms per unit cell (denoted by squares). The one with

N = 6 is the only one more stable than the bcc

arrangement, although it has a q value much larger than

the NWs with similar number of atoms. For N = 12,

the hcp structure has a much larger q than those of the

bcc geometries. Finally, the hcp structure with N = 24

has a very similar q to the bcc but it has a weaker

binding energy. In the case of the hexagonal, there are

different possibilities as to how the nanotube can be

obtained from the crystalline structure; this allowed us

to construct different potential structures which all

were relaxed. The isomers with lower binding energy

are denoted by inverted triangles in Fig. 2.

We show in Fig. 3 the cross sections of all the

relaxed NWs. As mentioned above, the blue (dark) and

orange (clear) atoms are located in neighboring layers.

The arrows below the structures give information of

the magnetic easy axis, discussed in the next section.

This figure shows all the geometric arrangements

considered in this article. In the case of various

arrangements for the same N, the ones labeled (a) are

those with the strongest binding energy.

Due to these structural transitions, the NW diameter

is not appropriate to classify the NWs; instead, we will

use the number of atoms per unit cell, although from

an experimental point of view, the meaningful

parameter to characterize the NWs is their diameter.

In Table 1, we give in the second column, the ground-

state geometry for each nanowire. Then, in columns 3

and 4, the major and minor diameters (fitting an

ellipse) of the relaxed NWs are reported. The last

column contains the nearest neighbor distance dNN in

Å. We refer to the wires as bcc-like or hcp-like, only

when an NW after the relaxation resembles this

symmetry. Although, due to the surface effects, this

classification is not exact, e.g., a simple inspection

makes evident that the six-fold rotational symmetry in

the hcp-like 6 and 12d NWs is not preserved. Although

this feature is present, it is less evident in the case

24b. The nearest neighbors distance (dNN) is a complex

function of the NW size because it is greatly affected

by the cross-sectional shape. When the shape is

cylindrical (4, 9, 12, 24b, and 31), dNN is a maximum.

Instead, when the cross section is elongated

(8b, 12c) or the NW has sharp edges (8, 11, 22, and

27), dNN is a minimum.

Binding energy and magnetic moments

In the upper panel of Fig. 4, we show the average

magnetic moment per atom in Bohr magnetons

�l ¼ 1

N

X

i

li; ð1Þ

as a function of the number of atoms per unit cell

N. The results for the ground-state structures are

represented by circles. In the case of structures with

isomers, b, c, or d, (see Fig. 3) the results are shown by

stars, down, and side-triangles, respectively.

The average magnetic moment shows, in general, a

smooth decrease as a function of N. However, due to

the complex surface atomic structure (the less coor-

dinated atoms have a greater magnetic moment), some

small oscillations are present. In all cases, the average

magnetic moment is larger than in the bulk, which is

expected since in all the cases more than half of the

atoms are at the surface. The only point that does not

Fig. 2 Optimized unit cell height q (in Å) along the NW axis.

The ground-state values are marked by circles and joined by a

line. The structures assumed with a hcp symmetry, before

relaxation, are marked by squares. The isomeric structures for

some NWs, with smaller binding energy, are marked by

triangles
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Fig. 3 Views of the relaxed unit cells perpendicular to the

periodicity axis. Each color represents a different layer: the

upper layer is orange (clear) and the lower is blue (dark). The

number below each NW is the number of atoms in the unit cell.

NWs with the same number of atoms are labeled by their

stability (the ground-state is labeled ‘a’, and so on). The

magnetic easy axis of each NW is denoted by the arrows or dots
bellow the structures. (Color figure online)
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follow this trend, with a value close to bulk (2.2 lB),

corresponds to the NW labeled as 24b. This small

value is produced by the hcp-like symmetry; the atoms

at the inner triangles possess a magnetic moment

&1.5 lB.

To illustrate how the atomic magnetic moments

depend on their local geometric environment, in

Fig. 5, we give the values of the magnetic moments

that correspond to the atoms with different environ-

ments of the NW with N = 17. The highest and the

lowest values, l = 3 lB, 2.4 lB, correspond to the

less-coordinated atom and the one in the center,

respectively. All other atoms have magnetic moments

with values in between those values.

In the lower panel, we show the N-dependence of

the binding energy Eb. It decreases as a function of N

toward the bulk value, but it is important to note that

there are local minima (‘magic sizes’) corresponding

to wires with 4 and 12 atoms per unit cell. These NWs

are more compact (i.e., they have a nearly cylindrical

shape), as compared to the structures with smaller and

larger N.

Table 1 Number of atoms per unit cell N (the isomers are

labeled according to Fig. 3), crystal structure, major diameter

Da, minor diameter Db, and the nearest neighbors distance

(dNN) of the NWs

N Structure Da Db dNN

2 zig-zag 1.83 0.00 2.22

3 ribbon 4.22 0.00 2.34

4 tetr 2.75 2.75 2.37

5 tetr 3.84 3.84 2.33

6 hcp 4.10 2.51 2.36

8 tetr 5.86 4.39 2.28

8b tetr 8.35 2.86 2.26

9 tetr 5.73 5.73 2.43

11 tetr 7.92 4.80 2.32

12a tetr 6.32 6.32 2.39

12b tetr 8.55 6.00 2.38

12c tetr 8.56 5.72 2.36

12d hcp 6.23 5.42 2.34

14 bcc 6.90 4.77 2.34

15 bcc 7.79 5.81 2.38

16 bcc 6.38 6.12 2.36

17 bcc 7.50 6.94 2.31

20a bcc 7.48 6.60 2.34

20b bcc 8.07 7.78 2.32

22 bcc 8.08 8.00 2.30

23 bcc 8.71 8.14 2.34

24a bcc 9.70 8.07 2.31

24b hcp 7.64 7.47 2.39

26 bcc 8.92 8.03 2.36

27 bcc 9.19 8.30 2.29

31 bcc 9.65 9.56 2.42

Fig. 4 Average magnetic moment per atom �l (upper panel) in

Bohr magnetons, and binding energy Eb (lower panel) in

electron Volts, of the relaxed NWs as a function of the number

of atoms per unit cell N. The line joining ground-state structures

(circles) is just a guide to the eye. The isomers are labeled

according to Fig. 3

Fig. 5 Values of the magnetic moments, li in Bohr magnetons,

of the atoms with different geometric environments correspond-

ing to the nanowire with N = 17. Each color represents a

different layer: the upper layer is orange (clear) and the lower is

blue (dark). (Color figure online)
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Magnetic anisotropy energy

As mentioned above, the MAE has two main sources:

the shape anisotropy energy (SAE) and the MCAE.

We calculated these two contributions in all the NWs

described in the previous section.

Magnetocrystalline anisotropy energy

To study the magnetocrystalline anisotropies, we align

the magnetic moments along a desired direction and

calculate the total energy (including the spin–orbit

coupling). To a good approximation, due to the

cylindrical symmetry, the total energy as a function

of the magnetization orientation (h, /), with respect to

the NW axis, can be written as (Tung and Guo 2007)

Eðh;/Þ ¼ E0 þ sin2 hð Þ K1 þ K2cos2ð/Þ
� �

; ð2Þ

where h is the angle that forms the magnetization with

the z-axis (NW axis), and / is the azimuthal angle in

the plane xy. The anisotropy constant K1 = E(p/2,

p/2) - E(0, 0) is the axial contribution; a positive

value means that the easy axis is along the NW axis,

and a negative one is obtained when the easy axis is in

the perpendicular plane. K2 is the difference between

the maximum and minimum values of E(p/2, /) as one

sweeps the magnetization on the xy plane. When the

NW has fourfold symmetry (or twofold plus inver-

sion), K2 becomes negligible and the anisotropy in-

plane disappears.

Operationally, we first calculated the MCAE in the

plane xy by rotating the magnetization in intervals of

10�, and identified the maxima and minima. We

defined / = 0 at the position of maximum energy.

Then, we calculated the axial MCAE by rotating the

magnetization through angles of the same magnitude,

from h = 0 to p/2, and keeping / = p/2 (minimum in

plane energy). With these definitions, K2 is always

positive.

The energy as a function of the magnetic orienta-

tion h and / for the NW with N = 3 is presented in

Fig. 6. The left side corresponds to the rotation of the

magnetization from the z axis (h = 0) to the y axis

(h = p/2, / = p/2). The right side shows how the

energy changes as we rotate the magnetization, from

this orientation, on the plane xy to / = p. The zero of

energy is taken at E0 (axial magnetization). In this

case, the easy axis is perpendicular to the z and along y.

In Fig. 7, we present the dependence of K1 (upper

panel) and K2 (lower panel) as a function of the

number of atoms in the unit cell. We found that based

on the MCAE, the easy axis always lies perpendicular

to the axial orientation. It is interesting that the ribbon-

like NWs (with two and three atoms per unit cell) have

the largest MCAE. A similar result for the zig-zag NW

(N = 2) was obtained before (Tung and Guo 2007,

Dorantes-Dávila and Pastor 2005). Tung and Guo

obtained a value of -0.7 and 0.58 meV/atom, and

Dorantes-Davila and Pastor about -2 and 2 meV/

atom, for K1 and K2, respectively. In our case, we

obtain K1 = - 0.51 and K2 = 0.46. In Table 2, we

compare our results to those obtained previously.

In thicker NWs, their shape loses the 2D charac-

teristics, and the magnetic anisotropy constants, K1

Fig. 6 Left side the energy as a function of the magnetic

orientation h keeping / = p/2. Right side the energy as a

function of the magnetization orientation /, in the plane xy

Fig. 7 Axial (K1) and in-plane (K2) components of the MCAE,

according to Eq. 2. The line joining ground-state structures is

just a guide to the eye. The isomers are labeled according to

Fig. 3. A negative K1 means an in-plane easy axis

Page 8 of 11 J Nanopart Res (2013) 15:1524
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and K2, rapidly decrease. NWs with high in-plane

symmetry, like N = 4, 5, and 12a, do not posses any

appreciable in-plane component of the anisotropy (i.e.,

they have an easy plane). We observe that the hcp-like

NWs have a larger MCAE than that of bcc NWs. This

behavior is because the hcp lattice axis coincides with the

NW axial axis. The thicker bcc-like NWs have a smaller

anisotropy per atom than the thin ones, but in average,

their MCAE is &50 times larger than in bulk iron.

Dipolar energy

The dipolar interaction energy, also known as the

shape anisotropy energy (SAE), of a set of magnetic

moments li; located in a given geometric arrange-

ment, is given by

Ei ¼ �
l0

4p

X

j

1

r3
ij

½3ðli � eijÞðlj � eijÞ � li � lj�; ð3Þ

where l0 is the vacuum permeability, rij is the distance

between li and lj and its vector is directed along the

direction eij. The sum has to be calculated taking into

account an infinite number of magnetic moments (our

nanowires are considered infinite). In practice, we sum

up to a number of cells until the difference between

two successive steps is less than a given tolerance (of

the order of 1,000 steps). We obtained an analytic

expression only when the magnetic moments of a

monoatomic linear chain are oriented along the z-axis.

In this case, the energy is given by

Ei ¼ �
l0l

2fð3Þ
2pL3

; ð4Þ

where l is the atomic magnetic moment, fð3Þ � 1:2 is

the Riemann function, and L is the nearest neighbor

distance.

We calculated the SAE by a procedure similar to

the MCAE and obtained the corresponding K1
d and K2

d

values.

The results for the anisotropy constants K1 and K2

for the studied NWs are given in Table 3. Here, we

give the total values (t) and their components;

magnetocrystalline (e) and dipolar (d). In contrast to

the K1
e , the K1

d is always positive. As expected, this

contribution drives in favor of an axial easy axis.

However, only in some cases, |K1
d| [ |K1

e|, i.e.,

N = 4, 5, 12a, 12b, 16, 17, 20b, 22, 26, 27, and 31.

As mentioned above, it is important to note that NWs

with high in-plane symmetry do not possess an in-

plane component of the anisotropy, giving rise to an

easy plane. From Table 3, one observes that K2
d is zero

(within our tolerance) for the structures with

N = 4, 5, 9, 12a, 17, 20b, 22, 23, 24b, and 31.

In Fig. 3, we show below the various structures the

direction of easy axis: when it lies on the plane

perpendicular to the z-axis, it is denoted by an arrow;

when it coincides with the z-axis, it is represented by a

dot. Easy plane perpendicular to or along the z-axis is

denoted by a circle or and an ellipse, respectively. This

figure shows the large variety of magnetic behaviors

that depend on the geometric structure and the number

of atoms in the cell.

Conclusions

A complete structural optimization of Fe NWs, with

less than 32 atoms per unit cell i.e., 1 nm wide, was

performed. The NWs were built from bcc iron with

axis along (110) direction, and for comparison, we

considered also hcp NWs, in some cases. A strong

dependence of the cell height q on the number of

atoms by unit cell was observed. For structures with

unit cells with less than 12 atoms, the cross section

suffers a transition to a tetragonal-body-centered

structure. For NWs with larger unit cells, it preserves

the bcc structure with the original cell height, but with

a relaxed surface. From this effect, we concluded that

Table 2 Comparison of the MAE parameters K1 and K2, as

obtained in our study with the values reported in Ref. (Tung

and Guo 2007; Dorantes-Dávila and Pastor 2005). The total,

the MCAE and the dipolar contributions are denoted by the

superscripts t, e, and d, respectively, and are given in meV/

atom

K1
e K2

e K1
d K2

d K1
t K2

t

This study -0.51 0.46 0.2 -0.1 -0.31 0.36

Ref. (Tung and Guo 2007) -0.70 0.58 0.37 0.19 -0.33 0.39

Ref. (Dorantes-Dávila and Pastor 2005) -2.0 2.0 -2.0 2.0
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one must always relax the structure along the axial

direction.

The average magnetic moment of all NWs is larger

than the one in the bulk and decreases slowly as a

function of the number of atoms per unit cell. However,

due to the different surface atomic structures (the less-

coordinated atoms have a greater magnetic moment),

some small oscillations are observed.

The binding energy Eb decreases as a function of

N toward the bulk value, but there are local minima

that correspond to wires with a nearly cylindrical

shape (four and 12 atoms per unit cell).

We calculated the magnetocrystalline and dipolar

contributions to the MAE. The axial contributions

(K1
e(p)) are opposite in sign and of very similar

magnitude. This gives rise to changes of the easy axis

direction, from the z-axis to the perpendicular plane.

Furthermore, in very symmetric structures, we even

obtained an easy plane.

To our knowledge, this is the first systematic study

of the interplay between the dipolar and crystalline

contributions to the anisotropy magnetic energy in

nanowires, as a function of its diameter.
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